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Abstract—This paper proposes a cascading failure simulation 

(CFS) method and a hybrid machine learning method for 

vulnerability analysis of integrated power-gas systems (IPGSs). 

The CFS method is designed to study the propagating process of 

cascading failures between the two systems, generating data for 

machine learning with initial states randomly sampled. The 

proposed method considers generator and gas well ramping, 

transmission line and gas pipeline tripping, island issue handling 

and load shedding strategies. Then, a hybrid machine learning 

model with a combined random forest (RF) classification and 

regression algorithms is proposed to investigate the impact of 

random initial states on the vulnerability metrics of IPGSs. 

Extensive case studies are carried out on three test IPGSs to verify 

the proposed models and algorithms. Simulation results show that 

the proposed models and algorithms can achieve high accuracy for 

the vulnerability analysis of IPGSs. 

Index Terms—Integrated power-gas system (IPGS), machine 

learning, vulnerability analysis, cascading failures 

I. INTRODUCTION 

he advantages of natural gas power generation, including 

low emission, strong operation flexibility and high 

efficiency, have attracted rapid and continuous development in 

recent years [1]. Hence, there is a growing body of literature 

that both recognizes the importance of the planning and 

dispatch of integrated power-gas systems (IPGSs), modeling 

the effective integrated management and collaborative 

scheduling of IPGSs. At present, the dominant method of IPGS 

modeling is based on steady-state energy flow calculation 

considering different realistic constraints and adopting different 

algorithms to solve the optimal dispatch of IPGSs [2]. For 

instance, a novel quasi-dynamic simulation model was 

established in [3] by using the extensible tool SAInt to analyze 

the impact of the interdependence between the two systems on 

the operation stability of IPGSs. Based on the mixed-integer 

linear programming for the optimal IPGS dispatch model, [4]-

[5] have investigated the interaction between the power system 

and gas network, considering the impact of the gas supply on 

the power system. To study the coupling models of IPGSs, [6]-

[9] modeled gas-fired generators, power-to-gas (P2G) devices, 

electricity-driven gas compressors and gas storages, and 

evaluated the impacts on the planning and dispatch of IPGSs.  

Meanwhile, the ever-increasing utilization of natural gas 

power generation has created multiple challenges for the 

resilience and security of IPGSs. A typical example is a 

widespread blackout in Texas on February 2021, where over 

half of the electricity supply came from natural gas. Due to the 

extreme winter weather, a sudden interruption of the gas supply 

occurred and natural gas power plants were subsequently shut 

down, leading to about 35.71% reduction of the power supply 

rapidly. Meanwhile, due to the shortage of reserve in the system, 

more than 25 million customers were eventually seriously 

affected [10]. Therefore, many studies have been conducted on 

the safety and reliability analysis for IPGSs. For instance, [11] 

and [12] developed an integrated model to evaluate the impact 

of the interdependency of power systems and natural gas 

systems on overall system security, which incorporated the 

natural gas system constraints into the solution of security-

constrained unit commitment.  Moreover, a sequential Monte 

Carlo-based reliability evaluation model for IPGSs considering 

P2G devices and gas storage was suggested in [13]. 

Furthermore, many novel models have been established to 

analyze the vulnerability and resilience of power systems [14]-

[15]. Specifically, it verified cascading failure simulation (CFS) 

as an effective method for studying the mechanisms of local 

failure propagation and vulnerability analysis. For power 

systems, the IEEE Working Group on Prediction, Mitigation 

and Restoration of Cascading Failures (CFWG) has reported a 

variety of cascading failure modeling approaches [16]-[18]. All 

these models concentrated on certain assumptions to 

approximate the actual cascading failures in the power systems. 

Among them, some research modeled the cascading failure and 

evaluated the vulnerability metrics employing graph theory and 

complex network. Based on the complex network theory, [19] 

developed a cascading failure model considering the node 

overload failures and hidden failures of transmission lines. 

Reference [20] proposed a cascading failure model to examine 

the vulnerability of a specific type of complex network using an 

extended topological metric. Besides, some studies have 

utilized the dynamic models for cascading failure analysis, 

which can capture more dynamic mechanisms, like voltage 

collapse or transient stability [21]-[22]. Moreover, the steady-

state power flow analysis methods have also been widely used 

to investigate the cascading failure. Based on the AC power 
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flow, [23]-[24] developed a stochastic ORNL-PSerc-Alaska 

(OPA) model. References [25]-[26] focused on self-organized 

criticality analysis in CFS by employing the AC power flow-

based Manchester model [27] and CASCADE model [28]. In 

contrast to AC power flow, DC power flow based CFS is 

significant to balance the model complexity and vulnerability 

analysis efficiency. For instance, [29] proposed a DC optimal 

power flow based CFS considering both the topological 

integrity and the economic aspect. The important consistencies 

and discrepancies between DC power flow based CFS and the 

transient stability analysis based CFS was presented in [30]. 

However, these papers have not dealt with the impact of the 

natural gas system on cascading failures in IPGSs. In fact, the 

enhancement of the coupling characteristics of IPGSs 

contributes to a significant impact on the vulnerability analysis 

of cascading failures. A certain contingency occurring in one 

system may lead to serious failures of components in the other 

system, resulting in severe cascading failures propagating 

between the two systems [31]-[32]. Therefore, with the 

significantly increased coupling of IPGSs, it is urgent and 

critically important to investigate the cascading failure model 

for IPGSs. Recently, a considerable amount of literature have 

been published on the cascading failure model for IPGSs [33]-

[36]. Based on a graph theory-based methodology, [33] studied 

the cascading failures in real interdependent power and natural 

gas networks with an efficient vulnerability analysis technique. 

