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Abstract—Due to the salient features of direct current (DC) 

microgrids (MGs) in integrating renewable energy sources, this 

paper offers a robust finite-time nonlinear observer (FTNO) for 

DC MGs comprising linear resistive and nonlinear constant power 

loads (CPLs) and a buck converter. It is assumed that the 

capacitor voltage is only accessible and the power system is subject 

to unknown time-varying uncertainties. A novel nonlinear 

observer is designed to estimate the inductance curren2t to 

prevent the ripples produced by current sensors and to eliminate 

the price of utilizing expensive sensors. The global finite-time 

stability analysis of the observer error dynamic is investigated via 

a Lyapunov function and an explicit finite convergence time (FCT) 

is derived. The convergence rate of the estimated current is 

tunable by adjusting the parameters in FCT. Eventually, 

simulations are carried out to confirm the superiority of the 

proposed observer performance in estimating unknown 

inductance current in a particular finite time. 

Keywords—Uncertain DC microgrid, Buck converter, 

Constant power load, Nonlinear observer, Adjustable finite 

convergence time. 

I. INTRODUCTION 

Microgrids (MGs) have been presented to provide an 

impressive way of integrating different kinds of distributed 

renewable energy [1]. The MGs are categorized into AC and 

DC ones. In applications involving DC electronic loads and 

renewable DC sources like wind and photovoltaics, the DC 

MGs are more appropriate and affordable than conventional 

AC MGs [1]. However, there is an increasing share of loads 

that are tightly controlled by power converters in DC MGs. 

Such loads are nonlinear since they act as CPLs. From the 

small-signal point of view, they expose negative incremental 

resistance which makes the overall system unstable.  

Recently, the stability issue of CPLs in the DC MGs has 

been extensively studied with several control methods 

proposed. Though, in those control approaches, it is presumed 

that all the system state variables are accessible and 

measurable [2], [3]. It is noteworthy that some papers like [4]–

[7] considered disturbance observer or in [8], a finite-time 

disturbance observer is probed to compensate for the effects 

of disturbances and they are completely different from state 

observer. 

A literature search reveals that there have been only a few 

works on the estimation of unknown and unmeasured 

variables of DC MGs with CPLs by utilizing observers. For 

instance, a fuzzy observer is presented in [9], which cannot 

theoretically assure the estimate convergence. To the best of 

the authors’ knowledge, there are no researches on the design 

of finite-time nonlinear observers (FTNOs) for uncertain DC 

MGs feeding CPLs. The finite-time approach to design 

nonlinear observers has superiority towards asymptotic 

estimation. It is capable of fast estimating and is robust against 

uncertainties. 

This paper discusses the problem of global FTNO design 

for DC MGs with linear loads and CPLs subjected to unknown 

time-varying bounded matched disturbances and a finite 

convergence time (FCT) of estimation is extracted to give the 

freedom of adjusting the rate of convergence of estimation 

error. A complete mathematical proof of universal finite-time 

stability of the observer error dynamic is performed by 

properly introducing a Lyapunov function candidate. 

Simulation results display and confirm the effectiveness of the 

offered FTNO.  

The advantages and innovations of the proposed scheme are 

listed as below: 

• The inductance current is estimated in a specific 

finite estimation time and not only the ripples caused 

by deploying physical sensors are alleviated but also 

the expenses emanating from installing sensors are 

omitted. 

• An explicit finite convergence time of the observer 

error dynamic is extracted that gives the choice of 

adjusting the rate of convergence of the estimation 

process. 

• The estimation process is done as fast as possible 

• The stability analysis of the observer error dynamic 

is held globally.  

• The suggested approach is robust against 

uncertainties comprising external disturbances, 

perturbations, and unmodeled dynamics, which is 

not the case in the existing results.  J.P.S. Catalão acknowledges the support by FEDER funds through 

COMPETE 2020 and by Portuguese funds through FCT, under POCI-01-

0145-FEDER-029803 (02/SAICT/2017).  
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This paper is organized as follows: Section II introduces a 

typical class of nonlinear DC MGs. In Section III, the 

recommended FTNO is presented and the finite-time stability 

analysis for the observer error dynamic is done. In Section IV, 

simulation results are given. Section V ends this paper by 

evoking some concluding remarks. 

