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Abstract—This work addresses a stochastic framework for 

optimal coordination of a microgrid-based virtual power plant 

(VPP) that participates in day-ahead energy and ancillary 

service markets. The microgrids are equipped with different 

types of distributed energy resources. A two-stage optimization 

formulation is proposed to maximize the benefit of the virtual 

power plant and minimize the energy procurement costs of the 

Distribution System Operator (DSO). The proposed model 

determines the optimal commitment scheduling of energy 

resources, considering the capacity withholding opportunities 

of the VPP that should be detected by the DSO. To evaluate the 

effectiveness of the proposed model, the algorithm is assessed 

for the 123-bus IEEE test system. The results show that the 

proposed method successfully maximizes the virtual power 

plant profit considering capacity withholding penalties. 

Keywords—Demand response, Distributed energy resources, 

Microgrid, Stochastic optimization, Virtual power plant. 

I. INTRODUCTION 

Virtual power plant (VPP) is a conceptual framework for 
the coordinated operation of multiple energy resources. The 
VPP can consist of multiple microgrids (MGs) and/or 
multiple fuel-based energy conversion facilities. The VPP 
can coordinate the bidding strategies of MGs in energy and 
ancillary service markets [1].  

Many studies have been performed on the optimal 
scheduling of VPPs and some of them have considered the 
multi-MGs bidding strategy problem. Ref. [1] has presented 
an optimal scheduling algorithm for a VPP that participated 
in energy and ancillary services. The contingencies and 
demand response processes were considered in the proposed 
conditional value-at-risk (CVaR) model.  

Ref. [2] introduced a bi-level algorithm for finding the 
optimal bidding of VPP in the day-ahead market and 
minimizing the penalty costs of mismatches in the real-time 
market. The master and client problems were solved using 
modified genetic algorithm and mixed integer optimization 
processes, respectively. Ref. [3] has introduced a linear 
optimization framework for optimal scheduling of VPP that 
consisted of a two-level stochastic optimization process. The 
algorithm determined the optimal dispatch of VPP energy 
resources in the first level problem and the balancing market 
decision variables were optimized in the second level 
problem.  

Ref. [4] has proposed a three-stage optimization 
algorithm for multi-energy carrier VPP that participated in 
different electricity markets. The first stage problem 
minimized the energy costs of the system; meanwhile, the 
second stage problem solved the economic dispatch problem 
for the intra-hour market. The third stage problem 
determined the optimal system dispatch for the real-time 
market. Ref. [5] has assessed an optimization model for 
multi-objective optimization of the VPP scheduling problem 
that considered electric vehicles, variable/stochastic 
electricity generation facilities, and fossil-fueled electricity 
generation facilities. The objective function comprised 
revenue of VPP and penalty costs that were solved by a 
chance-constrained optimization procedure.  

Ref. [6] has proposed a two-stage algorithm for 
optimizing the scheduling of VPP for different operational 
horizons. The first stage problem optimized the intra-day 
electricity exchange of VPP with the market and the second 
stage problem minimized the operational variable 
mismatches. Ref. [7] has introduced a model for revenue 
optimization of VPP in the day-ahead market considering 
load, price, and energy generation uncertainties. The particle 
swarm optimization was utilized to solve the stochastic 
model.  

Ref. [8] has proposed a bi-level optimization algorithm 
for scheduling of VPP considering different sources of 
uncertainties. The first-stage problem optimized the bidding 
strategy of VPP; meanwhile, the second-stage problem 
determined the economic dispatch of system decision 
variables. Ref. [9] has introduced a CVaR model for 
maximizing the revenue of VPP in day-ahead energy and 
ancillary service markets. The uncertainties of electric 
vehicles, intermittent electricity generation facilities, and 
market prices were modeled. 

