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Abstract—Solar irradiance forecasting is a major priority for the
power transmission systems in order to generate and incorporate
the performance of massive photovoltaic plants efficiently. As such,
prior forecasting techniques that use classical modelling and single
deep learning models that undertake feature extraction procedures
manually were unable to meet the output demands in specific
situations with dynamic variability. Therefore, in this study, we
propose an efficient novel hybrid solar irradiance forecasting based on
three steps. In step I, we employ a powerful variable input selection
strategy named as partial mutual information (PMI) to calculate the
linear and non-linear correlations of the original solar irradiance
data. In step II, unlike the traditional deep learning models designing
their architectures manually, we utilize several deep convolutional
neural network (CNN) models optimized by a novel modified whale
optimization algorithm in order to compute the forecasting results of
the solar irradiance datasets. Finally in step III, we deploy a deep Q-
learning reinforcement learning strategy for selecting the best subsets
of the combined deep optimized CNN models. Through analysing the
forecasting results over two USA solar irradiance stations, it can be
inferred that the proposed optimized deep RL-ensemble framework
(ODERLEN) outperforms other powerful benchmarked algorithms
in different time-step horizons.

Index Terms—Solar irradiance forecasting, Deep neural networks,
Evolutionary computation, Ensemble strategy, Deep reinforcement
learning.

NOMENCLATURE

IWOA Improved whale optimization algorithm
MSE mean square error
ODERLEN optimized deep RL-ensemble
PMI Partial mutual information

I. INTRODUCTION

Due to the loss of all types of renewable energies coming
from solar energies, global climate change is growing stronger
and the application of renewable energy has gained greater public
attention. Generally, all types of renewable energies are various
forms of solar energy, excluding geothermal and tidal energy.
Photovoltaic (PV) generation, including network-connected PV
systems and isolated PV panels, have developed rapidly in recent

years all throughout the planet, and this growth will continue to
expand in the future as one of the most common types of solar
energy applications [1]. In the past decade, annual growth rates
have been over 40% on average which makes PVs as one of
the most key emerging renewable energy markets. Several market
leaders predicted that revenues in the photovoltaics, innovations,
and industries will be doubled, from 35-40 billion euros in 2010
to 70 billion euros in 2015 [2]. Rapid development of solar
photovoltaic energy, more accurate and reliable modeling as well
as predictions of solar irradiance are expected increasingly. On
the other hand, the main attributes of the solar resources that
need to have well characterized in order to operate effectively in
photovoltaic and concentrated solar energy plants are, in particular,
global horizontal irradiance (GHI). The short-term variability of
the solar irradiance in changing weather is causing considerable
difficulty in the balance of the power and changes of the regional
power systems due to the power supply from the grid-connected
photovoltaic plant following the fluctuation of solar irradiation
[1]. The grid-connected power prediction of PV plants is an
essential step towards solving this issue. This can offer beneficial
inputs and raw data for different regional power system operation
activities such as optimum energy flow, economical transporta-
tion management of grid connection and safety evaluation. Thus,
accurate solar irradiance forecasting will increase the degree of
transparency, safety and contribute to more economical opera-
tional electricity grid preferences. In addition, it is necessary for
the established generators to schedule various energy plants for
maintaining resources, and provide more details upon on the solar
energy trades. Deep neural network (DNN) technologies are one
of the sub fields of artificial neural networks (ANNs) that have
gained huge attention from the power systems domain in the recent
years [3], [4]. Among different DNN models, convolutional neural
network (CNN) CNN is a promising technique for time series-
based solar irradiance forecasting [5]. In [6], the authors proposed
an efficient deep learning algorithm based on the CNN and long
short-term memory (LSTM) for solar irradiance forecasting with
a CEEMDAN model in order to decompose the solar dataset in
different climate regions. This algorithm outperforms other state-
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of-the-art algorithms. Moreover, [7] a CNN algorithm is developed
for forecasting 5 to 20 minutes ahead of solar irradiance by
a dataset of collected sky images. By assessing the efficiency
of utilized CNN with other compared forecasting models, the
experimetnal results show that the proposed CNN algorithm is
more effective for short-term solar irradiance forecasting. However,
obtaining a fine-tuned set of hyperparameters for designing the
CNN architectures is a challenging task which is time-consuming
and generally conducts through the trial and error procedures [8].
To overcome this issue, evolutionary algorithms can be employed
to find the optimal values of these hyperparameters [9]. Therefore,
in this paper, we optimize the hyperparameters and architecture
of CNNs using a novel optimization algorithm that we call the
improved whale optimization algorithm (IWOA). After executing
the IWOA in order to obtain the optimal CNN architectures, the
forecasting results of all these optimized models are integrated
into an ensemble strategy based on deep Q-learning reinforcement
learning algorithm to output the best forecasting GHI performance.
We name this optimized deep RL ensemble model as ODERLEN.
The experimental results confirm that ODERLEN exhibits the best
performance among other strong benchmarked algorithms for solar
GHI prediction.