II. NONLINEAR MODEL OF DC MGS WITH CPLS 

A conventional DC MG possesses some power generators, 

power supply, and loads. These loads can be resistive or 

constant power, as indicated in Fig. 1. The difference between 

the resistive loads and CPLs is that the latter requires power 

electronic load converters while the prior does not. The CPLs 

are commonly integrated into DC MGs at the input point of 

the load converter by assuming the converters ideal or 

consume constant power.  

This section represents the nonlinear state-space model of 

an uncertain DC MG feeding CPL, linear resistive loads, a 

buck converter, and DC input voltage source by considering 

that the inductance current is not measurable and accessible. 

The simplified electronic schematic of the DC MG is 

demonstrated in Fig. 2.  

The system is subjected to unknown time-varying 

bounded matched uncertainties. The mathematical model of 

an uncertain nonlinear DC MG with CPL is brought in (1). 

�
 ��� � ��                                                                  ��� � 1	
 ��
� � �� � �	����� � � ���
 � ���,��                   (1) 

where �� � �� , �� � ��� , � � �∑ ����� � , � � ∑ �!"#�$%&� , 

and  ���,�� denotes matched uncertainties, which appear as 

the same channel as the control input, comprising of 

unmodeled dynamics, perturbations, and external 

disturbances. � is a known control input signal that stabilizes 

the system or leads to reference tracking.  

 

 

Fig. 1. A fundamental power system schematic of a DC MG. 

III. FINITE-TIME NONLINEAR OBSERVER DESIGN 

The purpose of this paper is to design a robust FTNO to 

estimate the unmeasured inductance current of the DC MG 

with CPL subjected to the unknown time-varying bounded 

uncertainties (i.e., ‖���,��‖ ( ) ). A block diagram of the 

proposed scheme is depicted in Fig. 3. 

This section includes two subsections. First, some basic 

mathematical preliminaries are given. Then, a nonlinear 

observer is designed and a Lyapunov function is constructed 

to prove the finite-time convergence of the observer 

estimation errors by applying a finite-time lemma. Finally, an 

explicit tunable FCT is obtained. 

A. Preliminaries 

The definition of finite-time stability and several useful 

lemmas, which are used in the FTNO design and stability 

analysis of the observer error dynamics are presented in the 

following. 

Definition 1 [7], [10]. Consider time-invariant nonlinear 

system (2) where *: Γ → ℜ/ is a continuous vector function 

and Γ ⊆ ℜ/ is an open neighborhood around the equilibrium 

point � � 0. 

�� � *��� 23�ℎ  *�0� � 0,  � ∈ 6 ⊆ ℜ/ (2) 

Assume that the system has a unique solution ���,�7�, for 

any arbitrary initial condition ��0� � �7 . Then, the zero 

equilibrium point of the system is locally finite-time stable 

(LFTS) if both below constraints are fulfilled: 

a) It is locally asymptotically stable in the region Γ8, where Γ8 ⊆ Γ is an open neighborhood around the equilibrium point. 

 

Fig. 2. An electronic circuit diagram of the DC MG with 9 CPLs, : 

resistive loads, and a buck converter. 

 

 

Fig. 3. A block diagram of a finite-time nonlinear observer for an 

uncertain DC MG with CPL. 
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b) For any initial condition �7 , there exists a finite 

convergence time @��7�: Γ8 ∖ B0C → [0,∞�  such that limI→J�KL� ���,�7� → 0  and  ���,�7� � 0  for  � ≥ @��7�. 

System (2) is globally finite-time stable (GFTS), if Γ �ℜ/. 

Lemma 1 [7], [11]. Consider the nonlinear system (2) 

owning the equilibrium point � � 0 and the initial condition �7 . Its equilibrium point is LFTS, if there exists a 

continuously differentiable function ���� > 0: Γ → ℜU ∪ B0C 

such that the following constraint holds for any unique 

solution ���,�7� of the system: 

�� ��� ( �W��XY��� (3) 

where, W� > 0, 0 < W� < 1 are arbitrary real coefficients. The 

finite convergence time @��7� is calculated as follows: 

@��7� ( [W��1 � W��\]� ��]XY��7� (4) 

