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Abstract—Net electricity consumption (NEC) is the result of 

the joint action of actual electricity consumption (AEC) and 

distributed photovoltaic (DPV) generation. The accuracy of 

NEC prediction affects the retailers’ gaming and ultimate 

interests in electricity market. The ascending DPV installations 

present new challenges, with the modifications to the NEC 

curve becoming greater as DPV penetration increases. To 

track the changes in DPV penetration and improve the 

prediction accuracy under high penetration of DPV, a monthly 

NEC prediction model assembled by support vector regression 

and time series modeling under an online update framework is 

proposed. First, the DPV features are extracted from a few 

known solar customers’ information to identify whether other 

customers install DPV or not. Second, an online update 

framework is proposed and its accuracy is verified by two 

validations regarding the conversion of non-solar customers to 

solar customers (namely the change of DPV penetration). 

Third, a NEC decoupling model based on historical NEC data 

of months without DPV installation is established. Finally, a 

monthly NEC prediction model under different DPV 

penetrations is proposed. Simulation results show that the 

proposed prediction method with an online update is more 

accurate than the individual time series model, and the 

performance of the prediction model is getting better with the 

increasing DPV penetration. 

Keywords—Retailers, Electricity Market, Distributed 

Photovoltaic Penetration, Monthly Net Electricity Consumption 

Prediction, Online Update Model 

NOMENCLATURE 

A. Abbreviations 

DPV Distributed photovoltaic  
AEC Actual electricity consumption 
NEC Net electricity consumption 
SVR Support vector regression 
ARIMA Auto-regressive integrated moving average 

B. Symbols  

T  Set of timeslot 

tP ,
0

tP  Set of electricity consumption of each 
customer whose DPV information is 
unknown/known 

x , y  Input/Output vector of SVR 

( )f ⋅  Function of SVR 

w , b  Parameters of SVR 

t  Index of timeslot 

g , i , j  Number of the hour, month and year 

gH ,
i

M , jY  The g th hour, i th month and j th 

year 

,Net tP , 0

,Net tP  NEC of each customer whose DPV 
information is unknown/known 

,Load tP , 0

,Load tP  AEC of each customer whose DPV 
information is unknown/known 

,DPV tP , 0

,DPV tP  DPV generation of each customer 
whose DPV information is unknown/ 
known 

,cl gs  Slope of the cut line at gH  

,tp gr  Degree of concavity at gH  

,s gr  Average rate of change of the slope 

kε  Prediction error of the prediction of 

, , ,g i jLoad H M YP  at k th time 

avε  Average prediction error 

, , ,
ˆ  

g i jLoad H M Yy  Real value of AEC of , , ,g i jLoad H M YP  

, , ,  
g i jLoad H M Yy  Prediction result of AEC of 

, , ,g i jLoad H M YP  

, , ,  
g i jDPV H M Yy  Prediction result of DPV generation 

of , , ,g i jLoad H M YP  

,Net fluctuationP  Fluctuation of NEC 

,Net trendP  Trend of NEC 

p  Partial correlation order of ARIMA 

d  Differential order of ARIMA 
q  Auto-correlation order of ARIMA 

B , C  Value of the Bayesian/Akaike 
information validation 

corn  Correct identification number of non-
solar customers converted to solar 
customers 

toln  Real number of all non-solar customers 
to be identified that are converted to 
solar customers 

updatea  Accuracy of the DPV installation 
update check validations 

tacy ,
tprey  Real/predicted value of NEC 

I. INTRODUCTION  

Driven by national policies and other factors, a growing 
number of customers have a preference to install DPV. The 
popularity of DPV might as well be considered as a boon and 
a challenge [1]. Retailers who need to predict the monthly 
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net electricity consumption (NEC) (namely the difference 
between monthly actual electricity consumption (AEC) and 
monthly DPV generation) of their customers before 
participating in the forward market are required to take the 
introduction of DPV into account [2-4]. With the rapid 
growth of DPV penetration, compared with the monthly 
AEC characteristics, the monthly NEC characteristics are 
different in trend, seasonality, and randomness, which may 
lead the existing monthly AEC prediction models are not 
available. Thus, it is of great urgency to improve the 
prediction accuracy of NEC so that to ensure the interests of 
retailers and customers [5-6]. 

