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Abstract—Photovoltaic (PV) power is considered as one of the
most promising sustainable energy resources in recent years.
However, the existing intermittency in the nature of solar energy
is a significant problem for the optimization of smart grids. In this
paper, to overcome PV generation uncertainty and provide an ac-
curate spatio-temporal (ST) PV forecast, we propose a novel deep
generative convolutional graph rough variational autoencoder
(CGRVAE) that captures each PV site’s probability distribution
functions (PDFs) of future PV generation in a modeled weighted
graph. Having the learned PDFs enables CGRVAE to accurately
generate the future values of PV power time series. To train and
evaluate our model, we used the measurements of a set of PV
sites in California, US. The sites are modeled as a weighted graph
where each node represents PV measurements at each site while
edges reflect their correlations. Using graph spectral convolutions
the proposed model extracts the most relevant information of
the graph to estimate the future PV given the historical time
series for each node in the modeled graph. Experimental results
show the superiority of CGRVAE over state-of-the-art forecasting
approaches in terms of the root mean square error (RMSE) and
mean absolute error (MAE) metric.

Index Terms—Solar energy, Photovoltaic power forecasting,
Spectral Graph Convolution, Deep Neural Networks

NOMENCLATURE

αj jth Chebyshev coefficient
ŝni

Forecasted values of s∗ni

Fθ Graph convolution filter
LG Set of edges in G
NG Set of nodes in G
P ∗ PDF of future value of time series
s∗ni

Future values of nith time series
stni

nith time series at time t
D Decoder in VAE architecture
E Encoder in VAE architecture
G Weighted Indirected Graph

I. INTRODUCTION

SOLAR energy is one of the sustainable, clean, and free
cost sources of energy. Nowadays, numerous large-scale

solar photovoltaic (PV) systems are commonly employed in
power systems of modern countries. The dependency of solar
on different atmospheric parameters such as sunshine and tem-
perature makes the PV power output (PVPO) intermittent and
unpredictable. When large-scale power plants are connected to
the power grid, the power instability of the PV systems is a
severe threat to the power grid’s safety and stability; hence,
there is a must to propose an accurate and reliable PVPO
forecasting method to improve the power plant stability [1].

Generally, the PVPO forecasting approaches can be classified
into three categories including, 1) Statistical, 2) Machine learn-
ing (ML), 3) Hybrid methods. Statistical methods aim to fore-
cast the future values by merely considering the previous values
of the PV time series. Persistence models [2], auto-regressive
integrated moving average (ARIMA) [3], and auto-regressive
moving average model with exogenous inputs (ARMAX) [4]
are among most common statistical methods.

ML-based methods are data-driven approaches that are ex-
ploited for a variety of regression [5] and classification [6]
tasks. Recently ML models have been witnessed significant
attention for the problem of PVPO forecasting. In [7] the
authors applied the Long-Short Term Memory (LSTM) model
to forecast the {6, 12, 24} hours ahead of PVPO time series. To
improve the forecasting ability of the LSTM model, Zhou et al.
[8] adopted an attention mechanism in two LSTM networks to
adaptively focus on more relevant input features for temperature
and power outputs prediction. In [9], a feature vector selection
(FVS) method is proposed to choose the most relevant solar
data from high dimensional input space; moreover, a novel
kernel extreme learning machine (KELM) model is developed
for the forecasting task. By comparing the FVS-KELM with
other ML baselines such as ELM and support vector machine,
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the authors empirically show the high generalization capacity of
the proposed model. In [10], Yao et al. evaluate the validity of
echo state network (ESN) on the problem of PVPO forecasting.
In their proposed model, first, the relevant features of time
series are extracted through unsupervised learning algorithms
of Restricted Boltzmann Machine and principal component
analysis, then inspiring by the concept of deep structures a
multiple reservoirs ESN is developed for the prediction task.
Recently, spatio-temporal (ST) approaches attract more interest
for forecasting models. In [11], proposed QR-Lasso model
which provides the complete future probability density function
of PV production for very short-term horizons based on quantile
regression and an L1 penalization technique for automatic
selection of the input variables. Chai et al. [12] exploited
ConvLSTM for PVOP forecasting problem. ConvLSTM is a
variant of the LSTM model where all the inputs, cell outputs,
hidden states, and gates are 3D tensors (instead of 2D matrices
in original LSTM).