Lemma 2 [7]. Suppose 0 < ^ < 1 , _=, ` � 1, … ,b  are 

real scalars. The following inequalities hold: 

c|_%|�U^ ≥ ec|_%|�/
%&� f�U^�/

%&�  

c|_%|7.g ≥ �c|_%|/
%&� �7.g/

%&�  

(5) 

B. FTNO Design and Stability Analysis 

The nonlinear structure of the proposed observer for 

system (1) is as follows:  

⎩⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎧�l�� � �l� � mn� � *�bo���, �l��pqrb��� � �l��            �ns��� � �l���l�� � � �l��
 � ��	
 � ��l�
��� � �
	
 � � n�qrb��� � �l���nt��� � �l��*�bo���,�l�� � �n� � n�� � ng|�� � �l�|u�ng�|�l� � v|�u � )� �w�1�
 � �
���w � ns � nt � 1� �|�l� � v|�

 (6) 

where n=, ` � 1, … , 5  are optional positive numbers that 

fulfill the conditions ns ≥ nt and n� ≥ n�. �l� and �l� are the 

estimated states produced by the observer (2). 0 < y < 1 is a 

positive constant number and |���| ( v. By estimating ��, the 

estimation of inductance current can be easily obtained. ) is 

the upper bound of matched uncertainty ���, ��.  

It is noted that *�bo���,�l�� is a positive scalar function 

and this feature will be used in the stability analysis of the 

observer error dynamic. By ascertaining �z� ≜ �� � �l�  and �z� ≜ �� � �l� as observer estimation errors, the observer error 

dynamics are obtained as: 

⎩⎪⎨
⎪⎧�z�� � �z� � n�qrb��z�� � ns�z�   �*�bo���,�l��qrb��z���z�� � ��z��
 � ��z�
���  �n�qrb��z���nt�z� � ���, ��            

 (7) 

Theorem 1 states and proves that the above observer error 

dynamic is finite-time stable and it gives an FCT. 

Remark 1: For any arbitrary vectors ℎ, | ∈ ℜ/ , the 

subsequent inequality holds which is called the Cauchy-

Schwarz inequality. 

ℎJ| ( |ℎJ|| ( |ℎ|||| (8) 

Theorem 1: Consider observer error dynamic system (7) 

for the uncertain DC MG (1). The dynamic is finite-time stable 

and the estimated states will reach their real values in an FCT. 

Proof: Choose a radially unbounded Lyapunov function 

candidate as � � |�z�| � |�z�|. Its time derivative is calculated 

based on: 

�� � �z��z��|�z�| � �z��z��|�z�|  (9) 

By substituting �z��  and �z��  into ��  from observer error 

dynamics (7), the pursuant equation is resulted. 

�� � |�z�|]��z���z� � n�qrb��z�� � ns�z�� *�bo���, �l��qrb��z���� |�z�|]��z����z��
� ��z�
��� �n�qrb��z�� � nt�z�� ���, ��� 

(10) 

Employing the Cauchy-Schwarz inequality based on 

Remark 1 leads to the following relation. 

|�z�|]��z��z� ( |�z�|]�|�z��z�| ( |�z�|]�|�z�||�z�|� |�z�| (11) 

Term �n�|�z�|]��z�qrb��z�� is simplified to: 

�n�|�z�|]��z�qrb��z�� � �n�|�z�|]�|�z�| � �n� (12) 

The next term is detracted to: 

�ns|�z�|]��z��z� � �ns|�z�|]�|�z�|� ��ns|�z�|  (13) 

For �*�bo���, �l��|�z�|]��z�qrb��z�� one obtains: 

�*�bo���, �l��|�z�|]��z�qrb��z��� �*�bo���, �l�� 
(14) 

It should be pointed out that *�bo���, �l�� is a positive 

scalar function. 



  

Term |�z�|]��z� []KzY}! � "KzY!K�Y\ turns into: 

|�z�|]��z� ���z��
 � ��z�
���� � |�z�|��1�
 � �
���� (15) 

Applying Remark 1 for �n�|�z�|]��z�qrb��z�� results in: 

�n�|�z�|]��z�qrb��z��( �n�|�z�|]�|�z�||qrb��z��|� �n�|qrb��z��| ( n� 

(16) 

Term �nt�z�|�z�|]��z� is upper bounded by: 

�nt�z�|�z�|]��z� ( �nt|�z�| ( nt|�z�|  (17) 

The last term in ��  that is |�z�|]��z����, �� is converted to: 

|�z�|]��z����, �� ( |���, ��| ( )  (18) 

According to (11)-(18), (10) is transformed into the 

subsequent inequality. 

