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Abstract—This work addresses a stochastic framework for
optimal coordination of a microgrid-based virtual power plant
(VPP) that participates in day-ahead energy and ancillary
service markets. The microgrids are equipped with different
types of distributed energy resources. A two-stage optimization
formulation is proposed to maximize the benefit of the virtual
power plant and minimize the energy procurement costs of the
Distribution System Operator (DSO). The proposed model
determines the optimal commitment scheduling of energy
resources, considering the capacity withholding opportunities
of the VPP that should be detected by the DSO. To evaluate the
effectiveness of the proposed model, the algorithm is assessed
for the 123-bus IEEE test system. The results show that the
proposed method successfully maximizes the virtual power
plant profit considering capacity withholding penalties.

Keywords—Demand response, Distributed energy resources,
Microgrid, Stochastic optimization, Virtual power plant.

I. INTRODUCTION

Virtual power plant (VPP) is a conceptual framework for
the coordinated operation of multiple energy resources. The
VPP can consist of multiple microgrids (MGs) and/or
multiple fuel-based energy conversion facilities. The VPP
can coordinate the bidding strategies of MGs in energy and
ancillary service markets [1].

Many studies have been performed on the optimal
scheduling of VPPs and some of them have considered the
multi-MGs bidding strategy problem. Ref. [1] has presented
an optimal scheduling algorithm for a VPP that participated
in energy and ancillary services. The contingencies and
demand response processes were considered in the proposed
conditional value-at-risk (CVaR) model.

Ref. [2] introduced a bi-level algorithm for finding the
optimal bidding of VPP in the day-ahead market and
minimizing the penalty costs of mismatches in the real-time
market. The master and client problems were solved using
modified genetic algorithm and mixed integer optimization
processes, respectively. Ref. [3] has introduced a linear
optimization framework for optimal scheduling of VPP that
consisted of a two-level stochastic optimization process. The
algorithm determined the optimal dispatch of VPP energy
resources in the first level problem and the balancing market
decision variables were optimized in the second level
problem.
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Ref. [4] has proposed a three-stage optimization
algorithm for multi-energy carrier VPP that participated in
different electricity markets. The first stage problem
minimized the energy costs of the system; meanwhile, the
second stage problem solved the economic dispatch problem
for the intra-hour market. The third stage problem
determined the optimal system dispatch for the real-time
market. Ref. [5] has assessed an optimization model for
multi-objective optimization of the VPP scheduling problem
that considered electric vehicles, variable/stochastic
electricity generation facilities, and fossil-fueled electricity
generation facilities. The objective function comprised
revenue of VPP and penalty costs that were solved by a
chance-constrained optimization procedure.

Ref. [6] has proposed a two-stage algorithm for
optimizing the scheduling of VPP for different operational
horizons. The first stage problem optimized the intra-day
electricity exchange of VPP with the market and the second
stage problem minimized the operational variable
mismatches. Ref. [7] has introduced a model for revenue
optimization of VPP in the day-ahead market considering
load, price, and energy generation uncertainties. The particle
swarm optimization was utilized to solve the stochastic
model.

Ref. [8] has proposed a bi-level optimization algorithm
for scheduling of VPP considering different sources of
uncertainties. The first-stage problem optimized the bidding
strategy of VPP; meanwhile, the second-stage problem
determined the economic dispatch of system decision
variables. Ref. [9] has introduced a CVaR model for
maximizing the revenue of VPP in day-ahead energy and
ancillary service markets. The uncertainties of electric
vehicles, intermittent electricity generation facilities, and
market prices were modeled.

Ref. [10] has evaluated a two-stage mnonlinear
optimization algorithm for dispatching of VPP energy
resources. The master problem maximized the VPP revenues
and the client problem minimized the energy purchasing
costs of the system. Ref. [11] has assessed a two-stage VPP
scheduling algorithm that modeled the uncertainties of
electricity generation facilities. The first stage problem
maximized the revenue of VPP and the second stage problem
minimized the energy purchasing costs of the system.
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A robust optimization model was utilized for solving the
problem.

