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Abstract—With the significant increase in wind speed usage
as a clean source of energy, an accurate wind speed forecasting
system is a must for more effective utilization of this energy.
Failure to consider the inherent spatio-temporal features of wind
speed time series leads to the lack of generalization capacity for
current wind speed forecasting approaches. This paper proposes
an end-to-end deep neural network framework, i.e., convolutional
rough long short-term memory (ConvRLSTM), to extract spatio-
temporal wind correlations and mitigate the inherent uncertain-
ties in wind time series by incorporating the Rough set theory into
a combination of convolution neural network (CNN) and LSTM
units. Our proposed model receives the historical data of wind
speed for a 20×20 array of wind turbines in North Carolina, US.
Several ConvRLSTM layers extract the most relevant features for
the forecasting task, and finally, fully connected layers predict
400 wind speed values using the spatial features obtained by the
CNN and temporal features computed by the LSTM. Through
analyzing the numerical forecasting results, it can be inferred
that the proposed approach outperforms the mainstream and
recently published forecasting strategies in terms of the RMSE
metric.

Keywords—Convolutional neural networks, Rough set theory,
Long short term memory, Spatio-Temporal correlations, Wind
speed forecasting

I. INTRODUCTION

In recent years, among all sustainable and green energy
sources such as wave and hydropower, there is a significant
interest in modern societies’ wind energy usage. Due to the
correlation between the wind power generated by a wind
turbine and wind speed, proposing an accurate and reliable
wind speed forecasting method leads to the improvement of
wind energy predictions [1]. During the past decade, several
approaches have been considered for wind speed forecasting:
1) Numerical calculation methods, 2) Statistical methods, and
3) Machine Learning (ML) based methods. Numerical calcu-
lations including Weather Research and Forecasting (WRF)
[2] and Mesoscale Model (MM5) [3] mainly exploit satellite

images and numerical simulations to predict wind speeds.
Commonly used statistical methods for wind speed forecasting
include the Gaussian process model [4], auto-regressive inte-
grated moving average (ARIMA) [5], as well as the moving
average (MA) [6]. Although statistical methods have shown a
reliable performance for ultra-short-term and short-term wind
speed forecasting, the general linear assumptions of these
approaches cannot model existing stochastic, uncertain, and
highly nonlinear nature of wind speed data.

Fig. 1: A 20× 20 wind turbine cluster in North Carolina. Each spot
illustrates a wind turbine.

ML-based approaches are data-driven methods that have
been exploited for a variety of regression [7] and classification
[8] tasks, recently. Due to the shortcomings of primary meth-
ods, among all recent wind forecasting approaches, ML-based
and hybrid methods have attracted the attention of a significant
number of studies in this regard [9]. Liu et al. proposed a
hybrid multi-module deep model for wind speed forecasting,
which uses extreme learning machine (ELM), outlier robust
ELM (ORELM), and deep belief neural network (DBN) for
short-term forecasting tasks [10]. To reduce the nonstation-
arity of wind speed, preprocessing approaches are widely
considered in wind speed sequence forecasting models. For
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instance, Duan et al. [11] developed a forecasting model which
extracts IMFs of raw wind speed based on Variational modal
decomposition and forecasts the future values of wind speed
time series by long-short term memory structure (LSTM). In
this line of research, authors of [12] first extract the most
representative information by Jaya optimization algorithm,
then train a support vector machine (SVM) model for the
prediction task.

The majority of studies merely capture the particular pattern
in raw wind speed sequences in the time domain (temporal
information); however, it is shown that there is a high corre-
lation in neighboring wind turbine sites [13]. Hence, several
recent studies have addressed the spatio-temporal forecasting
methods. For example, in [14] authors developed a graph
convolutional deep learning architecture (GCDLA) that in-
cludes LSTM neural networks (NNs) to capture the relevant
spatio-temporal features and predict the future values of time
series with higher accuracy. More recently, Lu et al. [15]
proposed a short-term forecasting framework based on spatio-
temporal analysis and multi-output support vector machine
(MSVM). The authors used the Pearson correlation coefficient
and partial autocorrelation function to investigate the spatio-
temporal correlation between wind sites, and their optimized
MSVM is employed to predict 15 sites’ time series.

