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Abstract—Demand response (DR) is an important 

technique to explore the demand-side flexibility. The wide 

deployment of smart meters makes it possible to quantify 

the baseline load. As an intermediate agent, demand 

response aggregator needs to obtain the aggregated 

baseline load (ABL) for the DR event. Previous studies 

about the household level estimation focus on the 

estimation method. However, for ABL estimation, 

customer division is an important issue. A major limitation 

is the mismatch between the objectives of segmentation and 

estimation. Therefore, this paper proposes a new 

closed-loop method for estimating the ABL, which utilizes 

the contextual bandit with policy gradient to link the 

segmentation with the estimation. As such, the ABL 

estimation accuracy can guide the segmentation to divide 

the customers. The segmentation and estimation optimize 

collaboratively to improve the ABL estimation accuracy. 

An ensemble method for combining network’s weights 

during the training process is proposed. Moreover, a pre- 

and post-event adjustment method is developed to further 

improve the estimation accuracy. Comprehensive 

comparisons demonstrate the proposed method can achieve 

the best estimation performance with regard to the MAPE 

and RMSE. It improves the estimation accuracy by 7% in 

terms of MAPE, and 11% in terms of RMSE.  

 

 
Index Terms—Aggregated baseline load; Contextual bandit; 

Demand response; Adjustment method; Ensemble method 

I. INTRODUCTION 

Demand response (DR) aims to modify the consumption 
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pattern by a price signal or financial incentives. It can not only 

alleviate the utilities’ pressure for reinforcing infrastructure to 

meet the demand increase, but also enable customers to pay 

lower bills [1]. In general, the residential sector has promising 

DR potential. However, it is difficult for a single customer to 

participate in the DR program by itself. Firstly, due to small 

scale, a single customer has little competitiveness in the retail 

market. Secondly, utilities have difficulty in managing such a 

large amount of DR participants directly [2]. Acting as an 

intermediate agent between the system and customers, the 

demand response aggregator (DRA) can help solve these 

problems. When supply-demand balancing or constraint 

management are needed, a DR program may be activated and 

the system operator may ask the DRA to respond to the price 

signal [3] or incentives [4]. How to quantitatively obtain the 

DRA’s response capacity, referred to the overall response of 

the DRA towards the price or incentive in the DR event, is a 

significant task. To meet this end, the baseline load estimation 

is needed [5], such that the DR capacity can be obtained by the 

difference between the actual load consumption and the 

estimated baseline load. Due to the difficulty of accurate 

estimation, [6] expressed concerns about the DR program based 

on the baseline load. If the price responsiveness cannot be 

accurately estimated, the system operator’s benefit may be 

jeopardized or DRA’s motivation to participate in the DR 

program may be weakened. Hence, the study of accurate 

baseline load estimation at the DRA level is of great 

importance.   

A lot of research has been conducted for the baseline load 

estimation in recent years. The methods for the baseline load 

estimation can be classified into four categories, i.e., similar 

day-based [7], control group-based [8], exponential moving 

average [9], and regression-based methods [10-12]. The similar 

day-based method uses the average of historical non-event days’ 

loads for estimation. HighXofY, MidXofY and LowXofY are 

three typical similar day-based methods [7]. The control 

group-based method utilizes the synchronous load of 

non-participating customers who have similar consumption 

patterns with the target DR participating customer. In [8], 

k-means clustering was used to explore similarity between 

customers. And the inner-class-average based on it was proved 

to be stable and could consistently produce good results. The 

exponential moving average-based method is a linear model, 
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and is adopted by ISO New England (ISO-NE). The 

regression-based method aims to fit a model to represent the 

relationship between input features and baseline load [10]-[12]. 

Ref. [10] used artificial neural network for baseline load 

estimation and proved its superiority to the linear regression 

model-based estimation method. Utilizing the temperature data 

two hours before the DR event, [11] constructed a support 

vector regression (SVR) model for office building’s baseline 

load estimation. The SVR model was proved to be accurate and 

stable. Using a quantile regression forests model, [12] utilized 

the historical data, weather information, and synchronous 

measurement from control group as input features, and the CBL 

estimations in quantile form were obtained. Moreover, to 

further improve the performance, the adjustment methods were 

reported in [9, 13]. Weather adjustment and morning 

adjustment are two kinds of widely used methods, which aim to 

handle the variations in weather or usage pattern, respectively. 

The aforementioned studies [7]-[13] are about the customer 

baseline load (CBL) estimation, which is the estimation at the 

household level.  

To estimate the response capacity of DRA, the aggregated 

baseline load (ABL) estimation is needed, which calculates the 

load consumption of the aggregator if the DR event doesn’t 

happen.  It is important for power system applications such as 

flexibility modelling and tariff design [14]. For the aggregated 

flexibility modelling, the ABL can be used to specify the limits 

of the flexibility, which is the minimal or maximal flexibility 

levels of the aggregator. For tariff design, [14] leveraged the 

ABL as state information for deep reinforcement learning. 

Then, the imposed tariff on DRA is designed based on the given 

state.  

To model the response behavior of smart households, [15] 

used the home energy management system to perform optimal 

scheduling, and the aggregated DR capacity was obtained. 

However, [15] obtained the DR capacity by the analytical 

optimization model. Since the analytical optimization model 

may involve simplification, data driven solutions to estimate 

the ABL are needed. For data driven methods, it is true that the 

load at the household level has larger variability and volatility 

than the aggregated load, and the methods for CBL estimation 

can be applied to the ABL estimation. However, different from 

the CBL estimation, apart from the estimation method, the ABL 

estimation highly relies on the segmentation of customers. 

Specifically, for ABL estimation, there are three typical ways 

of customer division. In the first category, each customer forms 

a cluster individually, and then the sum of CBL estimations 

forms the result of ABL estimation. In the second category, all 

customers form one big cluster. ABL is obtained by applying 

estimation method on the aggregated load. In the third category, 

customers are first divided into several groups. Then, ABL is 

obtained by aggregating the “middle-level” estimations 

produced by the clusters. The first two categories can be 

regarded as the special cases of the third category, and usually 

have worse performance. So, how to properly divide customers 

to form groups is an important issue facing ABL estimation, 

which makes it distinct from the CBL estimation. Ref. [16] 

proposed a Gaussian Mixture Model (GMM)-based method for 

ABL estimation. The customers were grouped into several 

clusters by GMM, and SVR was leveraged to estimate the ABL. 

The advantage of the model was demonstrated by comparing it 

with spectral clustering-based ABL estimation. Ref. [17] 

proposed a clustering-based aggregated forecasting method and 

showed that the number of clusters and the size of customer 

base affect the forecast accuracy. To further improve the 

performance of the ABL estimation, ensemble method is a 

promising approach. Ensemble estimation combines the results 

of different methods to take advantage of the strength of them 

and is expected to produce better results than a single method 

[18]-[19]. Ref. [18] utilized the homogeneous ensemble 

method and fine-grained sub-profiles to further improve the 

aggregated load forecasting accuracy. By varying the number 

of clusters for hierarchical clustering, clustering-based 

forecasting was implemented for each dataset division. And the 

problem for combing the deterministic forecast results was 

formulated as a linear programming (LP) problem which 

minimized the mean absolute percent error (MAPE). 