�� ( |�z�| � n� � *�bo���, �l�� � ns|�z�|� w�1�
 � �
���w |�z�| � ) � n�� nt|�z�| (19) 

Inserting *�bo���, �l�� from (6) into (19) simplifies (19) to 

(20). 

�� ( �nt � ns�|�z�| � w�1�
 � �
���w |�z�| � |�z�|
� �w�1�
 � �
���w � 1 � ns� nt��v � |�l�|�� ng�v � |�l�|�u � ng|�z�|u 

(20) 

Applying the triangular inequality to |�z�| � |�� � �l�| and 

remarking that |���| ( v  holds, the following inequality is 

yielded:  

��v � |�l�|� ( �|�z�| (21) 

Substituting (21) into (20) gives: 

�� ( �nt � ns��|�z�| � |�z�|� � ng�v � |�l�|�u� ng|�z�|u 
(22) 

Referring to (21), |�z�| ( v � |�l�| holds and the pursuant 

inequality is resulted: 

��v � |�l�|�u ( �|�z�|u (23) 

Combining (22) and (23) leads to: 

�� ( �nt � ns��|�z�| � |�z�|� � ng�|�z�|u� |�z�|u� 
(24) 

According to Lemma 2, (25) is extracted. 

�|�z�| � |�z�|�u ( |�z�|u � |�z�|u (25) 

Substituting (25) into (24) leads to (26). 

�� ( �nt � ns��|�z�| � |�z�|� � ng�|�z�| � |�z�|�u (26) 

Since the condition ns ≥ nt is fulfilled, (26) is converted 

into (27). 

�� ( �ng�|�z�| � |�z�|�u (27) 

By determining the parameters W� ≜ ng  and W� ≜ y and 

due to the definition of the Lyapunov function candidate, the 

prior relationship is transformed into (28). 

�� ( �W��XY  (28) 

Resorting to Lemma 1, the observer error dynamic is 

finite-time stable with the following adjustable FCT: 

@~�� ( 1ng�1 � y� × �|�z��0�| � |�z��0�|��]u (29) 

Thereby, the finite-time stability of the observer error 

dynamic is satisfied which means that �z� and �z� reach to zero 

in a specific finite time (i.e., @~�� ). In other words, the 

estimated states will reach their real values after @~�� . 

Moreover, by appropriately selecting the initial conditions, 

the rate of change of reaching is tunable. Therefore, the proof 

is completed. ∎ 

IV. SIMULATION RESULTS 

To display and verify the effectiveness, the preciseness, 

and the particular FCT of the suggested observer from the 

standpoint of rapid estimation, simulations are employed. The 

parameters of the uncertain DC MG with CPL and the 

parameters of the designed FTNO are given in Table I and 

Table II.  

Besides, the matched uncertainties entered into the system 

is considered as ���, �� � 0.1 sin ��� which its absolute value 

is upper bounded by ) � 0.167. 

The estimations and real values of the DC MG’s 

inductance current and capacitor voltage are represented in 

Fig. 4 and Fig. 5, respectively.  

It is apparent from Fig. 4 and Fig. 5 that the estimated 

values of inductance current and capacitor voltage reach their 

real values in the finite time. 

 

TABLE I. PARAMETER VALUES OF THE DC MG WITH CPL. 

Parameters Values Parameters Values � 0.003 H � 30 Ω � 0.0005 F � 300 W �� 250 V   

 



  

TABLE II. PARAMETER VALUES OF THE FTNO. 

Parameters Values Parameters Values �� 0.1 �� 1.0 �� 1.0 � 10 �� 50 � 0.9 �� 49   

 

 

Fig. 4. The inductance current estimation and its actual value of the 

DC MG with CPL. 

 

Fig. 5. The capacitor voltage estimation and its actual value of the 

DC MG with CPL. 

