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Abstract—The conflicting issues of growing demand for 

electrical energy versus the environmental concerns have left 

the energy industries practically with one choice: to turn into 

renewable energies. This duality has also highlighted the role of 

power transmission systems as energy delivery links in two 

ways, considering the increased demand of load centers, and the 

integration of large-scale renewable generation units connected 

to the transmission system such as wind power generation. 

Accordingly, it has become even more vital to provide reliable 

protection for the power transmission links. The present 

protection methods are associated with deficiencies e.g., acting 

based on a predefined threshold, low speed, and the requirement 

of costly devices. A two-stage data-driven-based methodology 

has been introduced in this paper to deal with such defects, 

considering wind power generation. The proposed approach 

utilizes a powerful feature extraction technique, namely the t-

distributed stochastic neighbor embedding (t-SNE) in the first 

stage. In the second stage, the extracted features are fed to a 

robust soft learning vector quantization (RSLVQ) classifier to 

detect and locate transmission line faults. The WSCC 9-bus 

system is used to evaluate the performance of the proposed data-

driven method during various system operating conditions. The 

obtained results verify the promising capability of the proposed 

approach in detecting and locating transmission line faults. 

Keywords—Fault Detection and Location, Robust Soft 

Learning Vector Quantization (RSLVQ), t-Distributed Stochastic 

Neighbor Embedding (t-SNE), Transmission System 

I. INTRODUCTION 

Transmission systems are prone to various disturbing 
factors, most importantly, the occurrence of short circuit 
faults. In order to preserve the safe and reliable operation of 
the power system, a fast and accurate fault detection scheme 
is necessary. As the population grows and the electrical energy 
demand increases accordingly, the protection of power 
transmission links becomes significantly important.  

On the other hand, the present trend towards the 
integration of power networks with renewable energy sources 
has added a layer of complexity to the aforementioned issue. 
In addition, large-scale wind power generation units 
positioned in relatively remote areas, are necessarily 
connected to the network through a power transmission link, 
and thus are of high importance to protect. Failure in fast and 
accurate detection of faults in power systems greatly impacts 
the reliability of the power system’s supply continuity [1]. 
Subsequent to fault detection, the protective devices try to 
isolate fault by disconnecting the faulty section.  

In this regard, by determining the location of the faults, the 
reliability of the system can be enhanced by minimizing the 
disconnected sections and reducing service disconnection 
time [2]. Various methodologies have been so far proposed for 
the protection of transmission lines, which can be categorized 
into four main groups, given by traveling waves, time-domain 
analysis, phasor analysis, and data-driven methods. In the 
following, each group is explained. 

At the instance of fault occurrence in the power network, 
current and voltage traveling waves are generated in the fault 
location. A group of methods have utilized such a concept to 
detect and locate power system faults. In [1], an algorithm is 
proposed for the classification of various fault types. The 
authors in [3] have proposed a traveling-wave-based fault 
location technique in distribution networks. The main 
disadvantage of these methods is the requirement to measure 
several frequency components. Moreover, advanced 
measurement devices with high sampling rates are needed. 

The phasor-based fault detection schemes mainly benefit 
from the measurement of phasor components of the voltages 
and currents. In [4], an impedance-based method was 
introduced which is realized by frequency analysis of the 
system in harmonic orders other than the fundamental 
component. Authors in [5] have proposed an analytical 
method based on impedance calculation for determining fault 
locations. This method is realized by voltage and current 
measurements at the terminal of the transmission line. In this 
method, the symmetrical components of the three phases have 
been separated by modal analysis. The methodologies in this 
group defect depending on a predefined threshold. Moreover, 
the majority of these approaches are model-based. 