Ref. [10] has evaluated a two-stage nonlinear 
optimization algorithm for dispatching of VPP energy 
resources. The master problem maximized the VPP revenues 
and the client problem minimized the energy purchasing 
costs of the system. Ref. [11] has assessed a two-stage VPP 
scheduling algorithm that modeled the uncertainties of 
electricity generation facilities. The first stage problem 
maximized the revenue of VPP and the second stage problem 
minimized the energy purchasing costs of the system.  
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UIDB/00151/2020. Also, J.P.S. Catalão acknowledges the support by 
FEDER funds through COMPETE 2020 and by Portuguese funds through 
FCT, under POCI-01-0145-FEDER-029803 (02/SAICT/2017). 
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A robust optimization model was utilized for solving the 
problem.  

In [2-11], the impacts of capacity withholding index on 
the microgrid-based VPP optimal day-ahead scheduling 
problem were not considered. The present work utilizes a 
stochastic mixed-integer programming method to consider 
the uncertainties of the VPP scheduling and the impacts of 
capacity withholding process. The main contributions of this 
paper can be summarized as follows: 

• The proposed model uses a stochastic optimization 
framework for the optimal operational scheduling of 
a microgrid-based VPP. 

• The uncertainties of the VPP operational variables 
considered are the thermal and electrical demands, 
the wholesale market prices, the plug-in hybrid 
electric vehicle (PHEV) charge and discharge values, 
and also the generation of photovoltaic (PV) arrays 
and wind turbines (WTs). 

• The impact of the capacity withholding index on the 
scheduling problem is determined.  

The rest of this manuscript is organized as follows: 
Section 2, the model of the problem is described and the 
details of the proposed approach are introduced. In Section 3 
the simulation results are addressed and discussed. Finally, 
the conclusion is drawn in Section 4. 

II. PROBLEM MODELING AND FORMULATION 

The VPP comprises multi-MGs that sells active power, 
reactive power, and reserve to the upward electricity market. 
It is assumed that each microgrid is equipped with combined 
heat and power (CHP) units, fossil-fueled distributed 
generation (DG) facilities, WTs, PV arrays, electrical energy 
storage systems (ESSs), thermal storage systems (TSSs), 
boilers, and PHEV parking lots.  

The uncertainties of the VPP operational variables are the 
thermal and electrical demands, wholesale market prices, 
PHEV charge and discharge values, and electricity 
generation of PVs and WTs [11]. The Distribution System 
Operator (DSO) utilizes demand response programs (DRPs) 
to change the electricity load curves and it purchases 
electricity from the upward electricity market. The DSO 
electricity generation facilities are PV arrays, WTs, and DGs. 

A. Wind Turbine Model 

The wind turbine can be modeled as follows [12]: 
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where vWind is the wind speed, vc
Wind is the cut-in speed, vr

Wind 
is the rated speed, vf

Wind  is cut-out speed, and Pr
Wind is rated 

power of wind turbine.  

B. Photovoltaic Array Model  

The maximum power output of PV array can be written 
as [12]: 

0(1 0.005( 25))PVA PVA
P A I tη⋅= −⋅ −  (2) 

where APVA is the PV array area,  η is the PV array energy 
conversion efficiency, I is the solar irradiation, and t0 is the 
ambient temperature. 

C. Combined Heat and Power Model 

The nonlinear feasible operating region for CHP units 
can be presented as: 

' ' 'CHP CHP

CHP CHP CHP
P Qα β γ⋅ + ⋅ ≥  (3) 

where ' ' '
, ,

CHP CHP CHP
α β γ are the coefficient of heat-power 

feasible region for the CHP units. The detailed model of 
CHP units is available in [12]. 

D. Plug-in Hybrid Electric Vehicle Model 

The PHEV charge and discharge is a stochastic process 
that its energy balance and constraints can be written as [12]: 
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where 
Charge

PHEV
ϖ and 

Discharge

PHEV
ϖ are the charge and discharge 

limitation ratio, respectively. The 
PHEV

PCH and 
PHEV

PDCH

variables are the PHEV’s power of charge and discharge, 
respectively. Eq. (4) presents the energy balance of PHEV 
battery. Eq. (5) and Eq. (6) present the limits of charge and 
discharge rates of PHEV battery and σ is the expected 

coefficient [12]. The
PHEV

EN is the PHEV’s energy storage 

content. 