Reference [34] proposed a cascading failure model to evaluate 

the structural robustness and performance against random 

failures of the IPGSs using graph theory. A novel reliability 

evaluation model of IPGSs considering the impact of cascading 

failures was built in [35] by employing the dynamic cascading 

analysis model and Monte Carlo simulation methods. 

Furthermore, a CFS model was set up in [36] to study the 

propagation of cascading failure caused by various 

contingencies, where the steady-state power flow and dynamic 

gas transmission were incorporated and combined together.  

Nevertheless, the previous studies have only simply analyzed 

the impact of the gas system on the cascading failure of the 

power system, while neglecting to investigate the propagating 

process of cascading failures in an IPGS, particularly in the gas 

system. Moreover, few researchers have studied the impact the 

random changes in initial states on CFS for IPGSs (i.e., 

uncertain power and gas load levels, generator outputs, gas well 

supply and consumption of P2G devices). These uncertainties 

affect the cascading failure results, while leading to a high 

computational burden to perform CFS for all possible initial 

states of IPGSs in online applications. Recently, machine 

learning methods have been widely used in power systems [37]. 

To address the above challenges, a CFS model and a machine 

learning method for vulnerability analysis of IPGSs are 

proposed in this paper.  

The main contributions can be summarized as follows: 

(i) A steady-state energy flow-based CFS model is set up to 

investigate the propagating process of cascading failures under 

deterministic initial states, which considers generator and gas 

well ramping, transmission line and gas pipeline tripping, island 

issue handling and load shedding strategies. Meanwhile, the 

CFS model is performed to generate data for machine learning 

with initial states randomly sampled. 

(ii) A hybrid machine learning model with the combined 

random forest (RF) classification and regression algorithms is 

proposed for vulnerability analysis of IPGSs under uncertain 

initial states. In this model, the RF classification is used to 

classify data by the number of events in a cascading failure, and 

then the RF regression is utilized for each class of data to 

characterize the relationship between random initial states and 

vulnerability metrics.   

The remainder of the paper is organized as follows: Section 

II develops a CFS model for vulnerability analysis of IPGSs 

where the CFS procedure is presented in detail. Section III 

proposes a hybrid machine learning method with combined RF 

classification and regression for assessing the impacts of 

uncertain initial states on vulnerability metrics for cascading 

failures. Simulation results on three test systems are presented 

and discussed in Section IV. Section V presents the conclusion. 

II. VULNERABILITY ANALYSIS MODEL OF CASCADING 

FAILURES FOR IPGSS 

Through CFS for IPGSs, we can identify the vulnerable part 

of the IPGS, which is important for the planning and dispatch. 

In this section, a CFS model based on steady-state power flow 

and gas flow calculation is established, which considers 

generator and gas well ramping, transmission line and gas 

pipeline tripping, island issue handling and load shedding 

strategies. Finally, two vulnerability metrics are proposed to 

evaluate the system vulnerability under cascading failures. 

A. Cascading Failure Simulation 

For the CFS of IPGSs, different locations and types of initial 

failures will lead to different results. Here, we consider a 

situation in which the initial failure occurs on a power bus, 

which means that all components connected to this damaged 

bus will stop operating and be triggered by the system. The 

tripping of a gas pipeline is considered as an additional initial 

contingency. 

Meanwhile, considering that the response and propagation 

speed of the power system to cascading failures are much faster 

than those of the natural gas system, we assume that the power 

system will quickly reach a steady state after a series of power 

cascading failure events (PCEs), and then analyze the impact of 

the failure on the natural gas system. In contrast, if a gas 

cascading failure event (GCE) in the natural gas system causes 

the redistribution of gas flow, we will immediately analyze the 

cascading failure of the power system through the change of gas 

flow at the coupling nodes of the IPGSs. In this way, the 

dynamic sequential process of cascading failures can be 

accurately described, and the final steady-state operation of the 

IPGS can be realized by the following operations. 

(i) Generator and gas well ramping  

When the output of power generators or gas wells is 

unbalanced with the power load or gas load due to a failure, the 

generators or gas wells will perform ramping according to the 

following two cases: 

Case 1: If the total output of power generators or gas wells is 

larger than the power loads or gas loads, all generators or gas 
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wells will gradually reduce the output at a ramp rate of rg or rw 

at a period of tP or tG, respectively. 

Case 2: If the total output of power generators or gas wells is 

less than the power loads or gas loads, all generators or gas 

wells will gradually increase the output at a ramp rate of rg or 

rw at a period of tP or tG, respectively. 

It should be noted that when a generator or gas well reaches 

the maximum or minimum output, it will stop ramping and 

maintain the maximum or minimum output. 

(ii) Energy flow redistribution and overload lines tripping 

If the IPGS can balance the power or natural gas by ramping 

power and gas generation, the new distribution of power and 

gas flow is recalculated through the following power flow and 

flow calculation model. 