However, the discussed clustering-based approach [16]-[17] 

and the clustering-based homogeneous ensemble method [18] 

treat the clustering and estimation as two separate procedures, 

which results in the mismatch of the objectives between these 

two parts. Therefore, the existing method leaves the following 

problem unsolved: the customer segmentation algorithm 

groups the customers by the criterion of minimizing the 

consumption patterns’ dissimilarity rather than improving the 

estimation accuracy. Hence, how to link the estimation with the 

customer segmentation and construct the feedback remains an 

interesting question.  

Among various clustering algorithms, adaptive clustering 

uses the external feedback to improve the clustering quality. 

During the iteration process, using the clustering performance 

as feedback, [20] proposed to select a weight-changing action 

to adaptively revise the distance function. The new distance 

function was applied for the clustering in the next iteration. 

Similarly, [21] leveraged the idea of adaptive clustering and 

proposed a distributed clustering algorithm. The number of 

clusters was determined adaptively during the learning process. 

The main purpose of adaptive clustering is to improve the 

clustering performance, such that customers with the similar 

consumption patterns are grouped into the same cluster. In 

contrast, for ABL estimation, the aim of the clustering is to 

group customers appropriately to improve the estimation 

accuracy. Also, the adaptive clustering relies heavily on the 

distance measurement. Different distance measurement can 

lead to the different results and how to choose proper distance 

measurement itself is a complex issue.  

The bandit problem and reinforcement learning (RL) method 

are also famous for their applicability in solving problems in a 

closed-loop. And with the recent development of deep neural 

network (DNN), deep RL (DRL) is gaining emphasis. The 

bandit problem determines the actions without using any 

information about the state of the environment [22]. Ref. [23] 

proposed a risk-averse multi-armed bandit learning approach to 

provide the reliable secondary frequency regulation, such that 

customers with high estimated participation probability were 
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chosen to participate in the regulation. In contrast, the DRL 

algorithm leverages the state of the environment to choose the 

action. It involves an agent acting based on the current state 

observation, and the DRL algorithm learns the optimal control 

policy that maximizes expected cumulative reward [24]-[25]. 

Ref. [26] proposed on-line optimization of schedules for 

building energy management systems by using deep policy 

gradient (DPG) algorithm and demonstrated its superiority. 

Contextual bandit is an interpolation between DRL and bandit 

algorithms. Without the evolutional state, contextual bandit can 

be regarded as one-step RL, and the input features 

(context/state) of contextual bandit only affects the reward 

without affecting the next state [27]-[28], such that it can be 

regarded as a special case of RL. Therefore, the methods in RL 

area can also be applied to solve the contextual bandit problem.  

Leveraging contextual bandit method, this work proposes a 

new ABL estimation method, which integrates the customer 

segmentation and estimation together. In this paper, the 

contextual bandit method with policy gradient is used. The 

customer segmentation problem is modelled by the agent which 

learns the stochastic policy by DNN that maps the state to a 

distribution of actions. The estimation problem (a supervised 

learning problem) is the environment. Specifically, the agent 

outputs the action which determines the clusters that customers 

are assigned in. And such action can affect the environment 

which makes the ABL estimation. The ABL estimation 

performance is then used as the reward to guide the 

decision-making process of the agent. As such, a closed loop is 

formed. Since the representative consumption patterns of 

customers are used as the state which has no revolution and 

isn’t affected by the action, our model is a contextual bandit 

problem. Also, compared with the adaptive clustering method, 

the customer segmentation is fulfilled by the forward 

propagation of DNN, which is more similar to the forward 

propagation of a multi-classification task. There are two main 

advantages: First, since the customers are not grouped 

according to the distance measurement, the problem of 

selecting a particular distance metric is avoided. Second, the 

process only involves the matrix operations, which is more 

computational efficient than the iterative process that most 

clustering algorithm involves.  

To summarize, the contributions of this paper are as follows: 

1) Propose a new closed-loop contextual bandit-based 

method for the ABL estimation. Under this framework, the 

feedback mechanism is constructed by the reward and action. 

Therefore, the agent is able to gain the knowledge of the 

environment and properly divides customers to improve the 

ABL estimation accuracy. And the segmentation and 

estimation are consistently optimized toward the common goal.  

2) Propose a weight selection method for the DNN of 

contextual bandit’s agent. Recent practice of determining 

DNN’s weight is choosing the one that has the best 

performance on the validation set. However, due to the 

mismatch of data structure on the validation and test sets, the 

DNN’s weight performing well on the validation set doesn’t 

guarantee to have good estimation results on the test set. 

Therefore, instead of relying on a particular DNN’s weight, 

during the training process, multiple DNN’s weights which 

have good estimation performance on the validation set are 

saved. Then, an ensemble method is applied to find an optimal 

combination way for those DNNs with different weights. As 

such, the estimation results are the weighted sum of estimations 

produced by multiple models, which is more robust to the 

unseen data than simply relying on one model.  

3) Propose a pre- and post-event adjustment method for the 

ABL estimation. Since the estimation error is caused by the 

uncertainty part of loads, through the adjustment, the error 

caused by the similar load variation can be ameliorated. 

Therefore, with the pre- and post-event adjustment method, the 

accuracy of the ABL estimation can be further improved.   

The remainder of this paper is organized as follows. Section 

II introduces the ABL estimation problem and illustrates the 

feature selection process. Section Ⅲ proposes the integrated 

segmentation and estimation framework. Details of comparison 

methods are in Section Ⅳ. Results are discussed and evaluated 

in Section Ⅴ, followed by the conclusions.   

II. PROBLEM STATEMENT AND FEATURE SELECTION 

This work is focused on estimating the ABL. It refers to 

aggregated electricity that is consumed by a group of ToU 

consumers (customers who participate in the DR event) if there 

is no DR event. Fig. 1 illustrates the idea of the ABL. In either 

high-price (blue area) or low-price (pink area) occasions, the 

red curve and blue curve represent the ABL and actual 

consumption, respectively. Note that the ABL estimation is a 

posterior event estimation approach [12, 29]. Therefore, unlike 

the load forecasting, the load measurement throughout the day 

can be obtained.  

...

 
Fig. 1.  Illustration of ABL and actual load.  

For the feature selection procedure, two kinds of day types 

are defined. Let E  and B  denote the sets of DR days and 

non-DR days, respectively. DR days refer to the days when an 

DR event happens, and others are non-DR days. Also, let 
eW ek  denote the set of weekdays (Monday to Friday), and 
eW ekend  denote the set of weekends (Saturday and Sunday). In 

this paper, 
e e 365E B W ek W ekend +  =  +  = , where  is 

the cardinality of the set. 