The NEC prediction ideas can be divided into two 
categories: direct ideas and indirect ideas. The direct idea, 
whose prediction target is the NEC, involves using the DPV 
generation data monitored by the additional metering 
equipment installed, but this will significantly increase the 
cost due to the large number of DPV. The indirect idea, 
whose prediction targets are the AEC and DPV generation 
obtained after NEC decomposition, involves decomposing 
the net load into AEC and DPV generation by mining the 
hidden information contained in various data sources with 
sufficient temporal and spatial granularity [7-10]. In [11], 
Bayesian in-depth learning is used to capture uncertainty for 
residential net load prediction. Reference [12] uses the 
Gaussian process to predict the probability of residential 
electrical energy, DPV generation, and individual household 
net demand. Reference [13] details the application of 
probabilistic prediction methods in solar irradiance 
prediction and load prediction. In [14], it is found that 
increasing the proportion of DPV output power in the net 
load of residential users can improve the clarity and 
reliability of probability prediction in spring and winter. The 
photovoltaic generation prediction method proposed in [15] 
aiming for invisible photovoltaic sites is different from [16] 
in that it belongs to unsupervised learning. So, the historical 
data of the site is not required for model training, and it is 
suitable for high penetration. 

For the above exiting researches, there are still some 
issues that need to be further addressed. First, it is difficult to 
distinguish the installation of DPV just based on the net load 
curve under the changeable weather scenarios. For example, 
when the net load curve is a clearly "concave" type, it is 
difficult to distinguish whether the customers’ actual 
electrical consumption has reduced or DPV generation has 
increased. Second, they do not take into account the DPV 
installation information updates for non-solar customers, 
which leads to a part of DPV generation cannot be calculated 
in the NEC. Generally, it is common to regard this part as the 
prediction error of the AEC, which may cause deviations in 
the extraction of customer load characteristics and turn 
affects the net load prediction accuracy.  

The main contributions of this paper are as follows:  
(1) A novel monthly NEC prediction method utilizes 

decoupling technology is proposed.  
(2) An online update framework of customer DPV 

installation information is proposed to improve the 
performance of the monthly NEC prediction model further.  

(3) Based on the differences of fluctuation between AEC 
and DPV generation, it is judged whether it is the error of the 
AEC prediction or the installation of DPV. 

The framework and specific process will be introduced in 
Section II. Next, the data set, case study, and performance 
evaluation will be proposed in Section III. Finally, the 
conclusion and future work will be written in Section IV. 

 

Fig. 1. Data updates and prediction framework 

 

Fig. 2. Online update check diagram 

II. PROPOSED METHODOLOGY 

A. Framework  

The work is to predict the monthly NEC of the customers 
for a retailer. The DPV penetration varies with the 
installation of DPV. To distinguish the different 
characteristics of monthly AEC and DPV generation and 
update DPV installation information in time, this paper 
decouples monthly NEC into monthly AEC and DPV 
generation and predicts them respectively under an online 
update data framework. This process consists of three steps 
(namely online update, decoupling, and prediction), as 
shown in Fig. 1.  

Step 1: Online update procedure. When the customer does 
not install DPV, the NEC is equal to the AEC. When the 
customer is installed DPV, the NEC is equal to the AEC 
minus the amount of DPV generation. The difficulty is that 
customer DPV installation is time-varying. Thus, it is 
necessary to have a constant check whether a non-solar 
customer has newly installed DPV. The accuracy of the 
prediction can be improved by subtracting the DPV 
generation of customers who have newly installed DPV in 
time during the NEC prediction. The accuracy of the 
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monthly electricity consumption prediction can be improved 
by using hourly data besides monthly data [17]. Above all, to 
master the DPV installation information of all customers, the 
DPV features are extracted from the historical hourly data of 
few solar customers whose DPV installation information is 
known. Then according to the features, other customers 
whose DPV installation information is unknown are 
classified into two categories: solar customers and non-solar 
customers.  

As for solar customers, the DPV installation date can also 
be detected during detecting the DPV features. Besides, the 
online update of the solar customer database is targeted at 
non-solar customers. The diagram introducing a check for 
the new installation of DPV is shown in Fig.2. For non-solar 
customers, the monthly NEC is equal to the monthly AEC. 
Taking into account the prediction error, expect for the error 
value, validation used to determine whether a non-solar 
customer has become a solar customer has been added the 
shape of error by comparing random fluctuations in AEC 
with random fluctuations after the overlay of DPV 
generation.  