1) DC power flow model: 
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where PFl (t) is the power flow on the power transmission line 

l at time t. i(t) is the voltage angle of bus i at time t. Xl is the 

reactance of transmission line l.  
ref 

0  (t) is the voltage angle at 

the reference bus. BUS and LINE are the sets of power buses 

and transmission lines, respectively. 

2) Gas flow model: 
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where NODE, PIPE and COMP are the sets of gas nodes, 

pipelines and compressors, respectively. GFe (t) is the gas flow 

on the gas pipeline e at time t. πm (t) is the nodal pressure of 

node m at time t. 𝜏e is the constant of pipeline e related to many 

physical factors. π
ref 

0 (t) is the given pressure at the reference 

node. λc is the gas pressure boost ratio of the gas compressor c.  

3) Coupling components model: 

Gas-fired generators and P2G devices are two typical 

coupling components in IPGSs. Gas-fired generators use 

natural gas as a fuel to generate electricity, and the energy 

conversion meets the following requirements: 

    
, ,( ) ( ) / , ,f m f f m GAS NODEF t P t GHV f m=                (3) 

where GAS is the set of gas-fired generators. GHV is the high 

calorific value of the natural gas. Ff,m (t) and Pf,m (t) are the gas 

consumption and electric power output at coupling node m. βf 

is the consumption coefficient of the gas-fired generator f. 

P2G devices consume electrical power to generate natural 

gas by electrochemical reactions. The energy conversion 

relationship can be expressed as: 

, , 2( ) ( ) / , ,d m d d m P G NODEF t P t GHV d m=                     (4) 

where P2G is the set of P2G devices. Fd,m (t) and Pd,m (t) are the 

electric power consumption and gas output at coupling node m 

at time t. ηd is the conversion efficiency of the P2G device d. 

Tripping overload transmission lines or pipelines is the main 

reason to promote the continuous propagation of cascading 

failures. Through the power or gas flow calculation, the 

redistribution of power or gas flow is obtained. If the power or 

gas flow on the transmission lines or gas pipelines exceeds its 

transmission capacity, the relay will activate to trip the overload 

lines or pipelines to avoid damage to the system. 

 (iii) Generator or gas well tripping and load shedding 

Due to the limited regulating capacity of generators and gas 

wells, if the power or gas balance cannot be satisfied within the 

given time TSP or TSG, the system will trip the generator, gas 

well or load. Specifically, there are two cases after TSP or TSG 

for dealing with the unbalance: 

For Case 1, if there is a remaining surplus of output power 

supply or gas source, the system will trip the generators or gas 

wells in the merit order according to the importance of 

generators or gas wells from the small to the large, until 
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For Case 2, if the output of power supply or gas source still 

cannot meet the load demand, the system will perform load 

shedding from the least important load until a new balance is 

established. Moreover, the quantity of load shedding will be 

determined by the following optimization model. 

1) Optimal power load shedding model: 
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where C
P 

i  is the weight of the power load shedding for load bus 

i. ( ),

s

L iP t  is the load power at bus i and time t after load 

shedding. 
CON is the set of conventional generators. in

LINE  and 

out

LINE  are the sets of transmission lines flowing in or out of bus 

i. ( ),p iP t  and ( ),p iP t  are the output of conventional generator 

cg and gas-fired generator p at bus i and time t. rp and rf  are the 

ramping rate of conventional generator p and gas-fired 

generator f. 

2) Optimal gas load shedding model: 
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where C
G 

m  is the weight of the gas load shedding for load node 

m. ( ),

s

L mF t  is the load power at node m and time t after load 

shedding. 
W  is the set of gas wells. in

PIPE  and out

PIPE  are the 

sets of pipelines flowing into or out of node m. ( ),w mF t  and 

( ),d mF t  are the gas output of gas well w and P2G device d at 

bus i and time t. 
c  is the maximum gas pressure boost ratio of 

the gas compressor c. 

In the optimal gas load shedding model, (13) is a nonlinear 

formula. Therefore, the piecewise linearization method is 

utilized to linearize optimization model [38]. Firstly, 
2( )= ( )m mt t  is introduced in (13) and (18). Then, 2 ( )eGF t in 

(13) can be linearized by the following formula: 
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where
segN is the number of linear segments, 

, ( )e k t  is the 

portion of segment k, and 
, ( )e k t  is a binary variable satisfying 

the conditions: if 
, ( ) 1e k t = , 

, ( ) 1e k t = and 
, +10 ( ) 1e k t  ; if 

, ( ) 0e k t = , 
, , +1( ) ( ) 1e k e kt t = = .  

(iv) Islanding issues 

In CFS, overload line tripping may cause islands in either the 

power system or the gas system. Each island can operate 

independently and continue to propagate cascading failures, 

and finally reach a steady-state operation point. However, when 

cascading failures propagate in each island, the response times 

tP,pi or tG,gi of different islands are different. In order to realize 

the synchronization of the simulation process of each island in 

the same PCE or GCE, we select the minimum value t
min 

P,pi or t
min 

G,gi 

of tP,pi or tG,gi in each PCE or GCE as the simulation time step 

to promote further CFS. 

B. Vulnerability Metrics 

In order to quantify the vulnerability of power buses or gas 

pipelines in cascading failures, the power and gas load shedding 

ratio are proposed as vulnerability metrics, which can be 

expressed as follows: 
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where P0
L,i and P∞

L,i are the initial and final power load at bus i. 