In this paper, we address the problem of robust wind speed
forecasting for multiple wind sites simultaneously. We model
the temporal information of 400 wind turbines farm in North
Carolina state, USA, as a 20 × 20 intensity map (Fig. 1).
Recently, Convolutional NNs (CNN) and LSTM NNs have
shown significant performance in the extraction of spatial
and temporal features, respectively. Due to these models’
superiority, in this paper, we proposed a novel end-to-end
framework for wind speed forecasting. The proposed model,
convolutional rough LSTM (ConvRLSTM), benefits from the
CNN layer’s advantages in the extraction of the spatial features
and LSTM NN for capturing the temporal information of
raw wind speed time series. Moreover, by making use of
Rough set theory [16], [17], we use the interval convolution in
the ConvRLSTM model to mitigate the uncertainties in wind
speed time series. The main contribution of this study include:

1) This is the first study for robust spatio-temporal feature
extraction and forecasting in the wind speed forecasting
research. In contrast to previous works, this model
studies how to incorporate interval knowledge into deep
learning to develop a robust machine learning model for
wind speed prediction tasks.

2) A novel combination of CNNs and LSTMs is proposed
for the first time for accurate prediction of wind speed
measurements at multiple neighboring sites. The CNN
captures the spatial patterns while the LSTM learns
complex temporal patterns in the highly varying wind
datasets.

3) To the best of our knowledge, this work is the first
attempt to develop a Rough neural network for the
spatiotemporal prediction of wind speed time series.
We incorporate the Rough set theory into the proposed

hybrid deep neural network to handle noise and uncer-
tainties exist in wind data.

This paper is organized as follows: Section II discusses the
problem formulation of wind speed forecasting for 400 wind
sites. In Section III the details of the proposed ConvRLSTM
model is explained. The experimental results and comparison
of the proposed approach with state-of-the-art wind speed
forecasting methodologies are made in Section IV. Finally,
Section V provides the conclusion of this paper.

II. PROBLEM FORMULATION

Our aim for wind speed forecasting is to predict the future
values of the wind speed time series corresponding to multiple
neighboring wind sites. Let us consider the location of each
site by two dimensional coordinates (i, j). The spatial infor-
mation of the underlying sites at time t is stored in a I × J
array denoted by St:

St =


st(1,1) st(1,2) · · · st(1,J)
st(2,1) st(2,2) · · · st(2,J)

...
...

. . .
...

st(I,1) st(I,2) · · · st(I,J)

 (1)

where st(i,j) describes the wind speed values for site (i, j)

at time t. Our goal is to predict the next wind frame, Ŝt+h,
corresponding to the forecasting horizon, h, by the historical
values of wind speeds S̃. More formally, the problem of wind
speed prediction is formulated by:

Ŝt+h = argmax
θ

P
(
St+h|S̃t−l+1, S̃t+l+2, ..., S̃t

)
(2)

where θ is the machine learning model parameters, and l ≥ 1
is the historical time lag. Since the wind speed information
is highly nonlinear in nature, similar to [18], [19] to compute
the nonlinear correlation between the time series values in
different times, mutual information (MI) is employed. Hence,
to form the spatial wind speed matrix S in (1) and to select
the input variables for the forecasting framework the MI value
between St+1 and St−l+1 corresponding l ≥ 1 is calculated.
The wind speed data related to the time lags with higher MI
values than λ are considered as an input set for our proposed
algorithm. Note that, λ is a hyperparameter determined by
empirical experiments.