E. Demand Response Programs 

It is assumed that the VPP can participate in DRPs that 
comprise time-of-use (TOU) and direct load control (DLC) 
procedures. The VPP loads consist of critical, deferrable, and 
controllable loads. Thus, the DRP process model can be 
presented as [12]:  

(8) = + +Load Load Load Load

VPP VPP Critical VPP Deferrable VPP Controllable
P P P P        

(9)           
                         TOU Load

VPP VPP Deferrable
P P∆ =   

(10) 
1

0
=

∆ =
NPeriod

TOU

VPP

t

P       
 

(11)            
  

             ∆ ≤ ∆ ≤ ∆TOU TOU TOU

VPP Min VPP VPP Max
P P P  

   (12)    
  

 ∆ ≤ ∆ ≤ ∆DLC DLC DLC

VPP Min VPP VPP Max
P P P  

   (13)     
  

     ∆ =DLC Load

VPP Max VPP Controllable
P P  

   (14)    = ∆ + ∆DRP DLC TOU

VPP VPP VPP
P P P     

Eq. (8) terms are the VPP critical load, deferrable load, 
and controllable electrical load, respectively. Eq. (9) denotes 
that the change of TOU power is equal to the deferrable load.  

Eq. (10) presents that the sum of the TOU electrical load 
changes is equal to zero. Eq. (11) and Eq. (12) present the 
maximum and minimum limits of TOU and DLC variables, 
respectively. Further, Eq. (13) presents that the maximum 
value of the DLC control variable is equal to the VPP 
controllable electrical load. Finally, the VPP loads that can 
participate in the DRP process are presented as Eq. (14). 
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F. Capacity Withholding Detection Process 

The VPP can withhold its capacity in the retail electricity 
market to increase the price of electricity when the price of 
the wholesale market is higher than the price of electricity in 
the retail market. The DSO should detect the capacity 
withholding process, prevent it through an ex-ante way, and 
penalize it. Thus, the VPP operator should consider the 
capacity withholding process of MGs in his/her optimal day-
ahead scheduling to reduce the penalties. The aggregate 
demand function can be written as (15): 

� = −�� + �, � > 0 (15) 

where α and β are the parameters of the demand curve. The 

π and Y variables are the price and quantity of load, 
respectively. It is assumed that in the SFE (supply function 
equilibrium) game model each VPP submit its bid in the 
following form [13]-[15]: 

� = 1
 �� − ��,  > 0 (16) 

where σ and η are the parameters of VPP submitted bid. The 
capacity withholding index (CWI) of Refs. [13, 14] is 
considered to detect the withholding process of the VPP that 
can be presented as (17): 
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(17) 

where ∆Ydistort and ∆Ywithheld are the capacity distortion of the 
market and capacity withheld of the market, respectively. 
∆ λdistort and ∆λwithheld are the Lagrangian multipliers 
associated with power balance constraints in the distortion 
of market and capacity withheld of market conditions, 
respectively.  

N and a are the number of microgrids and their 
generation cost multiplier, respectively. The e index stands 

for the Oligopoly market equilibrium point. Further, �� can 
be presented as (18): 

��� = 1
 + � 1

�

�

���,   ���
 (18) 

G. The First Stage Optimization Objective Function 

The first stage objective function maximizes the VPP 
profit for the day-ahead energy and ancillary service markets 
that can be written as (19): 

   
 ( )

VPP VPP VPP

NOS

Max profit prob REV C= −  
(19) 

where, NOS is the number of operational state scenarios.  
Eq. (19) terms can be written as (20):  

  
              '

              '      
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(21) 

In (20), the ������ , ���
�� , ′�����  parameters are the reserve 

price, active power price, and reactive power price, 
respectively. The !"#����� , $����� , %�����  variables are the 
accepted values of VPP’s reserve, active power, and reactive 
power volumes by the DSO.  

The �����&�, ����
�&�, �′����&�  parameters are the capacity fee of 

DRP contribution, active power fee of DRP, and reactive 
power fee of DRP, respectively. The !"#����&� , $����&� , %����&�   
variables are the values of DRP capacity, active power, and 
reactive power volumes. 