Step 2: Decoupling procedure. Before the installation of 
DPV, the hourly AEC and the hourly NEC are equal. Based 
on this, the AEC on the day of the predicted DPV installation 
date is subtracted from the NEC on that day to obtain the 
DPV generation for that day, which is used as an output to 
the model for DPV capacity prediction. The model is based 
on support vector regression (SVR) considering the 
advantages of SVR model in handling small sample data and 
excellent generalization. 

Step 3: Prediction procedure. The monthly AEC and 
DPV generation are predicted respectively, and their 
prediction results are added to get the monthly NEC 
prediction result. 

B. Feature Exaction and Classification 

Let T  denote time and consist of the hour
gH , month iM , 

and year
jY , namely { , , },g i jT H M Y t T= ∈ . Among them, g, 

i and j represent the number of hour H, month M and year Y 

respectively. Let tP  denote the electricity consumption of 

each customer whose DPV information is unknown and 

define { }, , ,, ,t Net t Load t DPV tP P P P= . Let 0

tP be the electricity 

consumption of each customer whose DPV information is 

known and define { }0 0 0 0

, , ,, ,t Net t Load t DPV tP P P P= . The 

relationship between AEC ,Load tP  and 0

,Load tP , NEC ,Net tP  and 

0

,Net tP , and DPV generation ,DPV tP  and 0

,DPV tP
 
are described 

as following: 

 , , ,Net t Load t DPV tP P P= −  (1) 

 0 0 0

, , ,Net t Load t DPV tP P P= −  (2) 

Combining the NEC data of solar customers in different 
locations and the historical weather data, the NEC curves 
before and after DPV installation are compared so as to 
extract the typical features. In light of the characteristics of 
DPV panel generation under different weather scenarios, the 
corresponding feature extraction period and key indicators 
are mentioned in [18]. Besides, the daily net electricity curve 
may look distinctly low during noon due to the peak in DPV 
generation. Since there is a significant turning from about 8 
o’clock to 11 o’clock, the magnitude of the slope and the 

speed of change during this period are expressed as 
indicators of the DPV installation and are calculated by the 
following formulas. The remaining unknown customers are 
divided into solar and non-solar customers according to the 
above indicators. 

 
, , , , , ,

,

g g i j g i jNet H M Y Net H M Y

cl g

g g g

P P
s

H H

+∆

+∆

−
=

−
 (3) 

2 1

2 1

, , , , , ,

, , , , 1 2, [ , ]
g i j g i j

g i j

Net H M Y Net H M Y

tp g Net H M Y

g g

P P
r P g g g

H H

−
= − ∈

−
 (4) 

 
, ,

,

cl g g cl g

s g

g g g

s s
r

H H

+∆

+∆

−
=

−
 (5) 

where ,cl gs  is the slope of the cut line at gH . ,tp gr  represents 

the degree of concavity during 
1gH  and 

2gH  . ,s gr  is the 

average rate of change of the slope during gH  and g gH +∆ . 

C. DPV Installation Update Check 

The hourly AEC prediction error can be used to check the 
non-solar customers whether installs the DPV newly or not. 
The hourly AEC data of non-solar customers are predicted 
per day based on an artificial neuron network [19] and the 
prediction errors per time are recorded. The non-solar 
customer whose hourly AEC prediction error is higher than 

the average of the former error avε is suspected of installing 

DPV newly and the formulas are as follows:  

 
1

1 m

av k

km
ε ε

=

=   (6) 

 
, , , , , ,

ˆ
g i j g i jLoad H M Y Load H M Y avy y ε− >  (7) 

where kε  is the error of the prediction of , , ,g i jLoad H M YP
 
and k  

is the time of the prediction. , , ,  ˆ
g i jLoad H M Yy is the real AEC 

of , , ,g i jLoad H M YP and , , ,  
g i jLoad H M Yy is the prediction result of 

AEC , , ,g i jLoad H M YP . 

Furthermore, to make sure that the sudden increase 
prediction error does not come from the prediction method 
itself, rather than from the installation of DPV by non-solar 
customers, validation has been added to compare random 
fluctuations in AEC with random fluctuations after the 
overlay of DPV generation. The stochastic fluctuations 

,Net fluctuationP  in the AEC series are obtained by removing the 

trend ,Net trendP  from the actual consumption series, as shown 

in following: 

 , , ,Net fluctuation Net t Net trendP P P= −  (8) 

The mathematical details of this calculation can be found 
in [20]. Comparing it with the NEC series fluctuation of solar 
customers whose DPV installation information is known on 
the same day, which is obtained by excluding the trend of 
AEC and the DPV generation from the NEC series. If both of 
these validations are met, this non-solar customer is 
converted to be a solar customer. 
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D. Net Electricity Consumption Decoupling 