In [2-11], the impacts of capacity withholding index on
the microgrid-based VPP optimal day-ahead scheduling
problem were not considered. The present work utilizes a
stochastic mixed-integer programming method to consider
the uncertainties of the VPP scheduling and the impacts of
capacity withholding process. The main contributions of this
paper can be summarized as follows:

*  The proposed model uses a stochastic optimization
framework for the optimal operational scheduling of
a microgrid-based VPP.

»  The uncertainties of the VPP operational variables
considered are the thermal and electrical demands,
the wholesale market prices, the plug-in hybrid
electric vehicle (PHEV) charge and discharge values,
and also the generation of photovoltaic (PV) arrays
and wind turbines (WTs).

»  The impact of the capacity withholding index on the
scheduling problem is determined.

The rest of this manuscript is organized as follows:
Section 2, the model of the problem is described and the
details of the proposed approach are introduced. In Section 3
the simulation results are addressed and discussed. Finally,
the conclusion is drawn in Section 4.

II. PROBLEM MODELING AND FORMULATION

The VPP comprises multi-MGs that sells active power,
reactive power, and reserve to the upward electricity market.
It is assumed that each microgrid is equipped with combined
heat and power (CHP) units, fossil-fueled distributed
generation (DG) facilities, WTs, PV arrays, electrical energy
storage systems (ESSs), thermal storage systems (TSSs),
boilers, and PHEV parking lots.

The uncertainties of the VPP operational variables are the
thermal and electrical demands, wholesale market prices,
PHEV charge and discharge values, and electricity
generation of PVs and WTs [11]. The Distribution System
Operator (DSO) utilizes demand response programs (DRPs)
to change the electricity load curves and it purchases
electricity from the upward electricity market. The DSO
electricity generation facilities are PV arrays, WTs, and DGs.

A. Wind Turbine Model

The wind turbine can be modeled as follows [12]:

0 if PHind < Wind o Wind | Wind
c f
(i
_ ) pwind Ve e Wind Wind Wind
Pw— P Wind Wind if v sv <, (1)
" =v.™)
p .
Wind .
P otherwise
Wind 5 Wind 5 Wind

where v is the wind speed, v." " is the cut-in speed, v,
is the rated speed, v/ is cut-out speed, and P, is rated
power of wind turbine.

B. Photovoltaic Array Model

The maximum power output of PV array can be written
as [12]:

P = 4" .- 1(1-0.005(2, —25)) )

where A7 is the PV array area, 77 is the PV array energy
conversion efficiency, I is the solar irradiation, and # is the
ambient temperature.

C. Combined Heat and Power Model

The nonlinear feasible operating region for CHP units
can be presented as:

Ocpp * "+ ﬁ Q

3
where a,,,, B, 7y are the coefficient of heat-power

feasible region for the CHP units. The detailed model of
CHP units is available in [12].

D. Plug-in Hybrid Electric Vehicle Model

The PHEV charge and discharge is a stochastic process
that its energy balance and constraints can be written as [12]:
EN pypy () = EN pyy (- 1) +

@’ - PCH pyyey (1) - At @
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limitation ratio, respectively. The PCH and PDCH

variables are the PHEV’s power of charge and discharge,
respectively. Eq. (4) presents the energy balance of PHEV
battery. Eq. (5) and Eq. (6) present the limits of charge and
discharge rates of PHEV battery and ¢ is the expected
coefficient [12]. The EN,,, is the PHEV’s energy storage

PHEV

content.

E. Demand Response Programs

It is assumed that the VPP can participate in DRPs that
comprise time-of-use (TOU) and direct load control (DLC)
procedures. The VPP loads consist of critical, deferrable, and
controllable loads. Thus, the DRP process model can be
presented as [12]:

Load Load Load Load
PVI’L}” })LP(PG 2 Critical + P!/[([m[)i eferrable + PVI L}a(‘( ntrollable (8)
TOU Load
APVPP - PVP);D eferrable (9)
NPeriod rou
Z ARy = (10)
o]
AR, S AR S AR, (11)
DLC DLC DLC
A})Hf Min SAP <API\/I (12)
DLC
APVPPLM f)lPP Controllable (1 3)
DRP DL TOU
LPP = APL PPL APVPP (1 4)

Eq. (8) terms are the VPP critical load, deferrable load,
and controllable electrical load, respectively. Eq. (9) denotes
that the change of TOU power is equal to the deferrable load.