The third group of methods utilize the direct voltage and 
current measurements in the time domain. A time-domain-
based method was introduced in [6], which is independent of 
the line parameters for fault location, thus making it 
insensitive to transmission line parameters. This method 
utilizes voltage and current measurements and acts upon the 
distributed model of the transmission line. The method in [7] 
is a time-domain-based technique that can perform without 
needing to determine fault type in the presence of series 
compensation, which mainly results in the increase of the 
system’s complexity level [8]. In [9], a metaheuristic 
teaching-learning-based optimization (TLBO) algorithm is 
proposed as a time-domain-based approach for fault detection 
in two-terminal transmission circuits. The fast solution of the 
fault location problem within several milliseconds is very 
complicated and computationally expensive. These methods 
are generally not suitable due to their high computational 
burden. J.P.S. Catalão acknowledges the support by FEDER funds through 

COMPETE 2020 and by Portuguese funds through FCT, under POCI-01-
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Considering the complex nature of the power networks on 
the one hand, and the sudden variation of measured 
parameters at the instance of fault, on the other hand, a more 
complex structure is required to adequately analyze these data. 
The methods in the above three categories are unable to handle 
the complexities associated with the problem of detecting and 
locating faults in power networks. In this context, by the 
enhancement of the power systems’ processing capabilities, 
the cost of data-driven methods has significantly reduced [10]. 
Accordingly, various methods have been proposed given by, 
fuzzy logic [11], incorporating artificial neural networks 
(ANNs) with the Fourier transform [12], [13], combining 
wavelet transform (WT) and ANN for detecting faults in 
multi-terminal transmission systems [14], adaptive neuro-
fuzzy inference system (ANFIS) [15], decision tree (DT) [16], 
support vector machine (SVM) [17], and k-nearest neighbor 
(KNN) [18]. 

Table I gives a summary of the various fault diagnosis 
methodologies described above. The data-driven approaches 
generally require feature extraction to perform. The protection 
methods based on these approaches are not solely capable of 
learning and being properly trained the complex and varying 
behaviors reflected by the signal datasets. The majority of the 
present data-driven methodologies have employed methods 
for spectral feature extraction such as the Fourier transform 
and the wavelet transform. However, these techniques are 
highly noise-sensitive [19], making them improper for the 
power system applications, as for being subjected to noise. In 
this paper, this problem has been tackled by conducting the 
feature extraction based on t-SNE. 

In addition, this study proposes a powerful fault detection 
and location technique based on an RSLVQ classifier [20], as 
an enhanced probabilistic version of the simple LVQ. The 
LVQ is a supervised artificial neural network that is realized 
by a codebook vector collection, being able to handle both 
binary and multiclass diagnosis problems. RSLVQ deals with 
the problem of LVQ to minimize the classification error 
through a solely heuristic process. 

II. PROPOSED METHOD 

The proposed transmission line protection scheme is 
constituted of two stages. At the first stage, subsequent to 
anomaly detection, the powerful feature extraction method of 
t-SNE is used to extract the features of the measured signals. 
In the second stage, the features extracted within the first stage 
are fed to an RSLVQ classifier to specify the occurrence of 
the fault together with its type and location. In the following, 
the basics of the t-SNE feature extractor and the RSLVQ 
classifier are introduced. 

A. The t-SNE feature extractor 

The t-SNE method is essentially an unsupervised 
nonlinear method applied for the extraction and visualization 
of features. This method generally determines the similarity 
between dataset samples with large dimensions. The main 
idea of the t-SNE is the utilization of the probability density 
between two points with high dimension and low dimension. 
The highest similarity is determined by an objective function 
based on the Kullback Leibler (KL) divergence. This method 
is implemented as follows. 

Considering the measured points by the power system’s 

phasor measurement unit (PMU) as { }1 2 Nx , x , , x… , the 

probability of similarity between two points is as: 

TABLE I. BRIEF DESCRIPTION OF FAULT LOCATION METHODS IN 

TRANSMISSION NETWORKS 

 Description Advantage Disadvantage 

Travelling-

wave 

Generated current 
and voltage 

travelling wave 

Stable and 
fast 

performance 

Requirement to 
advanced 

measurement 
devices with high 

sampling 
frequencies 

Impedance-

based 

Measured voltage 
and current signals 

to compute 
impedance or 

sequence 
component of 

impedance 
before/during/after 

fault occurrence 

Not sensitive 
to 

measurement 
devices 

require predefined 
threshold and a 

precise 
transmission line 

parameters 

Time-

domain 

based 

An optimization 
distance function 

based on 
difference 
between 

distributed 
transmission line 

model and 
measured signals 

Do not 
require to a 
predefined 
threshold 

High-
computational 

burden 

Data-

driven 

Training based on 
historical data 

Fast and do 
not depend 

on 
predefined 
threshold 

and physical 
model of the 
transmission 

network 

Require feature 
extraction/selection 

to perform 
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where pi|j, and pj|i show the likelihood of two different 
measurement points in the system, while σj represents the 
variance vector of Gaussian distribution considering j as the 
center point. Therefore, joint probability between two samples 
throughout a Gaussian space is defined as: 
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In lower dimensions, the t distribution with 1 degree of 
freedom is used. Thereafter, the joint PDFs, qij from the 
measurement signals in transmission networks, corresponding 