For a given ToU customer i , if a day 
eE W ekh  , the 

daily load data ,i hd  can be divided into non-event data 
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1

, R
b
hcbase

i h


d  and event data 

1

, R
e
hcevent

i h


d , where ,b e

h hc c  

denote the sets of non-event and event time slots of day h , 

respectively. And 
b e
h hc c T+ =  where T  is the total number 

of time slots in a day. Let ( ) eB W ek
i h

D Y     be a set of Y  

most recent non-DR days prior to the day h  and they are also 

weekdays. In this paper, Y  is set as 7 [7]. Similarly, customer 

i 's Y  load profiles can also be partitioned into event and 

non-event parts: , ,R , R
e b
h hY c Y cevent base

i h i h

 
 D D . 

  e, , . ,
;

,
E W ek b

h

base base
i h t i h t

h t c
d

  
D  and   e, , . ,

;
,

E W ek e
h

event event
i h t i h t

h t c
d

  
D  

are feature and label pairs.  

Likewise, for day 
eE W ekendh  , through a similar way 

as described above, the feature and label pairs can be obtained: 

   e e, , , , , , , ,
; ;

, , ,
E W ekend b E W ekend e

h h

base base event event
i h t i h t i h t i h t

h t c h t c
d d

     
D D

 To sum up, the training feature 
Train
iX  used to fit the 

estimation model can be expressed as, 

    e e, , , ,
; ;

;
E W ek b E W ekend b

h h

Train base base
i i h t i h t

h t c h t c     

 
=

  
X D D (1) 

The response variable of the training feature 
Train
iX  is the 

stack of target baseline load during the non-event hours:    

   e e, , , ,
; ;

;
E W ek b E W ekend b

h h

Train base base
i i h t i h t

h t c h t c
d d

     

 
=

  
Y  (2) 

At the test stage, the input test feature 
Test
iX  is: 

   e e, , , ,
; ;

;
E W ek e E W ekend e

h h

Test event event
i i h t i h t

h t c h t c     

 
=

  
X D D  (3) 

And the response variable of 
Test
iX  is: 

   e e, , , ,
; ;

;
E W ek e E W ekend e

h h

Test event event
i i h t i h t

h t c h t c
d d

     

 
=

  
Y  (4) 

It is the target baseline load of the ToU customer i .  

III. INTEGRATED SEGMENTATION AND ESTIMATION METHOD 

Instead of treating customer segmentation and estimation as 

two separate procedures, in this section, a contextual 

bandit-based method is proposed to integrate those two parts. 

As such, a closed-loop is formed, and the customer 

segmentation and estimation problems are optimized toward a 

common goal. The proposed procedure can be divided into the 

training, ensemble, and test stages, which is summarized in 

Algorithm 1. The corresponding flow chart is in Fig. 2.  

A. Data Splitting 

The estimation part is implemented based on the obtained 

feature and label pairs from Section Ⅱ, where 

,1 ,=[ ;...; ] R tr

tr

N YTrain T T
i i i N


X x x , ,1 ,=[ ;...; ] R te

te

N YTest T T
i i i N


X x x . 

Here, ,tr teN N  are the number of samples in the training and 

test sets respectively. As shown in Fig. 3, the dataset consists of 

three parts, namely the sub-training, validation, and test sets. 

For each customer, the feature and label pairs of training set are 

further divided into a sub-training set 

 1
R , Rsub tr sub trN Y Nsub Tr sub Tr

i i
− − − − X Y  and a validation set 

 1
R , Rva vaN Y NVali Vali

i i
 

 X Y , where ,sub tr vaN N−  are the 

number of samples in the sub-training and validation sets 

respectively. 

 80% ,sub tr tr va tr sub trN N N N N− −  = −  (5) 

The sub-training set is used to train the estimation models. 

The validation set is used for guiding the agent and combing 

estimation results. The test set is used to test the effectiveness 

of the proposed method for the ABL estimation. Therefore, 

both the sub-training and validation sets are used in the training 

process, while the test set is not.   

Algorithm 1: Contextual bandit-based closed-loop ABL 

estimation method 
Initialize DNN with random weights   

Initialize the number of clusters K , the number of saved DNN’s weights N , 

the learning rate 1 3e = − , exploration rate 

max min decay1, 0.01, 0.995  = = = . 

## Training Stage 

for epoch = 1 to arbitrary number do 

  With probability   select random actions  
1

M
e
m

m
a

=
 

  Otherwise select ( ) 
1

arg max |
M

e e
m m m

m
a p a s

=
=  

  Execute  
1

M
e
m

m
a

=
 in the environment.  

  for 1:k K=  do 

Train estimation model ( )kf   based on the feature and label pair 

, ,,
k k

sub Tr sub Tr

i t i t

i C i C

y− −

 

  
 
  
 x .  

Estimate the 
thk  cluster’s baseline load for the validation set: 

,

, ,

k

Vali agg Vali

k t k i t

i C

y f


 
=   

 
 x . 

end 

Calculate the ABL on the validation set 
, ,

,

1

K
Vali agg Vali agg
t k t

k

y y

=

=  , and return 

the reward to the agent according to (8). 

Calculate ( ) ( ),L L   according to (9) and (11), and update the 

parameters of DNN: ( )L    +  . 

if min   

  ( ),e    

else 

  min   

  end 

end 

## Ensemble Stage 

According to (14), solve the optimization problem to determine the combining 
weights for ABL results produced by N  division ways.  

## Test stage 

,E e

hh t c   , make the adjustment for ,

, ,

Test agg

n k ty  according to (15) to obtain 

, ,

, ,

Test agg adj

n k ty . And then calculate the 
, ,Test agg adj

ty . MAPE and RMSE are used to 

evaluate its performance. 
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Start

   Input data and initialized parameters

Epoch = 1

Determine the agent s action with 

exploration and exploitation 

Segment customers into K clusters

   k = 1

Train the estimation model fk() for the 

kth cluster on the training set 

Estimate the baseline load for the kth 

cluster on the validation set 

Learned parameters of  the kth  

estimation model  fk()

k <= K ?

Epoch <= Epochend?

Calculate the ABL on validation set and 

corresponding reward (8) 

k=k+1

（1）
Training stage

Epoch = 

Epoch+1

The saved N individual models with 

particular DNN weights

Determine combing weights for N 

individual models

Calculate ABL on test set with 

adjustment method

Evaluate the performance

End

（2）
Ensemble stage

（3）
Test stage

Yes

Yes

No

No

 
Fig. 2.  Flowchart of proposed integrated segmentation and estimation 
framework. 

 

Sub-training set

Validation set

Test set

Training 

set

 
Fig. 3.  Illustration of dataset splitting. 

B. Training Stage 

The training stage is based on the sub-training and validation 

sets. Take the sub-training set for example, for any customer i  

whose input feature for the estimation at the time stamp t  is 

,
sub Tr
i t

−
x , the ABL can be described by, 

 

,
, ,

, ,
,

1

k

sub Tr agg sub Tr
k t k i t

i C

K
sub Tr agg sub Tr agg
t k t

k

y f

y y

− −



− −

=

 
 =
 
 

=





x

  (6) 

where K  is the given number of clusters. 
,

,
sub Tr agg
k ty −

 is the 

estimated load for the thk  cluster and the sum of 
,

,
sub Tr agg
k ty −

 is 

the ABL estimation ,sub Tr agg
ty −  at the time stamp t . ( )kf   is 

the regression function for the thk  cluster kC  which is the thk  

partition of M  customers and satisfies the following property: 

 
 1 1,2,...,

,

K
k k

i j

C M

C C i j

= =

 =   
  (7) 

The integrated model in the training stage consists of two 

dependent sub-problems, namely the estimation and customer 

partition. For the estimation problem, the goal is to find fitted 

regression functions ( ) 
1

K

k k
f

=
  with the objective of 

minimizing the difference between the estimation and true 

values. The aim of the partition is to find the optimal customer 

portfolio, i.e., the elements within the cluster, to help realize the 

accurate ABL estimation. To coordinate the two sub-problems, 

we propose a contextual bandit-based method and the 

illustration is shown in Fig. 4.  