By combining different forecasting techniques, hybrid meth-
ods aim to propose a more efficient and accurate prediction
[13]–[15]. For example, recently [16] proposed model consists
of wavelet packet decomposition to decompose the original
power time series into sub-series and four independent LSTM
models to predict one hour-ahead PVPO values.

In this paper, we solved the problem of PVPO forecasting for
a graph of PV sites by proposing a novel convolutional graph
rough variational auto-encoder (CGRVAE) model. Unlike other
studies in the literature that try to predict the PVPO time series
of one PV site, here we propose a model that is able to forecast
the time series for a graph of neighboring sites to highlight the
ST correlations exist in solar generation. In this study, we model
25 PV sites in California, US, as an indirected weighted graph
where the nodes represent the PV measurements at the sites
while edges reflect their historical correlations. By making use
of a convolutional graph, we extract the most relevant set of
ST features within the graph. Having these extracted features
and future time series values in the training set enables us to
model the probability density function (PDF) of future PVPO
given the historical observation for each site. To obtain a robust
PDF approximator against the existing uncertainties in PV
time series, we propose a novel rough variational autoencoder
(RVAE) that approximates the PDF for each node, i.e., PV
site, in the graph. By observing historical records of graph-
structured information and learning the distribution for each
node in the graph, the proposed deep CGRVAE has the capacity
to generate new samples of future PV generation for each node
in the modeled graph.

The main contributions of this study can be summarized
as follows: 1) In contrast to the existing methods that merely
employ discriminative learning to directly map the history of
PV generation to future values, here we learn a complex PDF
of future solar generation given the history and take samples
to forecast PV generation. The proposed generative model is
shown to obtain higher accuracy compared to the existing
works; 2) Rough set theory is incorporated into the proposed
deep generative model to handle noise and uncertainties in
the ST PV forecasting datasets; and 3) To the best of our
knowledge, this is the first attempt to learn conditional ST

PDFs using a deep learning data-driven algorithm. The pro-
posed model not only provides higher generalization capacity
compared to recent benchmarks, but also takes into account the
robust feature extraction from PV datasets.

The paper is organized as follows: In Section, II the un-
derlying problem and modeled weighted graph for this study
is defined. Section III discuss mathematical modeling of the
proposed forecasting methodology. Sections IV explains the
used performance metrics and the obtained results. Finally,
conclusion are presented in Section V.

II. PROBLEM FORMULATION

The PVPO time series of 25 sites in 2006 in California are
collected by National Solar Radiation Database [17]. Fig. 1
illustrates the location of the sites. The data at each site contains
the PVPO time series with 5-min intervals. Let us define the
weighted indirected PV graph, G = 〈NG, LG〉 in which NG
consists of ni, i ∈ {1, 2, ..., 25} nodes. i.e., PV sites, and LG
is the set of edges between nodes in the graph. The weight
matrix of the edges, W is obtained by the existing mutual
information (MI) and geographical distance among nodes in
the graph. The MI value of historical PV data for each pair of
sites has large negative correlation with their distance inside
the latitude-longitude space. It means that the shorter distances
between solar sites, the larger values of edges for corresponding
nodes in the graph. More formally, we define the i-th and j-th
element of the weight matrix, W , by:

wij =

{
e−Dij MI(i, j) ≥ λ
0 MI(i, j) < λ

(1)

Dij is the geographical distance between nodes i and j, while
MI(i, j) represents the normalized MI between two underlying
nodes. The sparsity of the graph is determined by edge-sparsity
coefficient, λ. The higher value of λ, the sparser weighted
graph. In this work we set the edge sparsity value λ = 0.5
that is obtained by a validation set. For the node i at time
t we have Stni

as the corresponding PVPO time series. Here
the problem is to estimate the future values of the time series
S∗(t

′
= t+ h) for a considered forecasting horizon h > 0. To

forecast these values for all of the nodes in the graph G we
need to learn a conditional PDF, P ∗

(
S∗(t

′
)|ψ
)

where ψ is the
history of PV generation at all nodes. After learning P ∗, one
can generate future values of the PV at each site.

Fig. 1: Locations of 25 underlying PV sites in California, USA.