The !'()*+�), !'()���) , !'(),-) , !'().//), !'()-//) , !'()�+.�), !'()�() , !'()01�234)  
variables are the costs of MGs’ CHPs, PV arrays, WTs, 
ESSs, TSSs, PHEVs, boilers, and DGs, respectively. The 
prob parameter is the probability of the scenario.  The 
penalty parameter is determined by the DSO for capacity 
withholding. 

H. The Second Stage Optimization Objective Function 

The second stage objective function minimizes the DSO 
energy procurement costs for the day-ahead energy and 
ancillary service markets considering capacity withholding 
of VPPs that can be written as (22): 

1 2 [ ]
DSO DSO

NOS

Min prob W C W CWI= ⋅ ⋅ + ⋅Z
 

(22) 

From Eq. (22), the terms can be written as (23):  
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              '
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+ +   -    WTs DGs

DSO DSO
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(23) 

In (23), the �,'
�� , �,'

5��   parameters are the active power 

market price and reactive power market price, respectively. 
The $,'�� , %,'��   variables are the purchased active power 
and reactive power volumes from the wholesale market by 
the DSO. The !�/6���), !�/6,-), !�/6�()  variables are the costs of 
DSO PV arrays, WTs, and DGs, respectively. W1 and W2 are 
weighting factors. The DSO determines the thresholds of 
CWI and the VPP should not violate the determined CWI 
limits. 

I. Constraints 

The optimization algorithm considers the following 
constraints for the first and second stage problems: 

• The electrical and thermal power balance for each 
scenario for the second stage problem: 

+ + ± + + =DA WTs DA DRP PVAs DGs D

WM DSO VPP VPP DSO DSO DSO
P P P P P P P  (24) 

+ + ± + + =DA WTs DA DRP PVAs DGs D

WM DSO VPP VPP DSO DSO DSO
Q Q Q Q Q Q Q  (25) 

where in (24) and (25), $�/6� , %�/6�  are active and reactive 
demands of the distribution system.  

• AC power flow equations are considered that are not 
presented for the sack of space [12]. 

• Limit of power generations for electricity generation 
facilities for the first and second stage problems: 

≤ ≤Min MaxP P P  (26) 

where $'�7  and $'89  are the minimum/maximum active 
power of the electricity generation facility, respectively. 

• Limit of the thermal power of boilers: 

   ' ' '≤ ≤Boiler Min Boiler Boiler Max

Thermal Thermal ThermalQ Q Q  (27) 

where %′-:34;8201�234 '�7  and %′-:34;8201�234 '89  are the 
minimum/maximum output of the boiler, respectively.  

• The ESS and TSS limit and maximum charge and 
discharge rate constraints can be presented in (28) 
and (29), respectively.  
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These constraints are considered in the first stage problem. 
The Q’ variable is the thermal energy of TSS.  

≤ESS ESSP Capacity  (28) 

  ' ≤TSS TSS

Thermal
Q Capacity  (29) 

where CapacityESS and CapacityTSS are the ESS and TSS 
facilities capacity, respectively. Eq. (30) and Eq. (31) present 
the charge and discharge ramp-rate limits of ESS, 
respectively.  

The X and Y variables are the ESS binary variables that 
present the discharge and charge status of ESS, respectively. 
The X’ and Y’ variables are the TSS binary variables that 
present the discharge and charge status of TSS, respectively. 
Eq. (32) and Eq. (33) denote the charge and discharge ramp-
rate limits of TSS, respectively. 

    ,

 {0,1}CH ESS ESS

RATE CHP P X X≤ ⋅ ∈  (30) 

     ,

 {0,1}DISCH ESS ESS

RATE DISCHP P Y Y≤ ⋅ ∈ (31) 

    ,

 ' ' ' ' {0,1}CH TSS TSS

Thermal RATE CHQ Q X X≤ ⋅ ∈  (32) 

     ,

 ' ' ' ' {0,1}DISCH TSS TSS

Thermal RATE DISCHQ Q Y Y≤ ⋅ ∈  (33) 

where $&�-. *+.//  and  $&�-. �</*+.//  are the charge/discharge 
rate of the ESS unit, respectively. %′&�-. *+-//  
and %′&�-. �</*+-//  are the charge/discharge rate of the TSS 
unit, respectively. 