Eq. (10) presents that the sum of the TOU electrical load
changes is equal to zero. Eq. (11) and Eq. (12) present the
maximum and minimum limits of TOU and DLC variables,
respectively. Further, Eq. (13) presents that the maximum
value of the DLC control variable is equal to the VPP
controllable electrical load. Finally, the VPP loads that can
participate in the DRP process are presented as Eq. (14).
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F. Capacity Withholding Detection Process

The VPP can withhold its capacity in the retail electricity
market to increase the price of electricity when the price of
the wholesale market is higher than the price of electricity in
the retail market. The DSO should detect the capacity
withholding process, prevent it through an ex-ante way, and
penalize it. Thus, the VPP operator should consider the
capacity withholding process of MGs in his/her optimal day-
ahead scheduling to reduce the penalties. The aggregate
demand function can be written as (15):

x=-—-aY + B, a>0 (15)

where and £ are the parameters of the demand curve. The
7 and Y variables are the price and quantity of load,
respectively. It is assumed that in the SFE (supply function
equilibrium) game model each VPP submit its bid in the
following form [13]-[15]:

(16)

where o and 77 are the parameters of VPP submitted bid. The
capacity withholding index (CWI) of Refs. [13, 14] is
considered to detect the withholding process of the VPP that
can be presented as (17):

1
=—(r—n), >0
y a(” n) o

N [ y‘e N Aﬂid‘mn]
A Ydt.vmrz 1 pu al zai ai
cwr= wilheld N N e withheld (1 7)
AY a AL
EDF ) L —
ERY a;

where AY#srt and AY"iheld are the capacity distortion of the
market and capacity withheld of the market, respectively.
A Aisert and  AAviheld gre  the Lagrangian multipliers
associated with power balance constraints in the distortion
of market and capacity withheld of market conditions,
respectively.

N and a are the number of microgrids and their
generation cost multiplier, respectively. The e index stands
for the Oligopoly market equilibrium point. Further, A can
be presented as (18):

(18)

G. The First Stage Optimization Objective Function

The first stage objective function maximizes the VPP
profit for the day-ahead energy and ancillary service markets
that can be written as (19):

Max pro.ﬁtypp = z prob(REVVPP - CVPP)

NOS

(19)

where, NOS is the number of operational state scenarios.
Eq. (19) terms can be written as (20):
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DRP DRP | 1\DRP_DRP
+Ger Bpp +6 " vep Orpp
_ (~CHPs PVAs | WTs | ESSs | ~TSSs
Corp=Chigs T Cugs TCua:tChtas TChe ™ (2 1)

PHEVs | DGs __~Boilers
Ces +CuatChyg,  +Penalty

In (20), the @wppp, ¥0h,, ¥ Vpp parameters are the reserve
price, active power price, and reactive power price,
respectively. The Caplap, PPin, QPf» variables are the
accepted values of VPP’s reserve, active power, and reactive

power volumes by the DSO.

The @ppp, conps € vhp Parameters are the capacity fee of

DRP contribution, active power fee of DRP, and reactive
power fee of DRP, respectively. The Cap?RF, PERY, QDRE
variables are the values of DRP capacity, active power, and
reactive power volumes.

The CEHAZe, R, CUTS, CERS, RS, CHEYs Cies, cigler
variables are the costs of MGs’ CHPs, PV arrays, WTs,
ESSs, TSSs, PHEVs, boilers, and DGs, respectively. The
prob parameter is the probability of the scenario. The
penalty parameter is determined by the DSO for capacity
withholding.

H. The Second Stage Optimization Objective Function

The second stage objective function minimizes the DSO
energy procurement costs for the day-ahead energy and
ancillary service markets considering capacity withholding
of VPPs that can be written as (22):

Min Z g, =" prob [W, - Cpyg, + W, - CWI| 22)
NOS
From Eq. (22), the terms can be written as (23):
Cpso= wk% -Capf,‘f}, + ZZLZ;A} f’V[I)I;
+ X2 i Ol 0, - Capliy
G P S Ol (23)