Fig. 2 shows the MI analysis between the PVPO values of
site 2 at time t̃ and t̃− k with k ∈ {12, 24, 36, ..., 144} hours.
We found s(t̃) is more correlated with most recent PV values
as well as the values in range {24, 48, 72, 96, 120, 144} hours.
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Hence, in this work to predict the s(t̃) we feed the historical
PV values with MI > 0.4 to the proposed model.

Fig. 2: Correlation between current time and previous time lags of
the second solar site

III. PROPOSED MODEL

A. Graph Convolutional Neural Network

As discussed in Section II, we aim to learn the PDF of the
PVPO time series to predict the future values of the time series.
As shown in Fig. 3 to obtain the relevant ST features (F (G)) of
the nodes in the graph, we used graph convolutional networks
[18]. At the time t, the spectral graph convolution of G is
computed by:

Fθ ∗ St = V FθV TSt (2)
where St represents all nodes in the graph G at time t.
Matrix V contains the eigenvector of the normalized Laplacian
L = V ΩV t and the vector θ ∈ Rn is the set of parameters for
convolutional filter Fθ = diag(θ) in the frequency domain.
Since Fθ is considered as function of the eigenvectors for
matrix L, the filter in the model is denoted by Fθ(Ω). By
estimation of Fθ(Ω) using Chebyshev Polynomials, Tj , we
have Fθ(Ω) ≈

∑J
j=0 αjTj

(
2

ϑmax
Λ− I

)
where αj is the j-th

Chebyshev coefficient and ϑmax is the maximum eigen value
of L. Substituting this approaximation of Fα(Ω) into (2) gives
us a new expression for spectral graph convolution function of
G:

Fθ ∗ St ≈
∑J
j=0 αjTj

(
2

ϑmax
Λ− I

)
St (3)

The convolution equation in (3) could be more simplified by
supposing J = 1, ϑmax = 2 and α0 = −α1. The simplified
version of (3) is:

Fθ ∗ St ≈ α0T0(Λ− I)St + α1T1(Λ− I)St = α0

(
I +B−

1
2WB−

1
2

)
St (4)

To extract the ST features of the nodes in graph G using the
convolutional operation of (4), the proposed model shown in
Fig. 3 considers LG layers in the Graph feature extractor (GFE)
block. The output of the k-th layer in GEF, Ok, is obtained by:

Ok = f(MOk−1βk) s.t. M = B̃−
1
2 (W + I) B̃−

1
2 (5)

where W is the graph weight matrix defined in (1), βk is the
weights for k-th layer in neural network (NN), and B̃ij =∑
j (W + I)ij . As shown in the Fig. 3, the input to the GEF

network is the raw data of the historical time series, and its
output F (G) is the ST features of graph G.
B. Time Series Approximation by PDF Learning

In Section III-A, we discuss ST feature extraction of graph
G. In this Section, our objective is to learn the P (X) over
high dimensional data points X ∈ X . Then, in Section III-B2
we extend the math to our problem, learning the P ∗ (S∗|ψ).
Having P ∗ we can generate the future values of time series,
S∗, as close as possible to the observed samples, S, in training
phase.

1) Learning Probabilistic Representation of the Data: As
the input space’s complexity X grows, the difficulty of accurate
P (X) approximation grows. Therefore, we map the inputs into
a latent random space, Z , to represent the most important char-
acteristic of P (X). Here we need to ensure that by sampling
from unknown distribution P (z) over high dimensional space
Z , we are able to generate some samples X̂ that follow the
original PDF P (X). Suppose a set of deterministic functions
f(z; θ) with parameters θ ∈ Θ for mapping data points from
Z space to X space, i.e., f : Z ×Θ→ X . Our objective is to
find a set of optimal parameters θ∗ ∈ Θ for f such that when
z ∼ P (z) the probability of generating samples X∗ as close as
possible to X by f is maximized. Therefore, the optimization
problem is written by:

θ∗ = arg max
θ

{
P (X) =

∫
f (z; θ)P (z) dz

}
(6)

Since Z is a transformed space of the input space X , for
a fixed set of parameters θ, f(z; θ) is a random vector in the
space X . Hence, P (X) in (6) can be written as:

P (X) =

∫
D (X|z; θ)P (z) dz (7)

where D is decoder NN in variational auto-encoder (VAE)
model. We consider conditional PDF D (X|z; θ) and prior
PDF, P (z), as a Gaussian distributions, N (X|f(z; θ), σ2 × I)
and N (0, I), respectively. First layer of decoder network maps
variables z ∈ Z into an unknown complicated distributions
ζ via nonlinear neurons, and afterwards ζ provides samples
X ∈ X . Considering the explained assumptions let us rewrite
the optimization problem in (6),(7) by:

θ∗ = arg max
θ

∫
N (X|f(z; θ), σ2 × I)N (0, I)dz (8)

To solve the optimization problem in (8) we need to decide
on feasibility of an arbitrary z ∈ Z in the generation of
new samples belonging to X . Hence, we define an arbitary
probability distribution E(z). The expected value of D(X|z)
w.r.t. z, Ez∼E [D (X|z)], is obtained by Kullback–Leibler (KL)
divergence.

KL [E (z) , P (z|X)] = Ez∼E [logE (z)− logP (z|X)] (9)

By applying Bayes rules on D (z|X) we can write the KL
divergence as:

KL[E (z) , P (z|X)] = Ez∼E
[
logE (z)− log

(
P (X|z)P (z)

P (X)

)]
=

Ez∼E [logE (z)− logP (X|z)− logP (z) + logP (X)] (10)

where P (X|z) is a decoder NN; therefore, we denote it by
D(X|z). Also, since we aim to infer P (X), the distribution E
has to be dependent on X . The above equality can be written
as:

logP (X)−KL [E (z|X) ‖P (z|X)] =

Ez∼E [logD (X|z)−KL [E (z|X) ‖P (z)]] (11)

To achieve our goal, i.e., generating X∗ ≈ X , we must maxi-
mize log (P (X)) as well as minimize KL [E (z|X) ||P (z|X)]
in left hand side of (11); thus, we maximize the right hand
side of (11) using stochastic gradient descent (SGD) method.
Formally we can write the optimization problem by:

θ∗ = arg max
θ

EX∼X
[

Ez∼E [logD (X|z; θ)]
−KL [E (z|X; θ) ‖P (z)]

]
(12)
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Fig. 3: Proposed Model CGRVAE on training phase. The trained rough decoder is used on testing phase.

Note that in (11), E is an encoder NN to encode the input
samples X into z, and D is a decoder NN to X from z. We
define E as:

E(z|X) = N (z|µ(X; θ),Σ(X; θ)) (13)
where µ and Σ are the deterministic functions obtained by
a NN with tuanable parameters θ. Since D and P both are
multivariate Guassian distributions, the KL term in (11) can be
simplified by:

KL[E (z|X) ‖P (z)] = KL [N (z|µ(X; θ),Σ(X; θ)),N (0, I)]

=
1

2

[
− log (det (Σ))− d+ tr (Σ) + µTµ

]
(14)

Using reparametrization trick on z for obtaining D (X|z; θ)
(see Fig. 3), (14) can be rewritten by:

θ∗ = arg max
θ

EX∼X

Eε∼N (0,I)

[
log[D(X|z = µ(X)
+Σ1/2(X) ∗ ε; θ)]

]
−KL [E (z|X; θ) ‖P (z)]


(15)

In training phase, the encoder NN, E, receives the input
data, and outputs µ and Σ (see (13)). The error function for
E NN is computed in (14). After obtaining µ and Σ, by
applying reparametrization trick, we can obtain z and feed that
to decoder network D to generate X∗ ≈ X . Note that the error
function for D NN is ||X −X∗||2.

2) Convolutional Graph Rough VAE: In this section, we
extend the model in III-B1 for learning P ∗(S∗|ψ). As shown in
Fig. 3 our goal is to generate Ŝ(t

′
) ≈ S∗, hence let us formalize

the generation steps of Ŝ as an approximation of S∗. Assuming
z ∼ E, Bayes rule is employed to obtain the expected value of
log[P (S∗(t

′
)|z, ψ)]:

Ez∼E [logP (S∗(t
′
)|z, ψ)] = Ez∼E [logP (z|S∗(t

′
), ψ)−

logP (z|ψ) + logP (V ∗(t
′
|ψ))] (16)

(16) can be rewritten as:

logP
(
S∗(t

′
)|ψ
)
−KL

[
E
(
z|S∗(t′), ψ

)
‖P
(
z|S∗(t′), ψ

)]
=

Ez∼E
[
logD

(
S∗(t

′
)|z, ψ

)
−KL

[
E
(
z|S∗(t′), ψ

)
‖P (z|ψ)