The rest of the paper is organized as follows: in Section II, the
proposed deep hybrid ensemble model (ODERLEN) is represented
in details. The description of solar irradiance datasets and the
initialized setting for the proposed ODERLEN model is presented
in Section III. Section IV denotes to the discussion of the obtained
results from the proposed model and finally, the paper is concluded
in Section V.

II. METHODOLOGY

In this section, we introduce our novel three-stage hybrid frame-
work comprehensively. - First step: We first utilize the partial
mutual information (PMI) strategy as a powerful input variable
selection for the deep CNN models. PMI approach is funda-
mentally similar to the partial correlation-based model however
it incorporates mutual information instead of sequential relation
to select the data inputs [10]. The value of PMI is a closely
related entropy between the output Y and the candidate Cj , which
is, therefore, not already in S, represented by MI (Cj : Y | S).
Conditional expectation of x given S, is provided by the following
formula as the non-parametric regression kernel approximation:

E[x | S = s] =
1

n

∑n
i=1 xiKh (s− si)∑n
i=1Kh (s− si)

(1)

where the selected input set is denoted by S, n represents the total
number of samples, x represents the cy or y, and the Gaussian
kernel function (Kh) is expressed by:

Kh (x− x1) =
1

(
√

2πh)d
√
|σ|

exp

(
− (x− xi)T σ−1 (x− xi)

2h2

)
(2)

where σ represents a matrix of covariance sample, and the
dimensionality of x is denoted by d. The kernel bandwith which
is represented by h is described by the following formula:

h =

(
4

d+ 2

) 1
d+4

n
−1
d+4 (3)

Therefore, the PMI value is computed by the following formula:

PMI (Cj ;Y | S) = MI(u; v) ≈ 1

n

n∑
i=1

loge

[
f(u, v)

f(u)f(v)

]
(4)

where u = Y − Y (S) and v = Cj − Ĉj(S) in which S shows
a set of selected inputs and j represents a set of candidate inputs
by using the estimators of the non-parametric kernel indicated by
C1(S) = E [cj | S = s] and ϕ(S) = E[y | S = s]. It should be
noted that variable ϕ denotes to the sample covariance matrix, f(u,
v), f(u) and f(v) represent probability density functions of u, v, and
joint u and v, respectively, and the variables of Ĉj and Ŷ represent
the linear least squares regression estimates for the Cj and Y . -
Second step: The second step optimizes the hyperparameters of
the base CNN models with a novel optimization model based on
the theorem of evolutionary computation. Since whale optimization
algorithm (WOA) has shown excellent performance in numerous
engineering applications [11], we further improve its capabilities
using the chaotic map (CM) [12] and evolutionary boundary con-
straint handling (EBCH) [13] strategies. The following formulas
are presented throughout the optimisation to mathematically model
the surrounding phenomenon.