V. CONCLUSIONS 

Due to the key role of DC MGs in renewable energy 

resources, a novel nonlinear observer is designed in this paper 

for uncertain DC MGs feeding linear resistive loads, CPLs, a 

buck converter, and an input DC voltage source to estimate 

unknown and unmeasurable inductance current in a specific 

adjustable finite estimation time. This leads to the elimination 

of ripples produced by physically measuring the inductance 

current, the deletion of sensor costs, and the reduction of noise 

effects. The proposed method is robust against external 

disturbances, unmodeled dynamics, and perturbations entered 

into the systems. The finite-time stability of the observer error 

dynamic is ensured by a radially unbounded Lyapunov 

function candidate and a tunable FCT is derived to give the 

ability to increase the rate of change of estimation time by 

properly adjusting the parameters existing in this time. 

Numerical simulations demonstrate the effectiveness of the 

suggested FTNO. It is shown that the estimated value of the 

inductance current reaches its real value in some seconds.  

 

 

 

 

REFERENCES 

[1] H. Bevrani, B. Francois, and T. Ise, Microgrid Dynamics and 

Control. 2017. 

[2] NasimUllah, M. Asghar, A. Khattak, and M. M. Rafiq, 

“Comparison of integer and fractional order robust controllers for 

DC/DC converter feeding constant power load in a DC microgrid,” 

Sustain. Energy, Grids Networks, vol. 12, pp. 1–9, Dec. 2017. 

[3] H. Farsizadeh, M. Gheisarnejad, M. Mosayebi, M. Rafiei, and M. 

H. Khooban, “An Intelligent and Fast Controller for DC/DC 

Converter Feeding CPL in a DC Microgrid,” IEEE Trans. Circuits 

Syst. II Express Briefs, vol. 67, no. 6, pp. 1104–1108, Jun. 2020. 

[4] X. Xu, Q. Liu, C. Zhang, and Z. Zeng, “Prescribed Performance 

Controller Design for DC Converter System With Constant Power 

Loads in DC Microgrid,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 

50, no. 11, pp. 4339–4348, Nov. 2020. 

[5] M. Boukerdja, A. Chouder, L. Hassaine, B. O. Bouamama, W. Issa, 

and K. Louassaa, “H∞ based control of a DC/DC buck converter 

feeding a constant power load in uncertain DC microgrid system,” 

ISA Trans., vol. 105, pp. 278–295, Oct. 2020. 

[6] N. Sarrafan, J. Zarei, R. Razavi-Far, M. Saif, and M.-H. Khooban, 

“A Novel On-Board DC/DC Converter Controller Feeding 

Uncertain Constant Power Loads,” IEEE J. Emerg. Sel. Top. Power 

Electron., pp. 1–1, 2020. 

[7] C. Zhang, X. Wang, P. Lin, P. X. Liu, Y. Yan, and J. Yang, “Finite-

Time Feedforward Decoupling and Precise Decentralized Control 

for DC Microgrids Towards Large-Signal Stability,” IEEE Trans. 

Smart Grid, vol. 11, no. 1, pp. 391–402, Jan. 2020. 

[8] X. Xu, Z. Zeng, and Q. Liu, “Realization of Prescribed Performance 

Control for DC Converter System in DC Microgrid via Finite-Time 

Sliding Mode Observer,” in 2019 China-Qatar International 

Workshop on Artificial Intelligence and Applications to Intelligent 

Manufacturing (AIAIM), 2019, pp. 71–76. 

[9] N. Vafamand, M. H. Asemani, T. Dragicevic, F. Blaabjerg, and M. 

H. Khooban, “Fuzzy-Observer-Based Predictive Stabilization of 

DC Microgrids With Power Buffers Through an Imperfect 5G 

Network,” IEEE Syst. J., vol. 14, no. 3, pp. 4025–4035, Sep. 2020. 

[10] A. Abooee and M. M. Arefi, “Robust Finite-Time Stabilizers for a 

Connected Chain of Nonlinear Double-Integrator Systems,” IEEE 

Syst. J., vol. 13, no. 1, pp. 833–841, Mar. 2019. 

[11] S. Neisarian, M. M. Arefi, N. Vafamand, M. Javadi, and J. P. S. 

Catalão, “Finite-time Adaptive Sliding Mode Control of DC 

Microgrids with Constant Power Load,” PowerTech, Madrid, 2021. 