]]
(17)

Similar to (11) our objective is to maximize the left hand
side of (17). Hence, by solving similar optimization prob-
lem in (12) we learn the optimal Rough encoder/decoder to
capture the conditional PDF P ∗(S∗|ψ). Having the optimal
encoder/decoder enables us to generate the accurate values of
S∗ for future values t

′
. As shown in Fig. 3 and similar to (14)

the cost function for tuning the encoder and decoder models in
CGRVAE are defined as follows,

ErrorE = KL[E(z|〈F (G), S∗〉‖N (0, 1))]

ErrorD = ‖Ŝ(t
′
)− S∗(t

′
)‖

(18)

Therefore the total error for the proposed model is
Errortotal = ErrorE + ErrorD.

As shown in Fig. (3) in the proposed CGRVAE, we use
Rough encoder/decoder NNs. The Rough neurons in the model
include nonlinear activation functions with interval weights and
biases. There are LD and LE Rough layers in the encoder
and decoder networks, respectively. Here, we merely write the
feedforward of the used Rough network between two layers i
and i+ 1 by:

ZUi = WU
i+1Oi + bUi+1

ZLi = WL
i+1Oi + bLi+1

Oi+1 = αi+1Z
U
i + βi+1Z

L
i

(19)

where
〈
WU
i+1, b

U
i+1

〉
and

〈
WL
i+1, b

L
i+1

〉
are upper bound and

lower bound (i.e., interval weights) of the Rough NNs, respec-
tively. Our main motivation to making use of Rough set theory
and Rough neurons [19] in encoder/decoder models is to boost
the robustness of model against the existing uncertainties in the
PVPO data.

IV. NUMERICAL RESULTS

A. Experimental Details

CGRVAE is compared with several recent approaches for PV
power forecasting, including Quantile Regression (QR) [20],
Feature Vectors Selection Kernel Extreme Learning Machines
(FVS-KELM) [9], Probabilistic Persistence (PP) [21], Long-
Short Term Memory (LSTM) [7], attention mechanism with
multiple LSTM (ALSTM) [8], multiple reservoirs echo state
network (MR-ESN) [10], and two ST approaches, Convolu-
tional LSTM (ConvLSTM) [12] and quantile regression (QR-
Lasso) [11]. We compare the proposed model with other base-
lines over five forecasting horizons {10-min,30-min,1-hour,3-
hours,6-hours} using RMSE and MAE metrics that are defined
as follows:

RMSE =

√√√√ 1

N

N∑
n=1

(
S∗ (n)− Ŝ (n)

)2
MAE =

1

N

N∑
n=1

∣∣∣S∗ (n)− Ŝ (n)
∣∣∣

(20)

where N is the number of test samples while the actual
and predicted values of time series are shown by S∗ and Ŝ,
respectively.
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In this work, we split the dataset by seasons. For each season
we consider 80% of samples as training and validation sets as
well as 20% as testing set. The entire seasonal training and
testing sets are contains 21024 and 5256 samples. Stochastic
Gradient Descent with learning rate η = 5×10−4 is employed
to train the CGRVAE. The number of layers for GFE, E,
and D models are set as LDFE = 2, LE = 4, LD = 3,
respectively. All the experiments are carried out using GPU-
based Tensorflow on Python 3, and the whole training time for
our model is 12.3 minutes. The simulations are processed in a
system with a 10-core CPU having Intel core-i7 Processors, an
NVidia Quadro RTX 6000 GPU, and a 256-GB RAM.
B. Performance Comparison

Fig. 4 compares the 1 day prediction results of the proposed
model and the baselines for 1-hour forecasting horizon of 14th
solar site. In this figure, we can see the forecasting curve of
the proposed CGRVAE is closer to the actual curve; however,
there is a gap for other baselines (i.e., MR-ESN, QR-Lasso,
and ConvLSTM).
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Fig. 4: One-hour ahead forecasting results of PVPO of 14th PV site.
Note that for the sake of visualization, merely the results are shown
for one day in spring and the zero value are not shown.