The ESS and TSS charge/discharge constraints are 
presented as (34) and (35), respectively: 

       1+ ≤X Y  (34) 

      ' ' 1+ ≤X Y  (35) 

• Limits of power exchange with the upstream 
network: 

         
max≤DA EXCH

WMP P  (36) 

where $;89.=*+  is the maximum active power that could be 
exchanged with the upstream network. 

• DRP operation constraints: 

          ∆ ≤ ∆ ≤ ∆DRP Min DRP DRP Max

VPP VPP VPPP P P  (37) 

where ∆$����&� '�7  and ∆$����&� '89  are the 
minimum/maximum load change in DRP, respectively.  
Fig. 1 depicts the procedure of the proposed optimization 
algorithm. The algorithm codes were developed in GAMS 
and MATLAB.  

III. SIMULATION AND RESULTS 

The 123-bus IEEE test system is considered to assess the 
model [12]. The system comprises six MGs, seven DGs, six 
CHPs, three PVAs, three WTs, five DRPs, and four PHEV 
parking lots. Fig. 2 presents the topology of the 123-bus IEEE 
test system. The technical and cost information of CHP units, 
TSSs, ESSs, and PV units are presented in [12].  

MUs stands for Monetary Units. The boilers and TSS 
characteristics are available in [12]. The MGs may form 
multiple VPPs for different DA scheduling horizons to 
increase their market share and increase the electricity price. 

Fig. 3 presents the aggregated electrical and heating 
loads of the 123-bus test system. Fig. 4 depicts the estimated 
values of active power price, reactive power price, and the 
reserve price for the day-ahead horizon. Table I presents the 
input parameters of the optimization process.  

The VPP aggregates the bidding of its downward MGs 
and submits his/her bids to the DSO. Fig. 5 and Fig. 6 present 
the values of the MG1-MG3 bids and the accepted values of 
the MG1-MG3 for active power and reactive power, 
respectively. The maximum value of MG1-MG3 active power 
bids is 2320 kW that belongs to MG2 for hour 17:00. Further, 
the maximum value of MG1-MG3 active power accepted bids 
is 1254 kW that belongs to MG2 for hour 17:00.  

Fig. 7 and Fig. 8 present the values of the MG4-MG6 bids 
and the accepted values of the MG4-MG6 for active power 
and reactive power, respectively. The maximum value of 
MG4-MG6 active power bids is 8553 kW that belongs to MG6 
for hour 17:00. Further, the maximum value of MG4-MG6 
active power accepted bids is 4820 kW that belongs to MG6 
for hour 17:00. Fig. 9 depicts the 123-bus test system 
photovoltaic arrays and wind turbines electricity generation 
for the day-ahead horizon. The estimated energy generation 
of photovoltaic arrays and wind turbines are 8.229 MW and 
14.962 MW, respectively.  

Fig. 10 presents the accepted values of active power VPP 
bids, the 123-bus system active loads, the active power 
generation of DERs of DSO, and the DSO active power 
import from the wholesale market. The estimated values of 
the accepted active power bid of VPP and DERs active power 
generation are 89.368 MWh and 212.854 MWh, respectively. 

 
Fig. 1.  Procedure of the proposed optimization algorithm. 

 
Fig. 2.  The 123-Bus IEEE test system. 
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Fig. 3.  The 123-bus IEEE test system electrical and heating loads. 

 
Fig. 4.  Estimated values of wholesale energy and ancillary service prices. 

TABLE I.  THE OPTIMIZATION INPUT. 