−→
D =

∣∣∣−→C · −→X∗(t)−−→X (t)
∣∣∣ (5)

−→
X (t+ 1) =

−→
X∗(t)−

−→
A.
−→
D (6)

where the current iteration is represented by t,
−→
A and

−→
C denote to

coefficient vectors, X(t) denotes to the position vector (a random
whale) and X∗ represents the optimal solution position vector that
has been so far achieved. The

−→
A and

−→
C coefficient vectors are

determined according to:
−→
A =2−→a · −→r −−→a (7)
−→
C =2 · −→r (8)

where −→a is declined linearly from 2 to 0 during iterations, and r
represent a random vector in the interval of [0, 1]. The procedure
of updating position of each search agents based on the spiral (to
simulate bubble-net attacking mechanism of humpback whales) is
given numerically as follows:

−→
D′ =

∣∣∣−→X∗(t)−−→X (t)
∣∣∣ (9)

−→
X ′(t+ 1) =

−→
D′ · ebl · cos(2πl) +

−→
X∗(t) (10)

where
−→
D′ determines the difference to the best solution from the ith

search agent, b denotes to a parameter used to describe logarithmic
spiral modes and l represents a randomized value of the [-1,1]
range. for further simplification, we generally suppose that Eq.
(2) or Eq. (6) would update the position of the search agents,
each having a 50% probability, that can be given by the following
mathematical formulas:

−→
X (t+ 1) =

{−→
X∗(t)−

−→
A ·
−→
D if p < 0.5

−→
D′ · ebl · cos(2πl) +

−→
X∗(t) if p > 0.5

(11)

where the variable p represents a random value within the interval
of [0, 1]. Using the chaotic circle map, we enforce the improvement
to the traditional WOA. Compared to WOA, the proposed chaotic
operator can prevent local Optima from being stuck and also
increase its convergence speed. The proposed chaotic WOA is
developed using the chaotic circle operator to model the value
of p parameter as follows:

pi+1 = mod (pi + b− (a/2π) sin(2πpi) , 1); a = 0.5, b = 0.2
(12)

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on September 28,2021 at 11:24:19 UTC from IEEE Xplore.  Restrictions apply. 



where the initialized values for the parameters a and b are chosen
based on the reference WOA article [11]. The position of search
agents can be constantly updated for every iteration in the WOA
algorithm. After the updating procedure is completed, search
agents that go outside the search area are considered useless for the
obtained best solutions. The search agents therefore, be redirected
to the search area. The technique can overcome this issue is named
as evolutionary boundary constraint handling (EBCH). Once this
approach has been integrated into WOA, the compatibility to ex-
ploration and exploitation is effectively improved. The mechanism
of EBCH updating is as formulated as follows:

f(obi → xi) =

{
ξ · lbi + (1− ξ)xbi if obi < lbi
% · ubi + (1− %)xbi if obi > ubi

(13)

where ξ and % represent two random variables in the range of [0,1],
obi denotes to the search agent that is from the out-of-bound, xbi
represents the ith best search agent and the upper bound and lower
bound of the search space is presented by ubi and lbi denote,
respectively. The flowchart of the proposed chaotic-EBCH WOA
called as improved WOA (IWOA) is illustrated in Fig. ??. Now,
it is the time to optimize the hyperparameters of CNN models
using the IWOA strategy. Eight important CNN hyperparameters as
tabulated in Table I which have the critical role in the architectural
design of CNNs are optimized by the IWOA algorithm. Thus, in the
solution space of the IWOA, each one of the eight hyperparameters
of a CNN model is interpreted as a eight dimensional vector. The
continuous variables in the CNN hyperparameters are transferred
as D = [Hyp1, Hyp2, ...,Hypn] into a discreet search space.
The following formulas are taken into account for formulating the
discretization model:

Λ = 1 + n×K (14)

ω = min(bΛc, n) (15)

where K is a continuous variable in the [0, 1] exploration range for
the search space, Λ is a mapping operator of K to [1, n+ 1] and
ω represents another Λ mapping operator to [1, 2, 3, ..., n] interval.
Any integer value that belongs to the continuous dimension of the
solution can thus be determined using the following equation:

Xij = Hω (16)

where Xij , where i = 1..n and j = 1..8 represents a 8-
dimensional vector standing for the ith solution encoding the eight
CNN hyperparameters and Hω denotes to these hyperparameters
mapped from discretization manner. Based on the obtained values
of hyperparameters, we consider a fitness function to test the
efficiency of the configured CNN architectures for GHI forecasting.
In this regard, we take into consideration the mean square error
(MSE) to calculate the fitness value of each IWOA solutions given
by the following equation:

MSE =
1

n

n∑
i=1

(yi − y′i)2 (17)

where yi and y′i are the actual and forecasted GHI values by
the CNN model. The aim of the proposed method is therefore
to elicit the lowest MSE value solution containing the CNN
hyperparameter optimal values. This means that a CNN model
has been achieved with the best performance in the GHI test
set. - Third step: By obtaining the best CNN models based on
the optimal hyperparameters, the reinforcement learning strategy
is adopted in the third stage to achieve an optimum sub-set of

regression models which can be deployed in ensemble strategy as
the final selected base regression model. Reinforcement learning
is recognized as a dynamic technique of learning that focuses
on the mechanism of environment interactions. The key concept
behind this learning model is to determine the best solution using
the trials and errors. The Q-learning method is among the most
common reinforcement learning algorithms based on Q values
being updated in the environment. We utilize this approach to
identify ensemble with the proposed method because of flexibility
and effective convergence of the Q-learning mechanism. In other
words, we employ Q-learning to achieve an optimal subset of
optimized CNN models in order to enhance the accuracy of the
proposed ensemble model.

We apply the bagging mechanism to create a collection of
optimized CNN regression models (BaggM = {b1, b2, . . . , bM})
where M denotes to number of optimized CNN models and the
principle is to use reinforcement training strategy to choose an
optimal sub-group of the optimized CNN models called Bagg′M ′ .
We require to specify the states set for S and the actions set for
A to undertake reinforcement learning strategy. Each state in the
proposed model is represented by a st = [Lt,MSEt] tuple in
which Lt refers to the number of selected CNN models optimized
by the evolutionary algorithm in the st state, and MSEt belongs to
the MSE as the error metric of the ensemble regression model built
by the selected optimized CNN regression models. The outputs
of the optimized CNN models are combined based on a simple
voting approach to measure the output performance of the ensem-
ble model. The proposed method is designed to ensure that an
ensemble regression model with minimum error is obtained, using
the Q-Learning algorithm by choosing an efficient subgroup of
the optimized CNN models. The reinforcement Learning algorithm
maps the state to an action described as the Π : S → A policy
[14], [15]. The Q-Learning approach is founded on a function-value
named as QΠ(st, at), where the states and actions are respectively
represented by st and at. The overall estimated discount reward
value depending on the optimal Π strategy is defined by the
following equation:

Qπ(s, a) = E

( ∞∑
k=0

γirt | s0 = s, a0 = a, π

)
(18)

where γ corresponds to the discount coefficient of 0 ≤ γ ≤ 1. Us-
ing the Q-learning algorithm, the optimized action-value function
Q∗(s, a) can be quantified by:

Q∗(s, a) = E
(
rt+1 + γmax

a′
Q∗ (st+1, a

′) | st = s, at = a
)
(19)

The technique proceeds with a series of episodes in which the
action value function Q is updated based on the following formula
to determine an optimal search strategy:

Q (st, at)← Q (st, at) + α [rt+1 + λmaxaQ (st+1, a)
−Q (st, at)]

(20)

The desirable subgroup of the optimized CNN regression models
Bagg′L′ can be defined based on the best result achieved, after
the Q-learning technique has been executed. This optimum subset
is subsequently applied to yield the proposed ensemble GHI time
series forecasting strategy as a final frame for the optimized CNN
models. We show the entire framework of our optimized deep RL
ensemble models briefly named as ODERLEN in Fig. 1 and from
technical point of view in Algorithm 1.
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Fig. 1: An overall schema of the novel ODERLEN framework.