III. CONVOLUTIONAL ROUGH LONG SHORT-TERM
MEOMORY

A. Rough Set Theory

Rough set theory is a mathematical tool introduced by
Pawlak [16] that has shown its superiority to handle the
uncertainty and noise in time series in several recent stud-
ies [14], [19]. The theory defines an information system,
S = 〈U,A, V, f〉, where the finite non-empty sets U and
A are called the universe of primitive objects and set of
attributes, respectively. Each attribute a ∈ A belongs to a
specific domain set Va and V consists of all attribute domains



in A, V = ∪
a∈A

Va. S defines a total information function,

f : U×A→ V , that for every a ∈ A and x ∈ U , f(x, a) ∈ Va.
Consider Z as a subset of attributes in A (Z ⊆ A), two

objects v1 and v2 in information system S are indiscernible
from each other if and only if ∀z ∈ Z : f(v1, z) = f(v2, z).
Using the entire knowledge in Z the Rough set theory defines
two types of estimation for any concept set X ⊆ U : ZX
and ZX which are called Z-Upper bound and Z-Lower bound
estimation,

ZX = ∪{O ∈ U |Z : O ∩X 6= ∅}
ZX = ∪{O ∈ U |Z : O ⊆ X}

(3)

And the Z-boundary region of X is obtained by,

BNDZ(X) = ZX − ZX (4)

BNDZ(X) describes the vagueness of X . ZX denotes all
objects in U that certainly belong to X; however, ZX shows a
set of objects in U that can possibly be classified as a member
of X using the knowledge of attributes in Z. If BNDZ(X) =
∅, then X is called a crisp set in respect of Z set, otherwise
X is a rough set.

B. Proposed Model

LSTM is a deep recurrent neural network (RNNs) that has
proven its superiority in various recent sequence modeling
applications [11], [14], [20]. The significant innovation of
LSTM lies in its memory blocks, Ct that play a crucial role in
the mitigation of the vanishing gradient issue by representing
the long-term dependencies in time series. Although traditional
LSTM structures have shown significant performance in mod-
eling temporal correlation of time series, they cannot handle
the spatial correlations.

Fig. 2 depicts the proposed robust spatiotemporal model.
The mathematical formulations of a ConvRLSTM block are
shown in (5)-(9):

it = ReLU(αSiσ(W
U
Si ~ St + bUSi) + βSiσ(W

L
Si ~ St + bLSi)

+ αHiσ(W
U
Hi ~Ht−1 + bUHi) + βHiσ(W

L
Hi ~Ht−1 + bLHi)

+ αCiσ(W
U
Ci � Ct−1 + bUCi) + βCiσ(W

L
Ci � Ct−1 + bLCi)) (5)

ft = ReLU(αSfσ(W
U
Sf ~ St + bUSf ) + βSfσ(W

L
Sf ~ St + bLSf )

+ αHfσ(W
U
Hf ~Ht−1 + bUHf ) + βHfσ(W

L
Hf ~Ht−1 + bLHf )

+ αCfσ(W
U
Cf � Ct−1 + bUCf ) + βCfσ(W

L
Cf � Ct−1 + bLCf )) (6)

Ct = ft � Ct−1 + it � tanh(αScσ(WU
Sc ~ St + bUSc)

+ βScσ(W
L
Sc ~ St + bLSc) + αHcσ(W

U
Hc ~Ht−1 + bUHc)

+ βHcσ(W
L
Hc ~Ht−1 + bLHc) (7)

Ot = ReLU(αSOσ(W
U
SO ~ St + bUSO) + βSOσ(W

L
SO ~ St + bLSO)

+αHOσ(W
U
HO~Ht−1+b

U
HO)+βHOσ(W

L
HO~Ht−1+b

L
HO)

+ αCOσ(W
U
CO � Ct + bUCO) + βCOσ(W

L
CO � Ct + bLCO)) (8)

Ht = Ot � tanh(Ct) (9)

where ~ and � denote convolution and element-wise prod-
uct, respectively. The Sigmoid function is used as a latent
activation function σ in ConvRLSM. As shown in Fig. 2, at
time step t, the ConvRLSTM is fed by the spatial matrix,
St, as well as the previous hidden state and memory cell,
Ht−1 and Ct−1, respectively. The model applies convolution
on inputs St while the hidden state Ht is computed using
the interval (upper- and lower- bounded) kernels and biases,〈
WH , bH

〉
and

〈
WL, bL

〉
, respectively. Each time that a new

input is inserted into a layer, the corresponding information
is accumulated in the ConvRLSTM cell if the input cell it
is fired. Also the past memory cell Ct−1 must be forgotten
if the forget gate ft is activated. Moreover, Ot controls the
propagation of the current memory cell Ct to the final hidden
state ht.