Comprehensive comparisons of the models’ performance are
presented in Tables I, II. The tables compare the RMSE and
MAE of the proposed model with baselines in 10-mins, up to
6-hours ahead forecasting horizons in 4 seasons. Based on the
tables, the RMSE and MAE metrics are rising monotonically
by increasing the forecasting horizons. Moreover, to better
visualize the results in tables, in Fig. 5 we compare the average
RMSE of different methods for underlying forecasting time
horizons. The average RMSE of PP is around 0.9 kW in 10-
min, which is increased to 2.5 kW in 6-hours ahead forecast.
In line with [12], our results confirm that statistical approaches
(i.e., PP and QR) model yield higher values in RMSE and MAE
due to their smoothness assumption. This assumption degrades
the PP model’s performance, especially for the days with many
changes between cloudy and sunny weather. Generally, ML-
based approaches outperform statistical methods, especially for
larger forecasting horizons. For example, as shown in 5, the
average RMSE of FVS-KELM and QR is almost the same in
10-mins; however, in a 3-hour forecast, FVS-KELM and QR
yield 1.86 and 2.1 average RMSE, respectively.

Recurrent structures (i.e., LSTM and ALSTM) improves the
forecasting results of QR and FVS-KELM; for example, LSTM
outperforms QR and FVS-KELM with 16% and 9% average
RMSE improvement in 6-hours forecasts, respectively. This
superiority is because recurrent approaches can better capture
the temporal characteristics of time series. In line with [8], our

observation in tables I and II show the improvement in LSTM’s
results by applying the attention mechanism. The obtained
results for the MR-ESN method verify the superiority of Echo
State Networks on recurrent NN [10]. MR-ESN achieves 0.5 for
the average RMSE in the 10-min forecast, while ALSTM yields
a higher value around 0.65. The gap between these two models
increases for larger forecast horizons. For example, in the 6-
hours forecast, the average RMSE for MR-ESN and ALSTM
are around 1.78 and 1.94, respectively.

One can observe the lower values of average RMSE for
ST approaches (i.e., QR-Lasso, ConvLSTM, and proposed
CGRVAE) compared to other referred benchmarks on Fig. 5.
As concluded in [11], [12], our results prove the importance of
considering spatial correlations as well as a temporal correlation
for PV forecasting task. Based on the forecasting results
on Fig. 4 and 5, we see ConvLSTM yields slightly better
results compare QR-Lasso. For example, on 3 hours forecasting
horizons, ConvLSTM merely improved the average RMSE by
around 0.1. Obtained results show the graph-based NN and
interval VAE caused the higher generalization capacity of the
proposed CGRVAE method among all statistical and ML-based
(temporal and ST) baselines. As shown in Fig. 5, the proposed
model outperforms MR-ESN (as the best temporal ML-based)
and ConvLSTM (as the best ST ML-based) by 9% and 3% on
6-hours forecasting horizons, respectively. These improvements
in the results stem from the higher capacity of graph structures
in modeling ST information and the superiority of generative
modeling over discriminative modeling.

Fig. 5: Overall RMSE of different models for five forecasting horizons.

V. CONCLUSION

This paper presents a novel deep generative model, convolu-
tional graph rough variational autoencoder, to learn the proba-
bility densities of a graph of photovoltaic sites. Here, we formu-
late the PV power forecasting problem as a graph distribution
learning where each PV site is modeled as a node in the graph,
and the distance between sites is modeled by edges in the graph.
The model applies a deep convolutional graph to extract spatial
features between the nodes in the graph. Further, the extracted
features are fed to a rough variational auto-encoder to estimate
the probability density of future PV power outputs. Numerical
results show the remarkable superiority of the proposed model
compared to state-of-the-art forecasting benchmarks. Compared
to the method with a lack of spatio-temporal (ST) information
(e.g., ALSTM), the proposed CGRVAE significantly boosts the
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TABLE I: RMSE(kW) of different models for five forecast horizons on the testing datasets across seasons. Note that the best test results are
marked in bold fonts.