Algorithm 1 The pseudo-code of the proposed deep ODERLEN model for solar
GHI forecasting.

1: Input: N (Population size), GEN (Maximum number of generations), and L (Number
of base regression models).

2: Output: Predicted GHI values.
3: Begin algorithm:
4: Split GHI dataset into training Tr and testing Te sets;
5: Generate a set bag of base regression models BaggM = {b1, b2, . . . , bM};
6: Set m = 1;
7: while (m < L) do
8: Generate a random initial population Xi (i=1,2,. . . , N );
9: Set g=1;

10: while (g < GEN ) do
11: Set a CNN model for each solution based on their hyperparameter values;
12: Calculate the population fitness using Eq.(17) as the MSE of CNN algorithm

obtained by Tr set;
13: for each search agent do
14: Update a, A, C and p using Eq.(12) ;
15: if (|A|<1) then
16: Update the position of search agent using Eq.(5);
17: else if (|A|≥1) then
18: Update the position of the search agent by the Eq.(11);
19: end if
20: end for
21: Perform the EBCH operator using Eq.(13);
22: Calculate the fitness of all search agents and update X∗ if a better solution is

found.
23: Set g=g+1;
24: end while
25: Consider the bm CNN regression model with hyperparameters obtained by the best

search agent;
26: Set m=m+1;
27: end while
28: Perform deep Q-learning model over the CNN regression model BaggM in order to

chose an optimal subset of the regression models indicated by Bagg′
M′ ;

29: Apply the ensemble strategy to forecast the GHI points in the test set Te using the selected
regression models Bagg′

M′ ;
30: Return the predicted GHI as the output;
31: End algorithm

III. EXPERIMENTAL SETUPS AND SOLAR IRRADIANCE
DATASETS

In order to execute ODERLEN framework, we program it with
python using the powerful deep learning libraries including Keras
and TensorFlow using a machine with one 16 GB RAM, one
GPU of GeForce GTX 1080 Ti and the Ubuntu operating system.
For configuring the evolutionary IWOA, we chose the number of
population to 20 and maximum iteration number to 30. It should
be mentioned that the proposed ODERLEN model and the other
competitor models are executed 10 times. Furthermore, the CNN
hyperparameters that are evolved with IWOA are described in

Table I. We optimize eight hyperparameters during the constructing
of the optimal CNN architectures including number of filters (Nf ),
kernel size (Ks), maxpooling size (MP s), batch size (Bs), number
of convolutional layers (Nc), number of epochs (Ne), dropout rate
(Dr), and learning rate (Lr). Moreover, we chose powerful Adam
optimizer and Relu as the activation function during the training
process. For RL ensemble configurations, we set the number of
episodes in the Q-learning algorithm to 200 and consider 15 base
optimized CNN regression models for selecting an optimal subset
of regression models with deep RL ensemble strategy. In order

TABLE I: The symbols and corresponding values of the optimized CNN
hyperparameters with the evolutionary IWOA model.

Symbol Value
Nf [1, 600]
Ks [1, 30]
Ne [1, 500]
Nc [1, 2,..., 20]
MPs [1, 30]
Bs [10, 20,..., 400]
Dr [0.2, 0.25,..., 0.65]
Lr [0.001, 0.006,.., 0.1]

to show the competitiveness of our proposed ODERLEN hybrid
framework, we compare it with five hybrid powerful state of the
art deep learning models including adaptive hybrid model (AHM)
[16], hybrid feature selection method (HFS) [17], Outlier-robust
hybrid model (ORHM) [18], novel hybrid deep neural network
model (NHDNNM) [19], OHS-LSTM [20] that have shown their
strength in time-series forecasting problems. Also, in order to
demonstrate the search capabilities of our proposed ODERLEN
algorithm, we use powerful evolutionary algorithms such as genetic
algorithm (GA), particle swarm optimization (PSO), ant colony
optimization algorithm (ACO), biogeography-based optimization
(BBO) and whale optimization algorithm (WOA) on the framework
proposed in this work. These refer to cases in which the WOA
algorithm is replaced by another optimisation method (GA, PSO,
etc.) in the ODERLEN framework.