The difference between AEC and NEC is DPV generation. 
Before installing DPV, the curves of hourly AEC and the 
hourly NEC are overlapped. According to the hourly AEC 
prediction of the day before the date of installation of DPV, 
the amount of DPV generation is obtained by using the 
hourly AEC on the day of installation of DPV minus the 
hourly AEC prediction results, as shown in the following 
formula: 

 
2 2

1

, , , , , , , ,

1
i j q i j q i j

k k

Load M Y Net H M Y DPV H M Y

q q k

P P y
= =

= +   (9) 

where 2k is the total number of the hours in DPV installation 

month iM  and 1k  is the number of the hours after installing 

DPV in month iM . 

The predicted DPV generation after decoupling is shown 
as: 

 , , , , , , , , ,q i j q i j q i jDPV H M Y Load H M Y Net H M Yy y P= −  (10) 

E. DPV Capacity Estimation 

Let x be the vector of the inputs of SVR, 

namely , ,wc te gx x x =  x . It includes weather conditions 

wcx (such as sunny, rainy, and cloudy), temperature tex , and 

DPV generation 
gx . Let y  denote the DPV capacity 

information of few solar customers whose DPV information 
is known. A small number of the known solar customer 
hourly data is set as the training set, and the rest of the solar 
customer hourly data is set as the test set. Targeted training 
samples are as follows: 

 
( ) ( ) ( ) ( ){ }1 1 2 2 3 3, , , , , , , ,n nD x y x y x y x y= L  (11) 

 
( ) T

i if x w x b= +   (12) 

where f(x) is a function expected to be obtained through 
learning, and w and b are the parameters to be determined. 

F. Monthly Net Electricity Consumption Prediction 

To make the output of the prediction model better 
follow the actual results, the seasonal trend is removed. 
Differential operations can smooth a class of non-smooth 
sequences (i.e., sequences with a trend). The essence of 
the differential operator is to extract determination 
information by self-regression: 

 1

0

(1 ) ( 1)
d

d d i i

t t d t

i

x B x C x −

=

∇ = − = −  (13)
 

where d is the differential order. B is the value of the 
Bayesian information criterion and C is the value of the 
Akaike information criterion. 

Then the monthly AEC and DPV generation are predicted 
separately based on auto-regressive integrated moving 
average (ARIMA) of order (p,d,q): 

 ( ) ( )
1 1

p q
d d

i t j t j

i j

X t X t i a aφ θ −

= =

∇ = ∇ − + −   (14) 

where 
d

∇ is the dth difference operator, ta  is white noise 

with variance 2

aσ , iφ
 
and

jθ
 
are model parameters [21]. The 

AEC and DPV generation obtained by NEC decomposition 
have seasonal cycle variations to different degrees. A 
differential operation with a step size of the cycle length for 
series with a fixed cycle can usually extract the cycle 
information better. The ARIMA model parameters p and q 
are determined by the trailing and truncated tails of the auto-
correlation and partial correlation coefficients respectively. 

G. Evaluation Criteria 

To quantify the accuracy of the DPV installation update 

check validations, the accuracy updatea  is calculated by 

following: 

 cor
update

tol

n
a

n
=  (15) 

where corn  is the correct identification number of non-solar 

customers converted to solar customers and toln  is the real 

number of all non-solar customers to be identified that are 
converted to solar customers. 

To quantify the accuracy of the proposed method, the 
error is evaluated using the mean absolute percentage error 
(MAPE) and root mean squared error (RMSE): 

 
1

1 t t

t

m
pre ac

t ac

y y
MAPE

m y=

−
= 

 

(16) 

 

2

1

1
t t

m

pre ac

t

RMSE y y
m =

= −
 

(17) 

where 
tprey is the predicted value of NEC and 

tacy  is the 

real value of NEC. m is the number of the sequence 
tprey  

and 
tacy . 