Model 10-min 30-min 1-hour 3-hours 6-hours
Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn Winter Spring

QR [20] 0.727 0.846 0.891 0.823 1.131 1.598 1.364 1.323 1.639 1.893 1.956 1.725 1.982 2.021 2.198 2.159 2.312 2.438 2.502 2.564

FVS-KELM [9] 0.674 0.832 0.929 0.758 1.023 1.236 1.321 1.112 1.569 1.532 1.674 1.614 1.823 2.012 1.997 1.846 2.193 2.368 2.422 2.523

PP [21] 0.895 0.834 0.984 0.964 1.242 1.452 1.426 1.387 1.701 1.921 1.825 2.006 2.128 2.333 2.196 2.269 2.441 2.503 2.691 2.552

LSTM [7] 0.594 0.651 0.689 0.649 0.985 0.921 1.150 1.212 1.449 1.323 1.578 1.652 1.774 1.795 1.802 1.715 1.951 2.015 2.110 2.106

MR-ESN [10] 0.516 0.502 0.610 0.536 0.798 0.842 0.892 0.833 1.129 1.143 1.192 1.259 1.584 1.458 1.622 1.635 1.736 1.726 1.836 1.842

ALSTM [8] 0.530 0.578 0.674 0.6333 0.846 0.894 0.919 1.113 1.236 1.299 1.397 1.423 1.618 1.678 1.666 1.701 1.849 1.972 2.032 1.911

QR-Lasso [11] 0.478 0.482 0.495 0.471 0.753 0.766 0.759 0.747 1.002 1.11 1.111 1.198 1.498 1.410 1.522 1.578 1.679 1.697 1.754 1.771

ConvLSTM [12] 0.443 0.453 0.461 0.455 0.692 0.710 0.733 0.701 0.971 0.989 1.089 1.151 1.401 1.366 1.475 1.498 1.601 1.645 1.702 1.755

Proposed CGRVAE 0.402 0.419 0.443 0.425 0.618 0.678 0.721 0.654 0.942 0.984 1.012 1.109 1.352 1.289 1.312 1.374 1.576 1.603 1.656 1.682

TABLE II: MAE (kW) of different models for five forecast horizons on the testing datasets across seasons. Note that the best test results are
marked in bold fonts.

Model 10-min 30-min 1-hour 3-hours 6-hours
Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn Winter Spring

QR [20] 0.633 0.759 0.761 0.721 0.984 1.258 1.234 1.147 1.498 1.622 1.846 1.629 1.785 1.982 2.098 2.009 2.249 2.299 2.384 2.495

FVS-KELM [9] 0.598 0.692 0.784 0.582 0.918 1.055 1.138 0.946 1.459 1.328 1.512 1.486 1.626 1.965 1.733 1.628 1.941 2.269 2.341 2.369

PP [21] 0.759 0.729 0.798 0.859 1.004 1.239 1.249 1.189 1.514 1.721 1.543 1.863 1.936 2.128 2.009 2.184 2.259 2.325 2.583 2.389

LSTM [7] 0.442 0.478 0.514 0.549 0.786 0.741 0.982 1.023 1.249 1.148 1.328 1.419 1.581 1.623 1.624 1.541 1.802 1.92 2.039 1.984

MR-ESN [10] 0.359 0.339 0.469 0.398 0.541 0.652 0.712 0.612 0.984 0.978 1.001 1.114 1.367 1.278 1.425 1.458 1.617 1.584 1.649 1.698

ALSTM [8] 0.361 0.435 0.498 0.512 0.65 0.69 0.754 0.961 1.011 1.131 1.152 1.254 1.412 1.503 1.485 1.511 1.632 1.789 1.95 1.769

QR-Lasso [11] 0.344 0.329 0.426 0.361 0.511 0.591 0.677 0.589 0.892 0.911 1.056 1.002 1.297 1.195 1.374 1.380 1.545 1.510 1.589 1.610

ConvLSTM [12] 0.303 0.321 0.409 0.343 0.503 0.556 0.626 0.561 0.821 0.884 0.988 0.994 1.226 1.110 1.333 1.302 1.510 1.523 1.540 1.597

Proposed CGRVAE 0.298 0.303 0.312 0.308 0.410 0.523 0.535 0.489 0.739 0.787 0.891 0.926 1.149 1.066 1.132 1.187 1.322 1.455 1.478 1.532

forecasting RMSE (0.334 in 3 hours forecasting horizons). This
superiority reveals the importance of ST correlations between
PV sites. Moreover, in comparison with ST approaches such
as QR-Lasso and ConvLSTM, the proposed CGRVAE model
improved the forecasting RMSE by 5.1% and 3% in 6 hours
forecasting horizons. Having the accurate probability density
of the future values of the time series enables us to predict the
future values with lower error than most recent discriminative
models.
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