ABL true 

value

Action

The 

assigned 

clusters

C1

C2

Ck

F1

F2

Fk

ABL 

Estimation

MAPE on 

validation set

Reward

Environment: 

the estimation problem 

Agent: 

the segmentation problem

SVR

...

...

The contextual bandit-

based method

...SVR

SVR
 

Fig. 4.  Overview of proposed contextual bandit-based framework. 

 

Generally, the contextual bandit problem has five 

fundamental elements: agent, environment, state S , action A , 

and reward R . In this paper, the fundamental elements are 

defined as follows: 

1) Agent: the customer segmentation problem. 

2) Environment: the estimation problem.  

3) State: Customer’s representative load pattern (RLP) is 

used as the state. Specifically, for a given ToU customer i , let 
365R T

i
X  be the load profiles in the whole year. The yearly 

average load 1Rmean T
i

x  is used as the RLP. 

4) Action: the assigned cluster of a customer is the agent’s 
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output action. 

5) Reward: To encourage the model to have good 

generalization ability, after fitting the regression models on the 

sub-training set, the negative value of MAPE on the validation 

set is used as the reward. In this way, the reward can guide the 

agent to reduce the MAPE on the unseen data instead of on the 

training data, and therefore the generalization ability is 

improved. The reward is expressed as, 

 

, ,

,
1

1 va
Vali agg Vali aggN
t t

Vali agg

v tta

y y
R

N y=

−
= −   (8) 

where 
, ,,Vali agg Vali agg

t ty y  are the estimation and true values on 

the validation set.  

As shown in Fig. 4, the agent learns a policy   by DNN to 

maximize the total expected reward: 

 ( ) ( )
1

1
max |

M
e e

m m

m

L R p a s
M


=

=   (9) 

where   represents the weights of the agent’s DNN. eR  is the 

gained reward at the the  epoch. ms  is the state of the thm  

customer and 
e
ma  is the the  epoch’s action which is a one-hot 

vector determining the cluster that the thm  customer is 

assigned in. The determined actions  
1

M
e
m

m
a

=
 are then passed to 

the environment and used as the basis for the determination of 

 
1

K

k k
C

=
. To balance the exploration and exploitation, the 

decaying greedy −  algorithm is used to determine the action. 

The exploration rate   decays exponentially from max  to a 

small constant value min , which is defined as ( ),e  : 

 ( ) ( )
1

decay max,
e

e   
−

=   (10) 

Using the decaying greedy −  algorithm, there is 1 −  

probability to choose actions ( ) 
1

arg max |
M

e e
m m m

m
a p a s

=
= , 

and there is   probability to choose random actions. Therefore, 

with the decaying exploration rate, the agent can explore more 

at the beginning and exploit more at the end. 

Based on the sub-training set, the estimated ABL is obtained 

according to (6). Then, the K  regression models are fitted and 

the parameters are learned. The estimated ABL 
,Vali agg

ty  on the 

validation set is obtained by the learned regression model, and 

the the  epoch’s reward 
eR  is calculated according to (8).  

At each epoch, after receiving the reward, the parameters of 

the agent’s DNN are updated by the stochastic gradient ascent 

with the gradient calculated by (11). 

 ( ) ( )
1

1
log |

M
e e

m m

m

L R p a s
M

 
=

 =   (11) 

Hence, when the training converges, the agent learns how to 

group the customers and the regression models learn how to 

make accurate ABL estimation.  

C. Ensemble Stage 

During the training process, N  DNN’s weights are saved 

which result in the first N  lowest MAPE scores on the 

validation set. Consequently, N  partition ways are obtained 

for the M  customers. Therefore, according to the estimation 

performance on the validation set, this stage aims to determine 

the combining weights of the estimation results obtained from 

those N  division fashions. And the final estimation result is 

the weighted sum of N  estimations: 

 
, ,

,

1

N
Vali agg Vali agg

t n n t

n

y y
=

=   (12) 

where 
,

,

Vali agg

n ty  is the ABL estimation of the thn  partition, and 

n  is the corresponding weight.  

The ensemble method proposed in [18] is used to determine 

the weights. For deterministic estimation, the optimization 

objective is minimizing the MAPE.  

 

, ,

,
1

, ,
,

1 1

1
arg min

. . 1, 0
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Vali agg Vali aggN
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=

= =

−
=

=  = 



 

ω
w

，

 (13) 

By introducing the auxiliary decision variables 

( ) ( ) , , , ,max ,Vali agg Vali agg Vali agg Vali agg

t t t t tu y y y y= − − , (13) is 

transformed into the following LP problem: 

 

,
1

, ,

,

1 1

, , , ,

1
arg min

. . 1, 0

,

vaN

t

Vali agg
tva t

N N
Vali agg Vali agg

t n n t n n

n n

Vali agg Vali agg Vali agg Vali agg
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u

N y

s t y y w w

u y y u y y



=

= =

=

=  = 

 −  −



 

ω
w

，  (14) 

D. Test Stage 

In the test stage, MAPE and root mean squared error (RMSE) 

are chosen as the evaluation metrics to assess the performance 

of ABL estimation. And pre- and post-event adjustment is 

proposed to further improve the accuracy. 

Pre- and post-event adjustment can handle the daily variation 

of the consumption pattern. It is based on the ratio of actual 

load to the estimated load values during pre- and post-event 

hours in an event day. Concretely, if day 
Eh   , 

e

ht c  , the 

adjustment is made according to the following equation: 

 

'

'

'

'

/ ,

, ,

, , ,

, , , , / ,

, ,

b
h

b
h

sub Tr Vali agg

n k t
t cTest agg adj Test agg

n k t n k t sub Tr Vali agg

n k t
t c

y

y y
y

−



−



= 




 (15) 

where ' '

/ , / ,

, , , ,
,sub Tr Vali agg sub Tr Vali agg

n k t n k t
y y− −

 denote the actual and 

estimated loads in non-event hours which are in either 

sub-training or validation sets. ,

, ,

Test agg

n k ty  is the estimated ABL of 

the thk  cluster by the thn  DNN on the test set. So, the estimated 

baseline load in the test set after adjustment can be expressed 

as: 
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, , ,

1

, , , ,

,

1

K
Test agg adj Test agg adj

n t n k t

k

N
Test agg adj Test agg adj

t n n t

n

y y

y y

=

=

=

= 




 (16) 

Here, n  is determined in the previous ensemble stage. 