F0
L,m and F∞

L,m represent the initial and final gas load at node m. 

C. Flowchart of CFS for IPGS 

The above model describes the sequence process in a PCE or 

GCE. Combined with the assumed time scale of cascading 

failures in the two systems, we can obtain the whole flowchart 

of CFS for IPGS as shown in Fig. 1, and the specific steps are 

summarized as follows:  

Step 1: Read the initial state parameters of IPGS and determine 

the initial failure location. 
Step 2: Update the topology of the power system. For each 

unbalanced power system island, generator ramping, power 

load shedding or generator tripping are adopted to establish a 

new operating point with a power balance. 

Step 3: Calculate power load shedding in the PCE and power 

redistribution via (5)-(10). Check the power flow on each 

transmission line: if the transmission line exceeds the limit, trip 

overload lines and go back to Step 2; otherwise, go to Step 4. 

Step 4: Calculate the changes of gas flow at the coupling nodes 

according to the gas flow via (3)-(4). For each unbalanced gas 

island, gas well ramping, gas load shedding or gas well tripping 

is adopted to establish a new gas balance. 

Step 5: Calculate gas load shedding in the GCE, gas 

redistribution via (11)-(21), and gas flow at the coupling nodes 

via (3)-(4). If the gas flow at the coupling nodes is different 

from that in Step 3, go back to Step 2 and analyze the new 

possible cascading failures in the power system; otherwise, go 

to Step 6. 

Step 6: Check the gas flow on each pipeline, if the pipeline 

exceeds the limit, trip the overload pipeline and go back to Step 

4; otherwise, go to Step 7. 

Step 7: Calculate the power and gas load shedding throughout 

the process of CFS and the vulnerability metrics of the power 

bus or gas pipelines in the IPGS.  
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Fig. 1   Flowchart of CFS for IPGS 

III. CASCADING FAILURES FOR IPGS WITH RANDOM INITIAL 

STATES BASED ON MACHINE LEARNING METHOD 

A. Data Collection and Preprocessing  

We determined that the vulnerability metrics for the above 

CFS for IPGSs are greatly influenced by the initial system states, 

i.e., the uncertain power and gas load levels, generator outputs, 

gas well supply and consumption of P2G devices. However, the 

initial states may be randomly changed in the practical 

engineering problem, which may require a great number of 

CFSs to evaluate the impacts of these uncertain initial states on 

vulnerability metrics. This results in a heavy computational 

burden. Therefore, we employ the machine learning method to 

investigate the impact of uncertain initial states on the 

vulnerability analysis of CFS for IPGSs in this paper.  

Since the probability of N-k contingencies in an IPGS is low, 

the amount of corresponding historical data is extremely limited. 

The following steps are performed to collect sufficient 

experimental data: 1) Choose a scenario with a random initial 

state within a certain range; 2) Conduct the CFS following the 

flowchart depicted in Fig. 1 and calculate the vulnerability 

metrics for the given initial state; 3) Obtain the input features of 

each scenario xi (i.e., uncertain power and gas load levels, 

generator outputs, gas well supplies and P2G consumption), 

classification labels yi (i.e., the different numbers of PCEs and 

GCEs), and output labels zi (i.e., vulnerability metrics).  

In order to unify the dimension and ensure the reliability of 

training results, the z-score standardization algorithm is 

employed to map all features and labels to (0,1), given by: 

 
* 1,2...,i

i data

x
x i N





−
= =，  (24) 

where Ndata is the number of data sets,  𝜇 and 𝜎 are the mean 

value and standard deviation, respectively. 

According to the cascading failure model in Section II, the 

cascading failure process of an IPGS consists of a series of 

PCEs and GCEs. Under different initial states, the load loss may 

increase significantly due to the increasing numbers of PCEs 

and GCEs, and the corresponding vulnerability metrics may 

take on a hierarchical structure, resulting in an uneven data 

distribution. Directly conducting regression training would lead 

to regression inaccuracy due to the uneven distribution of the 

data. Therefore, this paper proposes a hybrid machine learning 

model with combined classification and regression, where an 

RF classification algorithm classifies the data into several 

classes according to the numbers of PCEs and GCEs. For each 

class, the RF regression algorithm is used for regression 

training to investigate the impact of random initial states on 

vulnerability metrics of IPGSs. 

 
Fig.2 Schematic diagram of RF classification and regression model 

B. Random Forest Classification and Regression Model 

As shown in Fig. 2, the RF is an ensemble algorithm based 

on decision trees, which can be used for either classification or 

regression [39].  

 (i) RF classification and regression model 

     For the M data {( , , ) | 1,2,..., }i i iD x y z i M= = , where 

fN

ix R  is the initial state feature set, yi is the classification 

label, and zi is the regression label. First, we perform the RF 

classification model by the following steps: 

Step 1: Adopt the bootstrap sampling method to select kc sub 

training sets (in-bag data) to construct kc independent 

classification decision trees. The unsampled data is called out-

of-bag (OOB) data. 

Step 2: For each node of trees, randomly select Ntry features as 

splitting features, and select the optimal splitting method. 

Step 3: Traverse all trees to get the classification result of each 

tree, and take the voting for all trees as the final RF 

classification result. 