As shown in (5)-(9), the proposed ConvRLSTM has a
convolution operator in both state-to-state and input-to-state
transition. Also, in contrast to the classic LSTM, the input
and output elements are 3D tensors rather than 1-dimensional
vectors; hence, they are capable of providing more infor-
mative knowledge with larger parameter space. Making use
of convolution operations on the spatial matrix and hidden
state information leads to capturing complex spatial features
corresponding to an array of the time series. As shown in
Fig. 2, on top of the forecasting framework, multiple fully
connected layers are used to yield predictions. Using gradient
descent with root mean squared error between the predicted
values and the actual values of the wind speed time series, the
whole parameters of the model can be updated in an end-to-
end manner.

As shown in Fig. 2, the proposed framework for the wind
speed forecasting task has multiple stacked ConvRLSM cells.
The number of ConvRLSTM cells (i.e., the number of input
variables), l, significantly affects the model performance. This
number helps us have a trade-off between the completeness
of input information and the model’s complexity. With a too
small l, the historical information is not rich enough for the
prediction task, whereas the large l results in an unnecessarily
large hyperparameter space for the model. Similar to previ-
ous studies, to determine hyperparameter l, we used mutual
information (MI) analysis. Considering st as the wind speed
values at time t, the MI of the st−l+1 and st is computed
for l ∈ [1, 100] in the validation set. Fig. 3 shows the result
of MI analysis corresponding to the l values. As shown in
this plot, with the increase of our time lag, l, the correlation
between the current and previous wind speed values decreases.
In this work, by setting a threshold value λ, we choose the
wind speed values corresponding to time-lags with MI more
than λ = 0.25. This results in the incorporation of time-lags
from l = 1 to l = 24. Hence, in the proposed model we set
< s(t− 24), s(t− 22), ..., s(t) > as the model’s inputs.

IV. NUMERICAL RESULTS

A. Evaluation Criteria

In this work, two famous criteria, the root mean square
(RMSE) and mean absolute error (MAPE) are employed to



Fig. 2: The proposed ConvRLSTM for wind speed prediction. Symbols ~ and � depict the interval convolution and the Hadamard product.

Fig. 3: Mutual Information of various time lags.

evaluate the prediction accuracy at each site (i, j) where
1 ≤ i, j ≤ 20. The RMSEi,j and MAEi,j metrics are
calculated as:

RMSEi,j =

√√√√ 1

N

N∑
n=1

(si,j (n)− ŝi,j (n))2

MAEi,j =
1

N

N∑
n=1

|si,j (n)− ŝi,j (n)|

(10)

where N is the number of samples, also the actual values
and predicted values of time series are shown by s and ŝ,
respectively. According to the defined criteria, the error indices
for the whole array can be defined as,

RMSETotal =
1

I × J

I∑
i=1

J∑
j=1

RMSEi,j

MAETotal =
1

I × J

I∑
i=1

J∑
j=1

MAEi,j

(11)

where i and j determine the total number of sites and in this
paper are equal to 20. The smaller the values of defined criteria
are, the better the performance of the model is.