IV. COMPETING METHODS 

The proposed method is compared with the similar day, 

exponential moving average, and other regression-based 

methods. The details of the comparison methods are as follows. 

A. Similar Day-based Method 

HighXofY, MidXofY, and LowXofY are the three 

well-established methods based on similar day. For example, 

HighXofY estimates the baseline load as the average load of X 

highest consumption days within Y non-DR days preceding the 

DR day. The Y non-DR days have the same day type as the 

target DR day. For day h , define the set satisfying the 

requirement as ( ),
h

High X Y . 
e

ht c  , the estimated ABL is: 

 
( ) ( )

,

, 1

1

,
h

M
i

t d t

d High X Y i
h

y y
High X Y  =

 
=   

 
   (17) 

where 
,

i

d ty  is the load of the thi  customer on the day 

( ),
h

d High X Y  at the time stamp t  

MidXofY and LowXofY are implemented in the similar way, 

except that the X middle and lowest consumption days are 

chosen. In this paper, High4of5, Mid4of5, and Low4of5 are 

used for comparison. 

B. Exponential Moving Average 

The exponential moving average is the weighted sum of the 

historical baseline load. Define  1,...,h kD d d=  as the set of 

all the same day type non-DR days preceding the target DR day 

h . 
e

ht c  , the initial average load for the first   days is, 

 
, ,

1

1
t j t

j

s y



 =

=   (18) 

where 
, ,

1

M
i

j t j t

i

y y
=

=  and 
,

i

j ty  is the load of the thi  customer on 

the day hj D  at the time stamp t .  

 The exponential moving average for j k    is, 

 ( ), 1, ,1j t j t j ts s y −=  + −   (19) 

where  0,1  , and the estimated ABL is: 

 ,t k ty s=  (20) 

 In this paper, 5 0.9 ，= =  are used [7].  

C. Regression-based Method  

Here, three kinds of regression-based methods are used for 

comparison, namely the fully aggregated estimation, 

clustering-based estimation, and clustering-based ensemble 

estimation methods. The input feature and the regression model 

of comparison candidates are the same as that of the proposed 

method. The only difference is that the proposed method treats 

the clustering and estimation as an integrated model, while 

those candidates treat two processes as separate parts. For 

clustering-based estimation, the customers are grouped into 2-7 

clusters by three methods, namely k-means (K), hierarchical 

clustering (H), and GMM (G). The detailed procedure of the 

clustering-based estimation can be found in [16]. The 

clustering-based ensemble method is on the basis of the 

clustering-based method. Then it combines the multiple ABL 

estimations produced by a specific clustering algorithm with 

the varying cluster numbers. The combining procedure 

proposed in [18] is used.  

In this paper, the comparison methods are summarized in 

Table Ⅰ. For simplicity, the capital letter “X” (X = K/H/G) is 

used to denote the three clustering methods in the table. For 

example, 3-K denotes the k-means algorithm with 3 clusters. 

K-E is the k-means based ensemble estimation on the basis of 

F-A, 2-K, 3-K, 4-K, 5-K, 6-K, and 7-K.  

TABLE Ⅰ THE SUMMARY OF THE REGRESSION-BASED COMPARISON 

CANDIDATES (X = K/H/G) 

Fully 

aggregated 
 Clustering-based estimation  Ensemble 

F-A  2-X 3-X 4-X 5-X 6-X 7-X  X-E 

V. CASE STUDIES 

A. Implementation Details 

The smart meter data with 30 minutes resolution from the 

Low Carbon London trail is used [30]. The customers 

participating in the trail can be divided into two groups, namely 

the customers who receive flat tariff (non-ToU group), and the 

customers who receive ToU tariff (ToU group). The non-ToU 

user receives a flat price, while the ToU user receives a ToU 

tariff (a high price of 67.2 pence/kWh, a default price of 11.76 

pence/kWh, and a low price of 3.99 pence/kWh). The dataset 

provides the record of the time of DR events. To quantitatively 

evaluate the performance of the ABL estimation, 441 

customers from non-ToU group in the year 2013 are used to 

evaluate the algorithm. In this way, the actual demand during 

the event periods can be regarded as the benchmark baseline, 

and the evaluation metrics can be calculated. Please note that 

although the price-based DR is studied here, the method is not 

restricted to it. Since the historical baseline load at the same 

hour of the day is used as a feature vector for estimation, for the 

other DR programs such as incentive-based DR, the feature is 

also available. Therefore, the proposed method can also be 

applied to other DR programs. 

Since the specific estimation model is not the main concern 

of this work and many advanced regression models, such as 

deep learning methods, can be used here as the estimation 

approach in the proposed algorithm, in the case study, we apply 

the classic SVR model from Python package “scikit-learn” as 

the estimation model. Also, to make fair comparison, the 

estimation model for the regression-based candidates listed in 

Table Ⅰ is also the SVR model. Therefore, the performance of 

ABL estimation is not determined by the usage of a particular 

regression model.  
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Fig. 5.  Comparison of moving average rewards during the training process 
with different cluster numbers. 

 

To demonstrate the advantage of the proposed method, its 

dynamic learning process is compared with another five 

contextual bandit-based ABL estimation methods. The 

implementation procedure is similar to the proposed method 

discussed above.  

M1) PG+ RLP: The proposed method. 

M2) A2C+RLP: Same as the proposed method, RLPs of 

customers are used as the input state for the DNN. However, 

instead of using the policy gradient, the advantage actor-critic 

(A2C) algorithm [31], which is another kind of policy-based 

method, is adopted for training the agent. 

M3) PG+RLP+PCA: the policy gradient is used. The 

principal component analysis (PCA) is applied to extract 

features from customers’ RLPs. And the extracted features are 

used as the input state. 

M4) A2C+RLP+PCA: M4 is similar to M3 except that A2C 

is used for contextual bandit. 

M5) PG+PCA: Instead of using RLP, the PCA is utilized to 

extract features directly from the yearly load profile of 

customer which has 17520 time slots. The extracted features 

are then used as the state of contextual bandit with policy 

gradient. 

M6) A2C+PCA: M6 is similar to M5 except that A2C is used 

for contextual bandit. 

To make fair comparison and select the proper number of 

clusters, we experiment with various cluster numbers from 2 to 

7, and the moving average rewards of the six methods during 

the training process are compared. The results are shown in Fig. 

5. The larger the average rewards, the better the performance. It 

can be seen that the proposed method has relatively stable and 

good performance under experiments with various cluster 

numbers. And in all experiments, at the end of the training, it 

achieves the highest average rewards when the number of 

clusters equals three. Also, its obtained average rewards 

increase during the training process, which indicates that the 

agent gradually learns the reasonable customer partition way to 

improve the ABL estimation accuracy. Therefore, the results 

prove the superiority of the proposed method. Also, as [32] 

suggested, the determination of cluster numbers should fit the 

practical purposes. Since the aim of the clustering is to improve 

the estimation accuracy, the number of clusters is determined 

according to the estimation performance. So, the number of 

clusters and output neurons are chosen as three.  