to the set { }1 2 Ny , y , , y…  is: 
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The similarity between qij and pij is calculated based on the 
KL divergence criterion as: 
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In order to maximize the similarity, the KL divergence 
index should be minimized. Accordingly, the gradient descent 
optimization, the following has resulted: 
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Then, t-SNE gives a set of selected features from measured 
raw data by measurement devices in the networks, given as 

{ }1 2 Ny , y , , y′ ′ ′… . 

B. The RSLVQ classifier 

The RSLVQ, being essentially a probabilistic robust soft 
LVQ, is developed as a tool to enhance the basic LVQ 
considering heuristic reasons [21]. The classification 
capability of the basic LVQ with small-size datasets in the 
training stage, and its ability to be incorporated with other AI-
based classifiers, show its superiority tool comparing to 
typical classification methods [20]-[22]. Therefore, RSLVQ is 
expected to introduce a much better performance. 

Primarily, each of the classes labeled with “correct” and 
“incorrect” is assumed to have Gaussian mixture probability 
density functions (PDFs). Afterward, calculating the 
logarithmic ratio between the PDFs of the classes marked by 
correct and incorrect, a cost function is established, 
constituting two terms corresponding to the logarithmic 
probabilities of the correct and incorrect classes. The RSLVQ 
tool implemented here is defined by a modified cost function 
according to [20], as given by equation (7), 
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where the total number of samples is denoted by N. Here, 

k k k k kX {i , ,v , }= θ ϕ  and j InY {c ,c }=  are considered as the 

input set and label set, respectively. The quantities ik, tk, vk, 
and ϕk correspond to the normalized measured gradient 
vectors of line current, line current angle, line voltage, and line 
voltage angle values in sample k. The dataset of the normal 
condition is marked by cj for all the conditions, while cIn 
corresponds to the dataset of fault types for the case of fault 
type determination, and to the dataset of the number of the 
faulty line for the case of fault location determination. The 

nearest prototype classifier f / In f / In{(L ,c )}Γ =  is defined to 

consist of the data space vectors, i.e., non-fault plus fault type 
and faulty line number datasets, and their respective class 
labels. With the implemented cost function of RSLVQ, i.e., 
fRSLVQ, the correct classification rate is maximized, and the 
misclassification rate is minimized. Considering that the cost 
function is bound to an interval between 0 and 1, it should be 
optimized for the logarithm as: 
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Stochastic gradient ascent is used for learning rule update: 
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where the learning rate is denoted by α(t). Thus, the learning 
rule is achieved by calculating the gradient as: 
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where the probability of X being assigned to the mixture’s 
component 1 corresponding to the correct class, and all classes 
is described by assignment probabilities PY(l\X) and P(l\X) as: 

 

j Y

f / In
Y

f / In  ,j{j:c }

P(l) exp f(X, L )
P (l \ X)

P( j)exp f(X, L )
=

=


 (11) 

 f / In

2

f / In  ,j

j 1

P(l) exp f(X, L )
P(l \ X)

P( j)exp f(X, L )
=

=


 (12) 

Selecting a Gaussian mixture model by components of the 
same widths and strengths in conditional probabilities, we get: 
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Consequently, we achieve the learning rule as: 
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where the softness factor is denoted by a positive constant, σ. 



III. NUMERICAL RESULTS 

The proposed method has been implemented and tested on 
the WSCC 9 bus system in the presence of the wind energy 
generation unit. The system under study, depicted in Fig. 1, is 
a modified version of the standard WSCC 9 bus system where 
a wind energy generation unit is added to the bus-7 of the 
network. The network information is adopted from [23].  