B. Experimental Settings

We trained the proposed model on the wind speed measure-
ments of 400 sites from the Wind Integration National Dataset,

a publicly available dataset by the National Renewable En-
ergy Laboratory [21]. The entire dataset includes the wind
speed information of more than 126, 000 sites in the US for
2007− 2013. We consider the 75% and 25% of the data from
2007 till 2012 as training and validation data, respectively.
Moreover, we test our model on the prediction of wind speed
for the year 2013. Using the MI analysis, the number of
ConvRLSTM cells is set to 24, and we adopt empirically
three hidden layers with dimension {578, 800, 400} in the
MLP regression block. To mitigate the overfitting effect we
employ determinantal point process dropout proposed in [22]
in regression block. In this work, we consider 3× 3 and zero
padding kernels with a stride coefficient of one for applying
convolution to the input and hidden states. Moreover, all
tunable parameters are trained with Adam learning algorithm
with 0.001 and 100 the learning rate and the number of
epochs, respectively. All the experiments are carried out using
GPU-based Tensorflow [23] on Python 3. The simulations are
processed in a system with a 10-core CPU having Intel Core-i7
Processors, an NVidia Quadro RTX 6000 GPU, and a 256-GB
RAM.

C. Performance Analysis

In this paper, we compare the proposed model with sev-
eral shallow and deep structures, recurrent NNs, and state-
of-the-art Spatio-temporal structures including, feed-forward
neural network (FFNN), time-delay neural network (TDNN),
nonlinear autoregressive neural network (NARNN), stacked
autoencoder (SAE) [1], deep belief network (DBN) [1], gated
recurrent unit (GRU), long short term memory (LSTM),
spatio-temporal neural network (STNN) [24], and convolu-
tional graph autoencoder (CGA) [18].

Tables I and II compare the RMSETotal and the MAETotal
of the forecasting methods over 10-min to 3-hour horizon time,
respectively. As shown by the tables, both criteria increase
with the extension of the time horizons. As shown in the
tables, FFNN has acceptable performance for ultra-short (i.e.,
10-min) forecasting; however, it shows a poor performance
with the increase in the horizon time steps. Generally speaking,



TDNN and NARNN outperform FFNN by 0.334 and 0.518
improvement on average RMSETotal over all time horizons,
respectively. This superiority originates from the TDNNs and
NARNNs structure, whereby recurrent signals help the model
to capture more relevant temporal features from the wind speed
time series. SAE, which applies a set of auto-encoders to
extract the nonlinear manifolds, works more accurately than
NARNN. For example, considering the Table II, SAE reaches
0.942 and 1.982, while, NARNN reaches 0.976 and 2.007 in
30-min and 3-hour time horizon, respectively. The DBN model
consists of multiple Restricted Boltzmann machines trained
with Contrastive Divergence method [25]. In the tables, one
can observe the decreasing in the averaged RMSETotal and the
MAETotal of the DBN over the NARNN by 0.414 and 0.223,
respectively. These improvements of SAE and DBN prove the
deep structures’ higher generalization capacity compared to
the shallow neural networks due to having more nonlinear
latent layers, which helps these models propose more accurate
forecasting.

Compared to DBN and SAE, the recurrent deep structures,
i.e., GRU and LSTM, show more reliable performance, espe-
cially on larger forecasting time horizons. As shown in the
Table I, considering 2-hour and 3-hour time horizons, the
GRU achieves 1.786 and 2.126, respectively, while for the
DBN these values are 1.803 and 2.212. The results are further
improved on both RMSETotal and the MAETotal when LSTM
is applied. In comparison with DBN, the LSTM decreases
the averaged RMSETotal and the MAETotal by 0.520 and
0.354, respectively. This improvement in the results shows the
superiority of LSTM over previous methods in modeling the
temporal correlations in the time series.

By considering the concept of spatio-temporal sequence
forecasting, STNN and CGA methods result in more accurate
results than LSTM. Based on the Table I, STNN which com-
bines GRU with convolutional neural networks decreases the
averaged RMSETotal and the MAETotal of LSTM by 0.138
and 0.148, respectively. The CGA that is originally proposed
for probabilistic spatio-temporal solar irradiance forecasting
reaches the lowest RMSETotal and the MAETotal among
mentioned baselines. This model extracts the spatio-temporal
features by applying a convolution graph to the input time
series. The CGA model works slightly better than STNN,
for example, in 10-min and 3-hour ahead forecasting, the
averaged STNN’s MAETotal over all time horizons is 1.180
while this value for CGA is 1.136. Finally, the proposed
ConvRLSTM model dominates all underlying baselines. In
comparison with CGA as the best baseline, ConvRLSTM
decreased the averaged RMSETotal and the MAETotal of CGA
by 0.343 and 0.278. The better performance of ConvRLSTM
is due to making use of the LSTM model and applying interval
convolution, which mitigates the stochastic behavior of wind
speed time series. Fig. (4(a)) and (4(b)) compare the relative
performance of the proposed model with traditional forecast-
ing methods and the state-of-the-art approaches for 250 test
sample on July 26th in 3-hour horizon time, respectively. As
shown in the plot, the proposed model follows the actual values