 

TABLE Ⅱ MAPE AND RMSE ON THE VALIDATION SET UNDER DIFFERENT 

VALUES OF N  

 10N =  20N =  30N =  40N =  50N =  

MAPE 4.91 4.92 4.9 4.87 4.94 

RMSE 7.76 7.78 7.66 7.62 7.68 

 

For the number of saved DNN’s weights during the training 

process, we experiment with several values of it. The MAPE 

and RMSE scores calculated by the weighted sum of ABL on 

the validation set under different values of N  are shown in 

Table Ⅱ. When the value of N  equals 40, there are the lowest 

MAPE and RMSE scores on the validation set. Therefore, we 

choose N  equaling 40 in the following analysis.    

Moreover, to demonstrate the superiority of the feature 

selection method described in Section Ⅱ, it is compared with 

the control group-based feature selection procedure. The 

control group is formed by the other 440 non-ToU customers. 

The Y  non-ToU customers in the control group are selected, 

whose load patterns in non-event hours are the most similar 

with that of the target ToU customers. And their synchronized 

loads are used as the features. The detailed feature selection 

procedure is described in Appendix A. The results on the 

validation and test sets are shown in Table Ⅲ. The second and 

third columns are the results of the proposed method, while the 

last two columns are that of the comparison method. The only 

difference between the two methods is the feature selection 

procedure. It is observed that the comparison candidate has 

larger MAPE and RMSE values on the validation set. Moreover, 

its performance on the test set is much worse than the proposed 

method. This can be because there is smaller correlation 

between the input features and the target estimation variable on 

test set for the comparison method. Also, the distributions of 

the training and test set features are less similar. So the method 

has worse performance on the test set. The results prove the 
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superiority of the feature selection method using the historical 

baseline load. 

 

TABLE Ⅲ MAPE AND RMSE OF TWO FEATURE SELECTION METHODS ON 

VALIDATION AND TEST SETS 

 
Validation 

set (P) 
Test set (P) 

Validation 

set (C) Test set (C) 

MAPE/% 4.87 4.59 6.01 17.54 

RMSE/kW 7.62 5.99 7.93 19.59 

 

 
Fig. 6.  MAPE and RMSE comparisons of different methods. 

 

Also, for the proposed method, the whole process takes 

16min and 18s on the laptop with Intel®CoreTM i5-10210U 

1.6 GHz CPU, and 8.00 GM RAM, which demonstrates the 

computational efficiency of it. The DNN’s parameters of the 

proposed method are summarized in Table Ⅳ.   

TABLE Ⅳ SUMMARY OF THE DNN’S PARAMETERS 

Item Value 

Iteration epochs 

No. of neurons in each layer 

No. of hidden layers 

400 

64 

2 

No. of neurons in input layer 48 

No. of neurons in output layer 3 

Optimizer Adam 

B. Estimation Results 

Fig. 6 shows the MAPE and RMSE of different methods on 

the test set, where different color is used to indicate the methods 

belonging to different groups. The labels on y-axis are the 

acronyms of methods which are listed in Table I. For the 

regression-based methods, the capital A is at the suffix, which 

indicates that they are all processed by the proposed pre- and 

post-event adjustment.  

The exponential moving average method has the worst 

performance. Even less sophisticated, similar day-based 

methods display better estimation accuracy than it. And 

Low4of5 has the best accuracy among them. Low4of5 can 

exclude the unusually high consumption day from the baseline 

computation, while Mid4of5, High4of5, and exponential 

moving average methods take this day into account.  

The regression-based methods perform better than the other 

two kinds of methods. Although they also consider the 

unusually high consumption day, the fitting models can learn 

this exception by assigning less weight on it. Among them, all 

clustering-based methods have better performance than the 

fully aggregated method. So, by utilizing sub-profiles provided 

by smart meters, the similarity of consumption patterns among 

customers can be understood. Therefore, customers are 

aggregated in a more reasonable way. And better estimation 

performance is achieved.  

Usually, clustering-based ensemble method produces better 

result than an individual model. The G-EA and H-EA achieve 

lower MAPE than corresponding clustering-based estimations. 

Among all the candidates, the proposed method obtains the 

lowest MAPE and RMSE scores. Compared with the best 

performance comparison candidate, the proposed method has 

an improvement of 7% in terms of the MAPE, and 11% in 

terms of the RMSE. Also, even without the weight selection, 

for the 40 individual contextual bandit-based models with a 

particular DNN’s weight, the largest values of MAPE and 

RMSE on the test set are 4.83 and 6.35, respectively. They are 

smaller than that of the comparison candidates as shown in Fig. 

6. This is because either the ensemble or the clustering-based 

methods treat customer segmentation and estimation as two 

separate problems with different goals. The customer 

segmentation aims to minimize the dissimilarity among 

customers, while the estimation aims to improve the estimation 

accuracy. Without the closed-loop feedback, the clustering 

cannot learn the best way to divide customers for improving the 

estimation performance. In the proposed closed-loop method, 

the two sub-problems are optimized toward a common goal, 

and the exploration and exploitation mechanism of the 

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on September 15,2021 at 10:48:52 UTC from IEEE Xplore.  Restrictions apply. 



1949-3053 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2021.3112611, IEEE
Transactions on Smart Grid

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

10 

proposed method enables the agent to find the optimal way to 

divide customers for improving ABL estimation accuracy. 

Apart from the evaluation metrics reflecting accuracy (MAPE 

and RMSE), the bias [13] of the proposed method is calculated. 

Bias is defined as the mean error between the estimated loads 

and true loads [13]. For the proposed method, the bias in the 

low-price event is 0.58, while the bias in the high-price event is 

-0.26. Therefore, in the low-price event, the estimated ABL is 

higher than the actual one overall. Since the DR capacity in the 

low-price event is calculated by the reduction between the 

actual response load and the estimated ABL. Therefore, the 

estimated DR capacity of DRA is lower than the actual one. 

Likewise, in the high-price event, the DR capacity is calculated 

by the reduction between the estimated ABL and the actual 

response load. Since the ABL is estimated lower than the real 

one overall, the estimated DR capacity of DRA is lower than 

the real one. So, the system operator gives lower incentive to 

the DRA, which is beneficial to the system operator.  

Moreover, we compare the computation time of the 

comparison candidates in Fig. 7. It is observed that the 

exponential moving average and similar day-based methods 

take the smallest computation time. The computation time of 

the k-means, hierarchical clustering, and GMM-based 

estimations are similar. With the increase of the cluster 

numbers, the number of regression models increases. Therefore, 

the computation time increases correspondingly. Also, since 

the clustering-based ensemble method combines the results of 

individual models, it is obvious that it takes the largest time 

among the comparison candidates. 

 

 
Fig. 7.  Computation time comparisons of different methods. 

C. The Effect of DNN’s Weight Selection and Pre- and 

post-event Adjustment  

To demonstrate the effectiveness of the proposed method, 

following the “principles of controlling variables”, the effect of 

the weight selection method and pre- and post- event 

adjustment method is demonstrated separately. Firstly, to prove 

the effect of the DNN’s weight selection method, we compare 

the MAPE on validation and test sets of the proposed method 

with that of individual contextual bandit-based method with a 

particular DNN’s weight. Here, the individual methods are the 

selected N  methods which have the first N  lowest MAPE 

scores on the validation set. Note that, in this case, whether 

using the ensemble technique is the controlling variable.  