Then，for the data of class j after the above classification 

,{( , , ) | 1,2,..., }i i j i jx y z i M= , perform the RF regression model. 

Compared with the RF classification model, the proposed RF 

regression model replaces the classification decision trees with 

kr independent regression decision trees, and takes the average 

prediction value of all regression trees as the final regression 

prediction value. 

(ii) RF feature ranking and selection 

In the vulnerability analysis for an IPGS, there are many 

initial state features (i.e., power and gas load levels, generator 

outputs, gas well supplies and P2G consumption). However, 

some features irrelevant to labels may lead to overfitting 

problems in either classification or regression training due to 

data redundancy, and eventually decrease the accuracy of 

classification and regression prediction [40]. Hence, it is 

necessary to rank and select features of the classification and 

regression training.  

For RF classification, we use OOB data to evaluate the 

importance of features, according to the following formula:  
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where Nf  is the number of features. 
1

OOBR ,
2

OOBR ,…, 
c

OOB

kR and  

1,

OOB

fR ,
2,

OOB

fR ,…, 
,c

OOB

k fR  are the numbers of data correctly 

classified of each classification tree before and after the 

rearrangement of the f-th feature. 

For the RF regression model after the classification, it is 

also necessary to calculate and rank the importance of features. 

Compared with the RF classification model, the RF regression 

model calculates the regression prediction error 
1

OOBE ,
2

OOBE ,…, 

r

OOB

kE and 
1,

OOB

fE ,
2,

OOB

fE ,…, 
,r

OOB

k fE  before and after the 

rearrangement of the f-th feature. Then, the importance of the 

f-th feature in the RF regression can be formulated as: 

 ( ),

1

1
, 1,2,...,

rk
OOB OOB

r q q f f

qr

Import E E f N
k =

= − =  (26) 

By this method, the importance of features for both RF 

classification and RF regression can be ranked in descending 

order until the accuracy of classification and regression reaches 

the maximum value. At this time, the optimal number of 

features can be determined. 

 (iii) RF classification and regression metrics 

Generally, we use the cross-validation method to divide the 

data into a training set and a test set, utilize the training set to 

train the model, and verify the accuracy of the model on the test 

set. Since the bootstrap method used in the RF algorithm 

samples the same number of training subsets as the original data 

set for replacement from the original data, we can use OOB data 

as the test set to evaluate the model without additional cross 

validations or independent test sets. 

In order to evaluate the RF classification model, the 

confusion matrix is introduced here, including: true positive 

(TP), true negative (TN), false positive (FP) and false negative 

(FN). However, the number of PCEs and GCEs will lead to an 

imbalanced distribution of vulnerability metrics data. To solve 

the imbalanced multi-classification problem, this paper 

introduces an F1 score and uses OOB data to evaluate the 

performance of RF classification. The F1 score is the harmonic 

mean of Precision (PRE) and Recall (REC), which can evaluate 

multi-classification problems. For each class j, PRE, REC and 

the F1 score can be calculated as: 

 = C

C

jj N

j jj N
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PRE

TP FP
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
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


 (27) 
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where Nc is the number of classes. 

For the RF regression model, the coefficient of 

determination R2 is employed to verify the accuracy of 

prediction, given by: 

1

2 2 2

1

ˆ1 ( ) ( )
OOB OOBN N

p p p mean

p p

R y y y y
= =

= − − −        (30) 

where NOOB is the number of OOB data, ymean is the mean 

value of all true values in the OOB data. yp and ˆ
py  are the mean 

values and predicted values of the p-th OOB data.  

The important parameters affecting the performance of RF 

algorithm mainly include: the number of decision trees, the 

maximum depth of decision trees and the minimum number of 

samples for leaf nodes. In this paper, the grid search method is 

used to obtain all possible combinations of four important 

parameters in a certain range. Then, all parameter combinations 

are trained by RF classification and regression algorithm to 

obtain the best parameter combination with the highest 

prediction accuracy. 

C. Flowchart of the Proposed Machine Learning Model 

The procedure of the proposed machine learning method 

combining an RF classification and an RF regression algorithm 

is presented in Fig. 3 with the specific steps summarized as: 

Step 1: Obtain sufficient data through the CFS method detailed 

in Fig. 1 under random initial states of the IPGS. Perform the 

data preprocessing via the z-score standardization algorithm 

according to (22).  

Data collection by CFS

Data preprocessing 
by  (22)

Calculate and rank the 
importance of features for 

classification  by (25) 

Perform the RF classification  
and  determine the optimal 

number of  features

Determine the classification 

labels with the number of 

PCE and GCE

RF classificationData preparation RF Regression

Calculate and rank the 
importance of features for 

regression  by (26) 

Perform the RF regression  
and  determine the optimal 

number of  features

Determine the RF 

regression labels with  

LOSSP and LOSSG Evaluate the performance 
of RF classification model 

by (27)-(29)

Evaluate the performance 
of RF regression model 

by (30)

Evaluate the model

 

Fig. 3   Flowchart of the proposed machine learning method 
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Fig. 4 CFS on the 39-bus-20-node System at bus 6

Step 2: Calculate and rank the importance of features for RF 

classification according to (23). Conduct RF classification and 

determine the optimal number of features according to the 

results of features ranking and classification training.  

Step 3: For each class of data classified in Step 2, calculate and 

rank the importance of features for RF regression according to 

(24). Conduct RF regression and determine the optimal number 

of features according to the results of features ranking and 

regression training. 