We use National Renewable Energy Laboratory [21] solar irra-
diance datasets collected from two solar stations located in Los
Angeles and Phoenix in the western side of United states. Each of
these two solar stations contain 8760 GHI time series data points
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in one-hour intervals for the year 2018 in which the GHI values
are normalised. We consider 75% of each dataset as the training
set and the remaining 25% is allocated to test set. We should note
that the 25/75% split of the training and test sets is not random,
thus that both sets are made of distinct days. Based on these two
sets of solar irradiance data, GHI has an increase from 8:00 to
13:00, and then, has a decrease until it meets zero from about
18:00 to 20:00. For selecting the input features of Deep optimized
CNNs, we utilize the partial mutual information strategy (PMI).
The PMI values considered above of the threshold equal to Ξ = 0.4
is chosen which results in 57 input GHI features for training of
the deep learning models. The root mean square error (RMSE)
and mean absolute error (MAE) which are widely used evaluation
metrics in the literature are considered to calculate the accuracy of
the forecasting models.

IV. EXPERIMENTAL RESULTS

In this section, we test the forecasting performance of our
proposed algorithm compared to other powerful benchmark algo-
rithms. Tables II and III show that in all testing GHI data sets, the
RMSE and MAE of our proposed model are smaller than all other
ten benchmark models.

For instance, we notice that the RMSE OF 1-step ahead pre-
diction in Phoenix station for the proposed ODERLEN equal to
0.034237 significantly outperforms in comparison with HFS as the
closest competitor algorithm equal to 0.034436 , while the MAPE
of the proposed model equal to 0.015165 significantly outperform
the GA-RL-Ens model equal to 0.015421 as the most compatibale
model to ORDELEN. Furthermore, for the LA test dataset for the
proposed method with a RMSE value of 0.033629 and also for
the metric error MAE with a value of 0.016869, the ODERLEN
model has the lowest value among all the ten powerful competitive
methods compared. It can be noted that in comparison with AHM,
HFS, ORHM, NHDNNM and HOS-LSTM as the state of the art
models for time series energy forecasting problems, we find that
the accuracy of our proposed ODERLEN model is much more
reliable than these recent powerful models. Besides, the predicted
performance of the proposed model is still good compared to other
hybrid evolutionary-RL ensemble models. These results indicate
that the ODERLEN algorithm can capture complex solar GHI
characteristics compared to other hybrid deep optimized CNNs by
RL ensemble models.

If a forecasting algorithm can match the actual and predicted
points optimally, it indicates the obvious strength of that method.
As can be seen from Figs. 2 and 3, our proposed ODERLEN
algorithm matches well the blue dots that represent the actual
data points and the red dots represent the predicted data points
for each of the next four different time-steps. The important point
should be noticed from Tables II and III, as well as Figs. 2 and
3, show is that as the time-steps of the next step increases, the
prediction made by the our proposed ODERLEN model becomes
more and more difficult, and in this case, our algorithm has the
least amount of error metric values in comparison to other ten
benchmark models. In Figs. 5 and 4, the diagrams generated by
the proposed ODERLEN algorithm using the next four different
forecasting time-steps are demonstrated. The obvious highlight
from these diagrams refers to the high convergence speed of the
ODERLEN model in order to find the optimal solution, which is
due to the use of two efficient operators including chaotic circle
map and EBCH on the WOA algorithm.

Fig. 2: Actual vs predicted points for Phoenix GHI test dataset.

In summary, this work demonstrates that by applying two
efficient chaotic circle map and EBCH operators on the WOA
algorithm, the hyperparameters of the deep CNN models are
perfectly optimized, and also, the deep RL Q-learning algorithm
selects the best subset of optimal solutions for solar irradiance
GHI forecasting, which indicates the strength performance of our
proposed ODERLEN hybrid model.