The histograms in Fig. 8 shows the distributions of MAPE 

scores on validation and test sets, and the vertical red lines 

show the MAPE scores of the proposed method on those two 

sets. The proposed method has the lowest MAPE score on the 

validation set. Due to the generalization error, the proposed 

method does not have the best performance on the test set. 

However, it is still better than 90% individual methods in terms 

of the MAPE score. Moreover, for the individual model 

producing the lowest MAPE score (4.88) on the validation set, 

the MAPE score of it on the test set is 4.68, which is worse than 

50% individual methods. So, relying on a single model with a 

particular weight cannot ensure the best performance on the 

unseen data. Due to the generalization error, the ensemble 

method may not produce the best result on the unseen test set 

data. However, since the ensemble method takes the advantage 

of all individual methods, it is more robust and reliable than the 

best performance model on the validation set.  

 
Fig. 8.  Histograms of MAPE scores of individual methods on validation and 
test sets. 

Moreover, to prove the effectiveness of the proposed pre- 

and post-event adjustment, the proposed method is compared 

with its counterparts without the pre- and post-event adjustment. 
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For the proposed method, the pre- and post-event adjustment 

can reduce the MAPE by 10% (5.06 vs. 4.59). It demonstrates 

that the proposed adjustment method can cope with the daily 

variation of load profile. The method utilizes the ratio of true 

load to the estimated load during non-event hours in the DR day, 

and therefore, the estimation error due to the model is 

eliminated to some extents.   

Fig. 9 shows the actual ABL and estimated ABL obtained by 

the proposed method with and without pre- and post-event 

adjustment. It shows different price events, event durations, and 

start time. For the event happening in the early morning when 

the load pattern is less variable (Fig. 9 (b)), the two methods can 

well capture the trend. However, the proposed method with pre- 

and post-event adjustment shows better performance and it 

almost overlaps with the true load. During day time and 

evening (Fig. 9 (c), Fig. 9 (d)), the load is more variable and 

sudden change can be observed, which increases the difficulty 

for accurate estimation. It shows that the proposed method with 

pre- and post-event adjustment can learn the sudden change in 

the consumption pattern. Therefore, through the adjustment, 

the proposed method can better follow the change and produce 

relatively accurate estimation. 

VI. CONCLUSION 

In this paper, a novel approach for the ABL estimation is 

proposed. Compared with the existing literature, the ABL 

estimation is conducted in a closed-loop fashion. The 

contextual bandit is utilized to link the customer segmentation 

with the estimation. The estimation performance is used as the 

reward for guiding the segmentation, and the segmentation 

further improves the estimation performance in return. An 

ensemble method for combining various DNN’s weights is 

proposed. Moreover, a pre- and post-event adjustment method 

is developed to further improve the estimation accuracy. 

Extensive comparisons are conducted. It is shown that the 

proposed method has stable and good dynamic learning process 

compared with the other five models. Compared with the 

similar day-based, exponential moving average, and 

regression-based methods, the proposed method achieves the 

lowest MAPE and RMSE scores on the test set, mainly because 

of the closed-loop feedback mechanism under the contextual 

bandit’s framework. Compared with individual contextual 

bandit-based method with a particular DNN’s weight, the 

proposed weight selection method further improves the 

robustness against the generalization error. Therefore, the 

proposed method has lower MAPE than most individual 

models on test set. Moreover, compared with the method 

without the adjustment, the proposed adjustment method 

further reduces the MAPE by 10%. 

Future work can be conducted from two sides. Firstly, the 

current method performs the deterministic estimation. In order 

to better quantify the uncertainty, further research can focus on 

extending the proposed method to the probabilistic estimation. 

Secondly, since the aggregated load forecasting also involves 

the customer segmentation and forecasting processes, it is also 

interesting to explore whether the closed-loop method can 

improve the aggregated load forecast accuracy.  

 
Fig. 9.  Actual and estimated baseline loads by the proposed method with and 

without the adjustment (The blue line: actual ABL; orange area: low-price 

event; purple area: high-price event). 
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APPENDIX 

A. Feature Selection based on Synchronous Information 

For a given ToU customer i , firstly, the daily load data 

, , E
i h h  d  is normalized into the range of  0,1  by 

, , ,/ max( )i h i h i h=d d d , where ,i hd  is the normalized load profile 

of customer i  in day h . Then, it is divided into non-event data 

1

, R
b
hcbase

i h


d  and event data 

1

, R
e
hcevent

i h


d , respectively. 

Similarly, for ToU customer ( )1,..., controlk k N=  in the control 

group, the day h ’s load profile is firstly normalized and then 

divided into the corresponding two parts: 
1 1

, ,R , R
b e
h hc cb e

k h k h

 
 d d . Based on the similar consumption 

pattern matching principle, users with similar load profiles tend 

to have similar living habits, and therefore their synchronous 

baseline loads are also similar. So, for the ToU customer i , the 

input feature at the time stamp e
ht c  is the same moment’ s 

baseline loads of the selected Y  control group’s non-ToU 

customers with similar load profiles. The details of feature 

selection can be summarized into the two steps: 

Step 1: Given a day h  and for 1,..., controlk N= , the 

Euclidean distance is calculated between non-event hours’ load 

profiles of the ToU customer i  and the non-ToU customer k  

in the control group:  

 ( ) 2

, , , , , ,, ( )
b
h

b b b b

i h k h i h t k h t

t c

dist d d


= −d d  (21) 

Step 2: The set formed by Y  non-ToU customers with the 

first Y  smallest distances is denoted as  
1

Y

v v
k

=
. Therefore, the 

input feature of the ToU customer i  in day h  at hour e

ht c  is 

 , ,
1
,

v

Y
e e

k h t h
v

d t c
=

 .  

REFERENCES 

[1] M. Shafie-khah, P. Siano, J. Aghaei, et al, "Comprehensive Review of the 

Recent Advances in Industrial and Commercial DR," IEEE Transactions 
on Industrial Informatics, vol. 15, no. 7, pp. 3757-3771, July 2019. 

[2] Z. Yi, Y. Xu, W. Gu, et al, "A Multi-Time-Scale Economic Scheduling 

Strategy for Virtual Power Plant Based on Deferrable Loads Aggregation 
and Disaggregation," IEEE Transactions on Sustainable Energy, vol. 11, 

no. 3, pp. 1332-1346, July 2020. 

[3] D. Chassin, D. Rondeau, “Aggregate modeling of fast-acting demand 
response and control under real-time pricing,” Applied energy, vol. 181, 

pp. 288-298, Nov 2016. 

[4] Q. Shi, C. Chen, A. Mammoli, et al, "Estimating the Profile of 
Incentive-Based Demand Response (IBDR) by Integrating Technical 

Models and Social-Behavioral Factors," IEEE Transactions on Smart 

Grid, vol. 11, no. 1, pp. 171-183, Jan. 2020. 
[5] V. Azarova, D. Engel, C. Ferner, et al, "Exploring the impact of network 

tariffs on household electricity expenditures using load profiles and 

socio-economic characteristics," Nature Energy, vol. 3, no. 4, pp. 
317-325, March 2018. 