Step 4: Use the OOB data as a test set to evaluate the 

performance of the RF classification model via  (26)-(28) and 

the RF regression model via (29). 

IV. CASE STUDIES 

A. CFS on the 39-bus-20-node System 

In order to demonstrate the performance of the proposed 

CFS model, an IPGS consisting of an IEEE 39-bus power 

system and a Belgium 20-node gas system [41] is introduced, 

the topology of which is depicted in Fig. 4. The two systems are 

coupled by 4 gas-fired generators and 3 P2G devices. The gas-

fired generators on buses B32, B34, B38 and B39 are supplied 

by gas system at nodes N3, N10, N7 and N16. The three P2G 

devices driven by electricity on buses N4, N20 and N27 will 

inject gas into nodes N6, N19 and N15 of the gas system. In the 

process of CFS, the following parameters are set: 1) The 

generator ramp rate rg and gas well ramp rate rw at each time 

slot tP and tG are set as 5% of the total capacity of the 

corresponding generator and gas well. 2) The importance of 

generators, gas wells and load is proportional to the 

corresponding capacity. 3) The transmission capacity of each 

pipeline is 1.5 times the gas flow under the rated initial state. 

First, we take the initial failure that occurred at bus 6 as an 

example to analyze the propagation process of the cascading 

failure in the IPGS. The results are shown in Fig. 4 and Table I. 

In Fig. 4, the numbers with different colors in the two systems 

represent the tripping of transmission lines and pipelines under 

different cascading failure events (PCEs and GCEs). Dashed 

boxes with different colors correspond to power or gas islands 

formed in different PCEs and GCEs. With the increase of the 

number for PCEs and GCEs, new islands are constantly formed, 

and the cascading failure process is promoted. The whole 

cascading failure process consists of four PCEs and two GCEs, 

where GCE1 occurs between PCE3 and PCE4, and GCE2 

occurs after PCE4. After the initial failure occurs, the three 

transmission lines (i.e., L10, L12 and L13) and one transformer 

(i.e., L14) connected to the bus B6 are tripped, resulting in two 

islands and 0.82% LOSSP. The island with only bus B31 can 

achieve power balance through generator ramping. For another 

island with the other 37 buses, the transmission lines L9 and 

L23 are tripped after the redistribution of power flow, resulting 

in 3.17% LOSSP and further splitting into two new islands. The 

island composed of buses B10, B11, B12, B13 and B32 can 

reach power balance without any load loss. The island with the 

other 32 buses splits into three islands due to the tripping of 

transmission lines L1, L6, L26 and L27, leading to 9.95% 

LOSSP. Subsequently, all islands reach balance temporarily, 

and no transmission lines exceed the capacity. Thus, this 

cascading failure stops. 

At this time, the gas power flow is calculated according to 

the power flow at the coupling node, and it can be found that 

gas pipeline P14 is overloaded and tripped, resulting in two gas 

islands (i.e., one island with nodes N15 and N16, and the island 

with the other nodes) and 5.34% LOSSG. According to the 

redistribution of gas flow, the power flow can be calculated 

through the coupling nodes immediately. Then, transmission 

lines L3, L31 and L43 are overloaded and tripped, leading to 

two new islands and 17.27% LOSSP. At this time, all power 

islands are balanced again. By calculating the power change at 

the coupling nodes, the redistribution of natural gas flow is 

obtained. The gas pipeline P5 is overloaded and tripped, 

resulting in two gas islands (i.e., the island with nodes N5, N6, 

and N7, and the island with the other nodes) and 7.15% LOSSG. 

Then, all islands in the IPGS achieve balance and cascading 

failures end, resulting in 31.21% LOSSP and 12.49% LOSSG in 

total. It can be observed that the cascading failure in an IPGS 

can propagate between the two systems through the energy flow 

variation at the coupling nodes. 
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Fig. 5 LOSSP  for all buses and pipelines 