Value System parameter 

400 Number of solar irradiation scenarios 

600 Number of wind turbine power generation scenarios 

1500 Number of PHEVs contribution scenarios 

40 Number of solar irradiation reduced scenarios 

60 
Number of wind turbine power generation reduced 
scenarios 

50 Number of PHEVs contribution reduced scenarios 

 
Fig. 5.  The MG1-MG3 active power bids and the accepted values of bids. 

 
Fig. 6.  The MG1-MG3 reactive power bids and the accepted values of 

bids. 

 
Fig. 7.  The MG4-MG6 active power bids and the accepted values of bids. 

 
Fig. 8.  The MG4-MG6 reactive power bids and the accepted values of 

bids. 

Fig. 11 presents the accepted values of reactive power 
VPP bids, the 123-bus system reactive loads, the reactive 
power generation of DERs of DSO, and the DSO reactive 
power import from the wholesale market. The estimated 
values of the accepted reactive power bid of VPP and DERs 
reactive power generation are 54.184 MVARh and 133.236 
MVARh, respectively.  

Fig. 12 and Fig. 13 show the estimated values of TSSs 
and PHEV parking lots of charge and discharge, respectively. 
The net transacted energy of PHEV parking lots is 380.91 
MWh. Fig. 14 and Fig. 15 present the active power and 
reactive power values of DRP groups for the planning 
horizon, respectively.  

The net transacted active energy of DRPs is 3.3168 MWh. 
The net transacted reactive energy of DRPs is 1.606 MVARh. 
Fig. 16 depicts the VPP accepted values of reserve bids for 
the day-ahead scheduling horizon. Two cases are considered 
in the case study: 

• Case 1: Optimization of VPP scheduling considering 
?@ = 0. 

• Case 2: Optimization of VPP scheduling considering 
?@ = 1. 

Fig. 17 presents the CWI values for the scheduling 
horizon with and without the proposed algorithm. The 
maximum values of CWI for scheduling horizon with and 
without the proposed algorithm are 0.1728 and 0.43, 
respectively. The proposed algorithm successfully reduced 
the CWI by about 59.81%. Table II presents the VPP 
profits/costs for two cases. By assessing Table II it is obvious 
that the penalties of VPP are reduced from case 1 to 2 due to 
considering CWI. The net profit of VPP is increased by about 
26%. 

 
Fig. 9. The 123-bus test system photovoltaic arrays and wind turbines 

electricity generation for the day-ahead horizon. 

 
Fig. 10. The accepted values of active power VPP bids, the 123-bus system 

active loads, the active power generation of DERs of DSO, and the DSO 
active power import from the wholesale market. 

 
Fig. 11. The accepted values of reactive power VPP bids, the 123-bus 

system reactive loads, the reactive power generation of DERs of DSO, and 
the DSO reactive power import from the wholesale market. 
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Fig. 12. The estimated values of TSSs charge and discharge. 

 
Fig. 13. The estimated values of PHEV parking lots charge and 

discharge. 

 
Fig. 14. The active power values of DRP groups for the planning 

horizon. 

 
Fig. 15. The active power values of DRP groups for the planning 

horizon. 

 
Fig. 16. The VPP accepted values of reserve bids for day-ahead 

scheduling horizon. 

 
Fig. 17. The CWI values for scheduling horizon with and without the 

proposed algorithm. 

TABLE III.  THE VPP PROFIT FOR DIFFERENT CASES. 

Case 1 profits (MUs) Case 2 profits (MUs)  

199071.8 173710.1 Active Power 

21683.16 18987 Reactive Power 

185158.8 160505.2 Reserve 

-174165 -61033.4 Penalties 

231749 292169 Sum 

IV. CONCLUSION 

This work proposed a two-stage model for the optimal 
scheduling of microgrid-based virtual power plants, which 
transacted energy and ancillary services with the distribution 
system. The proposed model considered different energy 
sources such as photovoltaic arrays, wind turbines, and 
PHEVs. The capacity withholding opportunities of VPP was 
considered and a stochastic optimization process was utilized. 
The net profit of VPP was increased by about 26%. The 
authors are working on the real time ancillary service models 
to consider in the proposed optimization framework. 
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