TABLE I: Obtained RMSETotal for wind speed forecasting approach
for 400 turbines array on several time horizons

Model 10-min 30-min 1-hr 2-hr 3-hr

FFNN 0.789 1.298 1.682 2.012 2.486
TDNN 0.753 1.221 1.621 1.981 2.357

NARNN 0.713 1.181 1.589 1.960 2.306
SAE 0.681 1.159 1.563 1.841 2.256
DBN 0.632 1.143 1.545 1.803 2.212
GRU 0.609 1.069 1.511 1.786 2.126

LSTM 0.562 1.002 1.492 1.754 2.005
STNN 0.533 0.987 1.472 1.701 1.984
CGA 0.510 0.962 1.376 1.672 1.923

ConvRLSTM 0.492 0.931 1.211 1.578 1.888

TABLE II: Obtained MAETotal for wind speed forecasting approach
for 400 turbines array on several time horizons

Model 10-min 30-min 1-hr 2-hr 3-hr

FFNN 0.591 1.029 1.496 1.911 2.266
TDNN 0.566 0.987 1.452 1.853 2.139

NARNN 0.504 0.976 1.403 1.736 2.007
SAE 0.476 0.942 1.374 1.701 1.982
DBN 0.451 0.931 1.366 1.689 1.966
GRU 0.420 0.903 1.310 1.632 1.923

LSTM 0.388 0.880 1.274 1.611 1.896
STNN 0.351 0.856 1.252 1.578 1.864
CGA 0.312 0.816 1.217 1.521 1.815

ConvRLSTM 0.276 0.784 1.109 1.489 1.745

of wind speed more precisely compared to recent deep learning
benchmarks.

((a))

((b))

Fig. 4: Comparison of the 3-hour ahead prediction outputs of
ConvRLSTM and the baselines for the test samples of 10th wind
site on July 26th 2013.

To further analyze the effect of time horizon on prediction



accuracy, we expand the time horizon parameter from 1 to 24
hours. Fig. 5 illustrates the obtained results for this experiment.
As shown in the plot, the increase in the time horizons yields
consistent drops in forecasting methods’ performance. For a
small-time horizon (i.e., 1 hour), the methods show close per-
formance metrics; however, a significant difference between
the models is observed with the expanding in time horizons.
As shown in Fig. 5, the simplest baseline, the FFNN, is gen-
erally dominated by other methods. The TDNN and NARNN
improved the results by making use of recurrent signals in their
models. Further improvement in the results is observed with
LSTM and GRU models that consider temporal correlations
in the time series. Finally, one can observe the superiority
of spatio-temporal models. Among these techniques, the best
results are obtained by the proposed framework due to high
generalization power and effective robustness to uncertainties.

Fig. 5: RMSETotal comparison of the forecasting methods over
different time horizons.

V. CONCLUSION

This paper presents a novel deep structure to extract Spatio-
temporal correlations for wind speed forecasting task. The in-
tegration of Rough set theory with convolutional-LSTM layer
leads to a more robust forecasting approach. The model applies
the interval convolution and LSTM operators on the historical
data intensity map of 20×20 wind speed turbines on different
time lags; then, the captured spatio-temporal correlations are
fed to several fully connected layers for forecasting task. The
experimental results prove the superiority of the proposed
structure over the state-of-the-art wind speed methodologies
in 1-hr up to 24-hr ahead tasks.
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