For training, we generate a comprehensive dataset based 
on different fault types, different fault locations, fault 
inception times, and a dataset for the normal condition based 
on the stochastic characteristic of load consumption and the 
wind generation unit. The load consumption and wind power 
are constructed using forecasted probability density functions 
(PDFs) in our previous works in [24] and [25], respectively. 
Overall, 1440 different data has been generated, where about 
70% and 30% of data is devoted to the training and testing 
processes, respectively. DIgSILENT was used to generate the 
datasets and their processing was conducted in MATLAB. To 
evaluate the performance of the method, confusion matrixes 
are used. There are four principal components integrated into 
the confusion matrix consists, given as true positive (TP), true 
negative (TN), false positive (FP), and false negative (FN) 0. 

 
A. Discussion on Result: Fault Type Identification 

In this subsection, the results obtained for line number 3 
(line connected from bus 8 to WT) are selected as a sample to 
evaluate the proposed structure. The results of t-SNE for fault 
type identification including non-faulty condition (Class A), 
3-phase faults (Class B), two-phase faults (Class C), and 
single-line-to-ground faults (Class D), have been depicted in 
Fig 2. As can be seen from this illustration, fault type can be 
clearly distinguished based on the output of t-SNE. Therefore, 
Fig 2. shows that t-SNE is an appropriate feature selection 
method for fault type identification in the transmission 
networks. 

The confusion matrix obtained by the proposed hybrid 
method is given in Table II. As can be seen, the accuracy of 
the proposed method in line #3 is 100% by distinguishing all 
fault types correctly. 

B. Discussion on Result: Fault Location Identification 

The fault location results are given in this subsection. Four 
different locations have been considered in this paper; thus, 
the fault location problem is solved as a four-class 
classification problem with classes marked as A, B, C, and D. 
Fig. 3 illustrates the output of t-SNE as a strong feature 
selection method. The t-SNE outputs are clearly discriminated 
by t-SNE and it can significantly enhance the classifier’s 
accuracy. 

The confusion matrix for fault location is depicted in Table 
III. As can be seen, the hybrid method detects all 168 different 
conditions accurately. Thus, the proposed method performs 
perfectly, accuracy = 100%. The highly accurate results 
validate the great potential of the proposed hybrid method in 
the fault localization in the distribution networks. It should be 
noted that the chosen line is connected to the wind generators. 

G2 T2

2 8

9 5

6

T3 G3

3

7

4
Load A Load B

T1

G1

1

Load C

WT

 
Fig. 1: Modified WSCC 9 bus system in presence of wind power 
generation. 

 

 
Fig. 2: t-SNE results on fault type identification in line #3. 

 

TABLE II. CONFUSION MATRIX OBTAINED BY THE PROPOSED HYBRID 

METHOD FOR FAULT TYPE IDENTIFICATION IN LINE #3 

 A' B' C' D' SUM 

A 19 0 0 0 19 

B 0 18 0 0 18 

C 0 0 21 0 21 

D 0 0 0 14 14 

Total Sample 19 18 21 14 72 

 

 
Fig. 3: The t-SNE results on fault location in line #3. 

 

TABLE III. CONFUSION MATRIX OBTAINED BY THE PROPOSED HYBRID 

METHOD FOR FAULT LOCATION IDENTIFICATION 

 A' B' C' D' SUM 

A 15 1 0 0 15 

B 1 11 2 0 11 

C 0 1 15 0 15 

D 0 0 2 15 15 

Total Sample 15 11 15 15 56 

 



IV. CONCLUSION 

A hybrid two-stage technique based on t-SNE and RSLVQ 
has been proposed to detect faults in transmission lines. In this 
method, first, the faulty type is identified from the dispatching 
center of the network. Afterward, using the data measured 
from one terminal of the line, the location of the fault is 
specified. The proposed approach is implemented and tested 
on the WSCC 9 bus transmission system in the presence of the 
wind energy generation unit. The results from the confusion 
matrix for the fault location along line #3 of the test system 
demonstrate the promising capability of the protection scheme 
proposed for fault type and location identification. Therefore, 
the capability of the proposed method is verified for 
transmission networks even in the presence of wind power 
generation units. 
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