 
Fig. 6 LOSSG  for all buses and pipelines 

TABLE I ISLANDS AND LOAD LOSS OF CFS AT BUS 6 

PCE or 

GCE 

Overload 

Lines  
islands 

Buses or nodes in each 

island 

LOSSP   
or  

LOSSG 

PCE 1 
L10,L12, 

L13,L14 
2+1 

B31 
0.82%PL 

Other buses 

PCE 2 L9,L23 3+1 

B31 

3.17%PL B10,B11,B12,B13,B32 

Other buses 

PCE 3 
L1, L6, 
L26,L27 

5+1 

B31 

9.95%PL 

B10,B11,B12,B13,B32 

B1,B4,B5,B7, 

B8,B9,B39 

B2,B3,B17,B18,B25, 
B26,B27,B28,B29,B30,

B37,B38 

Other buses 

GCE 1 P14 5+2 

31 

5.34%GL 

B10,B11,B12,B13,B32 

B1,B4,B5,B7, 

B8,B9,B39 

B2,B3,B17,B18,B25, 

B26,B27,B28,B29,B30,

B37,B38 

Other buses 

N15,N16 

Other nodes 

PCE 4 
L3,L31, 

L43 
6+2 

31 

17.27%PL 

B10,B11,B12,B13,B32 

B1,B4,B5,B7, 

B8,B9,B39 

B3,B17,B18 

B2,B25,B26,B27, 

B28,B29,B30,B37,B38 

Other buses 

N15,N16 

Other nodes 

GCE 2 P5 6+3 

31 

7.15%GL B10,B11,B12,B13,B32 

B1,B4,B5,B7, 

B8,B9,B39 

B3,B17,B18 

B2,B25,B26,B27, 
B28,B29,B30,B37,B38 

Other buses 

N15,N16 

N5,N6,N7 

Other nodes 

All buses and gas pipelines are traversed to investigate the 

vulnerability metrics of each PCE and GCE under the given 

initial state, as shown in Fig. 5 and Fig. 6. It can be found that 

the initial failures of some buses or gas pipelines will not cause 

cascading failure or any load loss (e.g., buses B5, B17 and 

pipelines P11 and P13). There are at most 6 PCEs and 3 GCEs 

in the cascading failures of all buses and gas pipelines, and the 

bus or gas pipelines with a larger number of PCEs and GCEs 

have a higher vulnerability in general (e.g., buses B24, B31 and 

pipelines P21, P25). However, some buses or gas pipelines 

directly connected with power load or gas load (e.g., buses B3, 

B20, B39 and pipeline P19) with only one PCE or one GCE 

may still cause a large LOSSP or LOSSG. Finally, according to 

the cumulative results of LOSSP and LOSSG, the vulnerability 

of each bus and gas pipeline can be obtained corresponding to 

LOSSP and LOSSG, respectively. 

B. The proposed machine learning model on the 39-bus-20-

node system 

The vulnerability analysis is performed by the proposed 

hybrid machine learning method for different initial states on 

the 39-bus-20-node system, and the following steps are 

constructed to get sufficient data: 1) Data sets with 10,000 

initial states are obtained by randomly changing the power and 

gas load levels, generator outputs, gas well supply and 

consumption of P2G devices (i.e., 40 features in total) within 

the range of 0.8-1.2 times of the rated initial state; 2) A CFS is 

constructed for each data set to calculate the number of PCEs 

and GCEs and the vulnerability metrics. Taking bus B6 as an 

example, the distribution of vulnerability metrics data is 

depicted in Fig. 7. There are at most 5 PCEs and 3 GCEs in 

cascading failures for the bus B6 under different initial states. 

The vulnerability metrics of the bus B6 are significantly 

different under different initial states, and with the number of 

PCEs and GCEs increasing, the vulnerability metrics under the 

cascading failure increase sharply and obviously present a 

hierarchical distribution. 

Upper quartile

Lower quartile
Median

Upper bound

Lower bound

V
u

ln
e
ra

b
il

it
y

 M
e
tr

ic
s

Number of PCEs and GCEs  

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on October 12,2021 at 11:54:35 UTC from IEEE Xplore.  Restrictions apply. 



0885-8950 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2021.3119237, IEEE
Transactions on Power Systems

Fig. 7 Data distribution of vulnerability metrics under different initial states 

According to the data distribution of bus B6 shown in Fig. 7, 

we take the number of PCEs and GCEs as the classification 

label, calculate the importance of features, and conduct the RF 

classification by increasing the number of features according to 

their importance. The classification results are shown in Fig. 8. 

By utilizing the RF classification method with an optimal 

number of features (i.e., 24 for PCE and 22 for GCE), we can 

classify the data with an accuracy of 97.4% and 98.3%, and 

compared with all features (i.e., 40), the F1 score is improved 

by 8.9% for PCE and 11.5% for GCE, respectively. 

  
Fig. 8 Performance of RF classification with different number of features 

According to the classification results, RF feature selection 

and regression are carried out for each class of data. The results 

of the proposed combined method of RF classification (RFC) 

and RF regression (RFR) with PCEs=2 and GCEs=2 and the 

results of the direct RFR method are shown in Fig. 9. We found 

that selecting the optimal number of features by feature 

importance calculation improves the accuracy of regression. 

For example, for the data with PCEs=2, the regression accuracy 

with the optimal number of features (i.e., 19) is improved from 

92.3% to 98.4% in comparison to all features (i.e., 40). In 

addition, compared with the direct regression method, the 

proposed machine learning method greatly improves the 

regression prediction accuracy of vulnerability metrics. The 

accuracy of the proposed method for GCEs = 2 (i.e., 99.3%) is 

almost two times higher than the direct regression method. This 

is because the RF classification can effectively reduce the 

impact of uneven distribution of data on the prediction accuracy.  

  
Fig. 9 Performance of RF regression with different number of features 

All buses and gas pipelines are traversed to get their 

corresponding vulnerability prediction model by the proposed 

method. For a certain initial state in a real integrated power-gas 

system, the proposed machine learning method is used to 

quickly predict the vulnerability metrics of each bus and 

pipeline online. Then, take the components with high 

vulnerability metrics as the vulnerable critical components in 

this operation state, and assist the planners and operators to take 

corresponding measures to enhance the resistance of those 

vulnerable critical components. 

C. Comparisons on other IPGSs 

The proposed machine learning method is also applied to a 

73-bus-40-node system [11], a 300-bus-135-node system and a 

2383-bus-582-node system [42]. The results of average 

accuracy and average computation time for all buses and gas 

pipelines for each IPGS are shown in Fig. 10. Compared with 

the direct regression method, we found that the proposed 

method improves the final regression accuracy significantly by 

40.4%, 52.1%, 59.7% and 60.2% for LOSSP and 37.2%, 48.7% 

and 51.2% 53.7% for LOSSG in the four IPGSs respectively. 