III. CASE STUDY 

A. Dataset and Parameter Settings 

The dataset used in our work is from an Australian grid 
named Ausgrid [22]. The framework proposed in this paper 
is for a real-life situation where DPV penetration is 
constantly changing. Based on a half-hourly dataset of 300 
known solar households for three years, including hourly 
DPV generation and hourly AEC, DPV installation dates and 
DPV generation have been randomly selected to be added to 
the non-solar customers' AEC series. Thus, DPV penetration 
is increasing by adding solar customers. Three scenarios 
have been set up as shown in Fig. 3. As the penetration of 
DPV changes, it is obvious that the difference between 
monthly NEC and actual monthly electricity consumption 
becomes larger. Scenario 1: three hundred customers without 
DPV for three years; Scenario 2: One hundred customers 
without DPV installation and two hundred solar customers, 
of which two hundred solar customers' DPV installation 
dates are randomly determined over a three-year period, 
reaching 27% penetration by the end of the third year; 
Scenario 3: three hundred solar customers by the end of the 
third year, reaching a penetration of 39%. The DPV 
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installation dates for three hundred solar customers have 
been randomly set over the three years. 

B. Results and Analysis 

Fig. 4 illustrates the comparison of the fluctuation of 
electricity consumption sequence before and after the 
installation of DPV by one customer. Although the AEC 
curve and the NEC curve are very similar due to the small 
output of DPV, the characteristics of the AEC series are 
found to be changed during the noon hour after the 
installation of DPV by observing the fluctuation of the two 
curves. As seen in Fig. 5, adding the validation of random 
fluctuations in the electricity consumption series has a 
positive effect on improving the accuracy of DPV 
installation updates. This is because when the weather is bad 
or the DPV capacity is small, it is somewhat strained to 
determine whether to install DPV only by the average error 
of AEC prediction. 

 

Fig. 3.  Three scenarios of DPV penetration setting 

 

Fig. 4. Comparison of the fluctuation of electricity consumption sequence 
before and after the installation of DPV by one customer 

 

Fig. 5. Comparison of the accuracy of the DPV installation update check 
with and without fluctuation validation in scenario 2 and scenario 3 

 

Fig. 6. Monthly NEC prediction results under scenario 3 

 

Fig. 7. Monthly AEC prediction results under scenario 3 

 

Fig. 8. Monthly DPV generation prediction results under scenario 3 

The monthly prediction results of NEC, AEC and DPV 
generation based on the method proposed in this paper under 
scenario 3 are respectively shown in Fig. 6, Fig. 7 and Fig. 8. 
Although the proposed method works well in summer, 
performs poorly in winter due to strong volatility. Above all, 
the performance evaluation of proposed method and direct 
NEC prediction based on ARIMA under different scenarios 
is shown in table 1. When in the absence of DPV 
installations, the direct forecasting method is slightly better 
than the method proposed in this paper, because the 
cumulative error of decomposition and reorganization is 
larger in this case. However, when the simulated scenario is 
that the DPV penetration rate changes over time, the method 
proposed in this paper has the advantage of detecting the 
installation of DPV and updating the database of solar 
customers, making the monthly NEC prediction by the 
decomposition better than the direct prediction. This 
advantage becomes obvious as the DPV penetration 
increases. 
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TABLE I.  PERFORMANCE EVALUATION OF THE PROPOSED METHOD 

AND ARIMA UNDER DIFFERENT DPV PENETRATION 

Scenario Method MAPE RAME(kW) 

1 
Proposed 
Method 

0.1174 14372.59 

ARIMA 0.0983 14461.18 

2 
Proposed 
Method 

0.0927 11892.62 

ARIMA 0.1094 13574.31 

3 
Proposed 
Method 

0.0825 10876.52 

ARIMA 0.1126 13892.45 

IV. CONCLUSION 

The monthly electrical energy sequence is nonlinear and 
complicated. In this paper, to decouple DPV generation from 
the NEC, a classification method combining monthly and 
fine-grained data is proposed, which is both efficient and 
accurate. Then the SVR model is used to estimate the DPV 
panel parameters of solar customers. Next combined with 
different weather patterns and data updates, DPV generation 
is predicted for customers who install DPV. In view of the 
continuous updating of the DPV database, the process of 
change in DPV penetration is simulated in this paper, making 
the prediction of DPV generation more realistic. The 
validation that the fluctuations of monthly AEC series are 
injected new characteristics of DPV generation is used to 
determine the former non-solar customers have installed 
DPV, which ensures that the newly installed DPV generation 
is subtracted. The proposed monthly NEC prediction model 
taking into account DPV installation information update 
outperforms the direct model based on ARIMA under high 
DPV penetration. 

Further research could focus on improving the 
performance in winter and extending this work to probability 
prediction based on weather data that are available in real 
time. Furthermore, retailers will face more challenges in 
predicting the NEC with the development of advanced 
metering infrastructure and the popularization of various 
distributed renewable energy sources [23]. 
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