TABLE II: The performance results of RMSE and MAE metrics for
Phoenix dataset.

Model 1-step 2-step 12-step 24-step

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

AHM 0.037729 0.020656 0.049905 0.024177 0.074583 0.034471 0.093377 0.045822

HFS 0.034436 0.016075 0.051074 0.024943 0.078714 0.034137 0.095067 0.044216

ORHM 0.035758 0.018975 0.053833 0.026384 0.073988 0.032091 0.094503 0.043452

NHDNNM 0.035562 0.015896 0.050868 0.023332 0.077522 0.032355 0.095013 0.042383

OHS-LSTM 0.036146 0.019742 0.051916 0.024527 0.072677 0.033397 0.091561 0.043514

GA-RL-Ens 0.034745 0.015421 0.051341 0.024664 0.074939 0.033543 0.094074 0.044231

PSO-RL-Ens 0.035228 0.016573 0.051968 0.023416 0.079238 0.035511 0.092422 0.045645

ACO-RL-Ens 0.039853 0.019392 0.060154 0.034946 0.080012 0.034056 0.095969 0.043643

BBO-RL-Ens 0.038241 0.020397 0.049899 0.023672 0.072099 0.032611 0.094288 0.042522

WOA-RL-Ens 0.035012 0.016592 0.053267 0.025107 0.083558 0.039762 0.096543 0.048172

ODERLEN 0.034237 0.015165 0.049541 0.023021 0.070361 0.031977 0.091424 0.041545

TABLE III: The performance results of RMSE and MAE metrics for Los
Angeles dataset.

Model 1-step 2-step 12-step 24-step

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

AHM 0.034389 0.018903 0.053352 0.033071 0.067799 0.036235 0.082938 0.040784

HFS 0.034481 0.017176 0.047231 0.029983 0.067668 0.041654 0.083894 0.046652

ORHM 0.034641 0.017746 0.045537 0.024858 0.069499 0.034732 0.085318 0.038183

NHDNNM 0.039785 0.027732 0.046621 0.026433 0.076965 0.042568 0.092854 0.047328

OHS-LSTM 0.034156 0.017949 0.048055 0.028697 0.067045 0.034067 0.082507 0.040785

GA-RL-Ens 0.033988 0.017232 0.053572 0.034503 0.066893 0.031952 0.081635 0.036333

PSO-RL-Ens 0.036811 0.020526 0.046609 0.024815 0.075352 0.041173 0.089168 0.046892

ACO-RL-Ens 0.036782 0.022753 0.060726 0.041971 0.067655 0.033035 0.082322 0.039572

BBO-RL-Ens 0.034034 0.017022 0.046788 0.023352 0.066531 0.035568 0.085281 0.039342

WOA-RL-Ens 0.034246 0.018471 0.062522 0.038106 0.078492 0.042145 0.092705 0.048375

ODERLEN 0.033629 0.016869 0.044447 0.023143 0.066474 0.031438 0.081286 0.035824

V. CONCLUSION

In this research work, a hybrid model adaptive to three stages
including PMI input selection strategy, the optimized deep CNNs
and deep Q-learning RL algorithm called ODERLEN for predicting
solar irradiance is introduced. To validate the efficacy of the
hybrid ODERLEN model, the GHI data points obtained from two
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Fig. 3: Actual vs predicted points for LA GHI test dataset.

Fig. 4: The convergence curves of the ODERLEN model for legend
horizons of LA dataset.

separate solar stations which are near to the cities of Phoenix and
Los Angeles (LA) are utilized. Meanwhile, in different time-span
scenarios, ten well-known and recently published algorithms are
fairly compared with our proposed framework. The experimental
findings show that our proposed ODERLEN model can increase
the forecasting accuracy noticeably and indicate that the model
proposed is also more robust than other compared benchmark
models.
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