Moreover, the proposed method can be applied to large-scale 

IPGSs. Larger IPGSs have more obvious improvements while 

sacrificing computation time for the RF classification. 

Finally, in order to verify the effectiveness of the proposed 

machine learning method, some other classic machine learning 

algorithms are employed here, including three classification 

algorithms: the decision tree classification (DTC) algorithm, 

the support vector machine classification (SVC) algorithm and 

the extreme gradient boosting classification (XGBC) algorithm, 

and three corresponding regression algorithms: the decision tree 

regression (DTR) algorithm, the support vector machine 

regression (SVR) algorithm and the extreme gradient boosting 

regression (XGBR) algorithm. All algorithms select the optimal 

feature set based on the same RF feature importance calculation 

method. In order to guarantee a fair comparison, the grid search 

method is employed to get all possible combinations of the 

important parameters affecting each algorithm. Then, the 

corresponding algorithm is used to train data with all parameter 

combinations to obtain the best parameter combination with the 

highest prediction accuracy.  

The average accuracy and average computation time of 

LOSSP and LOSSG are shown in Table II. We found that the 

average accuracies of the four direct regression methods are less 

than 65%. However, the hybrid methods with combined 

classification and regression greatly improve the regression 

accuracy at the cost of increased computation time. For 

example, the accuracy of the four hybrid methods increased by 

27.2%, 35.6%, 32.4% and 52.1% on the 73-bus-40-node system, 

respectively. The accuracies of the hybrid methods based on the 

SVR and DTR algorithms are no more than 85%, which is far 

lower than the RF algorithm utilized in this paper. Compared 

with the RF algorithm integrating multiple decision trees, the 

algorithm structures of SVR and DTR are relatively simple. 

They are difficult to deal with the overfitting problem in the 

process of classification and regression under multi-

dimensional features. Therefore, the calculation time of the 

hybrid methods based on SVR and DTR is short, but the 

prediction accuracy is low. Furthermore, compared with RF 
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algorithm, the decision trees of XGBR is not independent. 

XGBR algorithm needs to learn the residual of the previous tree 

and minimize the objective function to generate a new decision 

tree. The algorithm structure of XGBR is more complex. 

Therefore, the hybrid method based on XGBR also achieves a 

high accuracy, but the computation time increases steeply in 

comparison with the other algorithms (i.e., more than twice as 

long as RF). Therefore, the proposed method in this paper 

selects the RF classification and regression method to predict 

the vulnerability metrics under different initial states in the 

cascading failure of IPGSs. 

 

Fig. 10 Comparison of accuracy and computation time on several IPGSs 

V. CONCLUSIONS 

The recent February 2021 Texas winter blackout called the need 

of investigating the mutual impact and potential cascading 

failures among different energy infrastructures like electric 

power systems and natural gas networks. With this motivation, 

this paper proposed a CFS method for vulnerability analysis of 

IPGSs and a hybrid machine learning method to investigate the 

impact of random initial states on vulnerability metrics. The 

CFS method considering generator and gas well ramping, 

transmission line and gas pipeline tripping, island issue 

handling and load shedding strategies was conducted to study 

propagation process of cascading failures between two system, 

and generate data for machine learning with initial states 

randomly sampled. A hybrid machine learning model with the 

combined RF classification and regression algorithms and 

feature selection method was established to quantify the 

relationship between the initial states and the vulnerability 

metrics. Simulation results showed that the proposed hybrid 

method can significantly improve learning accuracy in 

comparison to the direct regression method, while slightly 

sacrificing the computation time. Furthermore, the proposed 

hybrid method based on RF algorithms presented better 

performance than other algorithms considering accuracy and 

computation time comprehensively. 

TABLE II COMPARISON BETWEEN OTHER MACHINE LEARNING METHODS WITH THE PROPOSED METHOD 

Methods 
39-Bus-20-Node System 73-Bus-40-Node System 300-Bus-135-Node System 2383-Bus-582-Node System 

Accuracy Time (s)  Accuracy Time (s)  Accuracy Time (s) Accuracy Time (s) 

DTR 

SVR 

XGBR 
RFR 

39.3% 

42.8% 

52.3% 
58.6% 

9.8 

15.8 

53.1 
16.7 

37.7% 

40.7% 

63.5% 
44.7% 

10.6 

19.7 

68.1 
18.2 

29.8% 

42.2% 

57.2% 
37.1% 

12.5 

21.0 

90.3 
24.1 

27.0% 

43.1% 

58.5% 
44.3% 

21.4 

26.2 

115.3 
27.1 

DTC+DTR 

SVC+SVR 
XGBC+XGBR 

RFC+RFR  

65.6% 

79.1% 
96.7% 

98.7% 

21.3 

29.3 
89.8 

35.7 

61.9% 

76.3% 
95.9% 

96.8% 

25.0 

31.1 
109.7 

36.9 

57.0% 

73.6% 
96.9% 

96.2% 

27.2 

39.2 
135.9 

43.3 

57.0% 

73.6% 
96.9% 

96.2% 

33.4 

50.2 
159.8 

49.1 
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