[6] S. Fan, Z. Li, L. Yang, et al, "Customer directrix load-based large-scale 

demand response for integrating renewable energy sources," Electric 
Power Systems Research, vol. 181, 2020. DOI: 

https://doi.org/10.1016/j.epsr.2019.106175. 
[7] T. K. Wijaya, M. Vasirani and K. Aberer, "When Bias Matters: An 

Economic Assessment of Demand Response Baselines for Residential 

Customers," IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 
1755-1763, July 2014. 

[8] Y. Zhang, W. Chen, R. Xu and J. Black, "A Cluster-Based Method for 

Calculating Baselines for Residential Loads," IEEE Transactions on 
Smart Grid, vol. 7, no. 5, pp. 2368-2377, Sept. 2016 

[9] Y. Wi, J. Kim, S. Joo, et al, "Customer baseline load (CBL) calculation 

using exponential smoothing model with weather adjustment," in Proc. 
2009 Transmission & Distribution Conference & Exposition: Asia and 

Pacific, Seoul, South Korea, 2009, pp. 1-4. 

[10] J. Priolkar, E. Sreeraj, A. Thakur, "Analysis of Consumer Baseline for 
Demand Response Implementation: A Case Study," in Proc. 2020 7th 

International Conference on Signal Processing and Integrated Networks, 

Toronto, Canada, 2020, pp. 89-94. 
[11] Y. Chen, P. Xu, Y. Chu, et al, "Short-term electrical load forecasting 

using the Support Vector Regression (SVR) model to calculate the 

demand response baseline for office buildings," Applied Energy, vol. 195, 
pp. 659-670, June 2017. 

[12] M. Sun, Y. Wang, F. Teng, et al, "Clustering-Based Residential Baseline 

Estimation: A Probabilistic Perspective," IEEE Transactions on Smart 
Grid, vol. 10, no. 6, pp. 6014-6028, Nov. 2019. 

[13] E. Lee, K. Lee, H. Lee, et al, "Defining virtual control group to improve 

customer baseline load calculation of residential demand response," 
Applied Energy, vol. 250, pp. 946-958, September 2019. 

[14] Y. Zhang, Q. Ai, Z. Li, "Intelligent Demand Response Resource Trading 

using Deep Reinforcement Learning," CSEE Journal of Power and 
Energy Systems, to be published. 

[15] F. Wang, B. Xiang, K. Li, et al., "Smart Households’ Aggregated 
Capacity Forecasting for Load Aggregators Under Incentive-Based 

Demand Response Programs," IEEE Transactions on Industry 

Applications, vol. 56, no. 2, pp. 1086-1097, March-April 2020. 
[16] Y. Zhang, Q. Ai, Z. Li, " Improving Aggregated Baseline Load 

Estimation by Gaussian Mixture Model," Energy Reports, vol. 6, no. 9, pp. 

1221-1225, December 2020. 
[17] T. K. Wijaya, M. Vasirani, S. Humeau and K. Aberer, "Cluster-based 

aggregate forecasting for residential electricity demand using smart meter 

data," in Proc. 2015 IEEE International Conference on Big Data (Big 
Data), Santa Clara, CA, 2015, pp. 879-887.  

[18] Y. Wang, Q. Chen, M. Sun, et al, "An Ensemble Forecasting Method for 

the Aggregated Load With Subprofiles," IEEE Transactions on Smart 
Grid, vol. 9, no. 4, pp. 3906-3908, July 2018. 

[19] S. Li, L. Goel, P. Wang, "An ensemble approach for short-term load 

forecasting by extreme learning machine," Applied Energy, vol. 170, pp. 
22-29, May 2016. 

[20] A. Bagherjeiran, C. F. Eick, Chun-Sheng Chen and R. Vilalta, "Adaptive 

clustering: obtaining better clusters using feedback and past experience," 
in Proc. Fifth IEEE International Conference on Data Mining (ICDM'05), 

2005, pp. 1-4. 

[21] Y. Wang, Q. Chen, C. Kang and Q. Xia, "Clustering of Electricity 
Consumption Behavior Dynamics Toward Big Data Applications," IEEE 

Transactions on Smart Grid, vol. 7, no. 5, pp. 2437-2447, Sept. 2016.  

[22] S. Aleksandrs, "Introduction to multi-armed bandits," arXiv preprint 
arXiv:1904.07272, 2019. 

[23] X. Chen, Q. Hu, and Q. Shi, et al, "Residential HVAC Aggregation Based 

on Risk-averse Multi-armed Bandit Learning for Secondary Frequency 
Regulation," Journal of Modern Power Systems and Clean Energy, vol. 8, 

no. 6, pp. 1160-1167, November 2020. 

[24] M. Khodayar, G. Liu, J. Wang and M. E. Khodayar, "Deep learning in 

power systems research: A review," CSEE Journal of Power and Energy 

Systems, vol. 7, no. 2, pp. 209-220, March 2021. 

[25] Y. Li, "Deep reinforcement learning: An overview," arXiv preprint 
arXiv:1701.07274, 2017. 

[26] E. Mocanu, D. Mocanu, P. Nguyen, et al., "On-Line Building Energy 

Optimization Using Deep Reinforcement Learning," IEEE Transactions 
on Smart Grid, vol. 10, no. 4, pp. 3698-3708, July 2019. 

[27] A. Agarwal, M. Dudík, S. Kale, et al, "Contextual bandit learning with 

predictable rewards," arXiv preprint arXiv:1202.1334, 2012. 
[28] D. Bouneffouf, I. Rish, G. Cecchi, and R. Feraud, "Context attentive 

bandits: Contextual bandit with restricted context," arXiv preprint 

arXiv:1705.03821, 2017. 
[29] Y. Zhang, Q. Ai, and Z. Li, "ADMM-based distributed response quantity 

estimation: a probabilistic perspective," IET Generation, Transmission & 

Distribution, vol. 14, no. 26, pp. 6594-6602, Dec. 2020. 
[30] J. Schofield, S. Tindemans, R. Carmichael, M. Woolf, M. Bilton, and G. 

Strbac, “Low carbon london project: Data from the dynamic time-of-use 

electricity pricing trial, 2013,” Tech. Rep., Jan. 2016. 

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on September 15,2021 at 10:48:52 UTC from IEEE Xplore.  Restrictions apply. 



1949-3053 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2021.3112611, IEEE
Transactions on Smart Grid

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

13 

[31] V. Mnih, P. Badia, M. Mirza, et al, "Asynchronous methods for deep 
reinforcement learning," International conference on machine learning, 

pp. 1928-1937, June 2016. 

[32] Y. Wang, Q. Chen, T. Hong and C. Kang, "Review of Smart Meter Data 
Analytics: Applications, Methodologies, and Challenges," IEEE 

Transactions on Smart Grid, vol. 10, no. 3, pp. 3125-3148, May 2019. 

 

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on September 15,2021 at 10:48:52 UTC from IEEE Xplore.  Restrictions apply. 