Y L Bt + > Ct - O
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In (23), the W"}W élw[/);:[ parameters are the active power
market price and reactive power market price, respectively.
The PR4;, Qb4 variables are the purchased active power
and reactive power volumes from the wholesale market by
the DSO. The CH¥4S, CYLs, CHES variables are the costs of
DSO PV arrays, WTs, and DGs, respectively. W; and W, are
weighting factors. The DSO determines the thresholds of
CWI and the VPP should not violate the determined CWI

limits.
1. Constraints

The optimization algorithm considers the following
constraints for the first and second stage problems:

e The electrical and thermal power balance for each
scenario for the second stage problem:

DA WTs DA DRP PVAs DGs _ pD
[)WM + PDSO + PVPP * PVPP + PDSO + PDS() - PDS() (24)
DA WTs DA DRP PVAs DGs _ ~D
wM + QDSO + QVPF * QVPP + QDSO + QDS() - QDSO (25)

where in (24) and (25), PYso, QBso are active and reactive
demands of the distribution system.

*  AC power flow equations are considered that are not
presented for the sack of space [12].

»  Limit of power generations for electricity generation
facilities for the first and second stage problems:

PMin < P < PMax (26)

where Py, and Py, are the minimum/maximum active
power of the electricity generation facility, respectively.

*  Limit of the thermal power of boilers:

1Boiler Min 1Boiler 1Boiler Max
Q Thermal < Q Thermal < Thermal (27)
/Boiler Min /Boiler Max
where Q Thermal and Q Thermal arc the

minimum/maximum output of the boiler, respectively.

e The ESS and TSS limit and maximum charge and
discharge rate constraints can be presented in (28)
and (29), respectively.
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These constraints are considered in the first stage problem.
The Q’ variable is the thermal energy of TSS.

P < Capacity™* (28)
Q ';iirmal S CapaCity 158 (29)

where Capacity®sS and Capacity™ are the ESS and TSS
facilities capacity, respectively. Eq. (30) and Eq. (31) present
the charge and discharge ramp-rate limits of ESS,
respectively.

The X and Y variables are the ESS binary variables that
present the discharge and charge status of ESS, respectively.
The X’ and Y’ variables are the TSS binary variables that
present the discharge and charge status of TSS, respectively.
Eq. (32) and Eq. (33) denote the charge and discharge ramp-
rate limits of TSS, respectively.

PUE<pis X Xe{ol} (30)
PP < B s Y Y€ 0,1 (31)
e < Qe ar X' X'€ {01} (32)
Q’%I:»SZ}TSS S Q’ITeiSIE oY Y'€{0,1} (33)

where PE3S: oy and PESSp piscu are the charge/discharge
rate of the ESS unit, respectively. Q' 5vgcu
and Q'kirr piscy are the charge/discharge rate of the TSS
unit, respectively.

The ESS and TSS charge/discharge constraints are
presented as (34) and (35), respectively:

X+Y<l1 (34)
X'+Y'<1 (35)
* Limits of power exchange with the upstream
network:
B < B (36)
where PEXCH is the maximum active power that could be

exchanged with the upstream network.
*  DRP operation constraints:
DRP Min DRP DRP Max
AF;/PP < AF;/PP < A[)VPP (3 7)

where ~ APPEPMIn and  APPREMA*  are  the
minimum/maximum load change in DRP, respectively.
Fig. 1 depicts the procedure of the proposed optimization
algorithm. The algorithm codes were developed in GAMS
and MATLAB.

III.  SIMULATION AND RESULTS

The 123-bus IEEE test system is considered to assess the
model [12]. The system comprises six MGs, seven DGs, six
CHPs, three PV As, three WTs, five DRPs, and four PHEV
parking lots. Fig. 2 presents the topology of the 123-bus IEEE
test system. The technical and cost information of CHP units,
TSSs, ESSs, and PV units are presented in [12].

MUs stands for Monetary Units. The boilers and TSS
characteristics are available in [12]. The MGs may form
multiple VPPs for different DA scheduling horizons to
increase their market share and increase the electricity price.

Fig. 3 presents the aggregated electrical and heating
loads of the 123-bus test system. Fig. 4 depicts the estimated
values of active power price, reactive power price, and the
reserve price for the day-ahead horizon. Table I presents the
input parameters of the optimization process.

The VPP aggregates the bidding of its downward MGs
and submits his/her bids to the DSO. Fig. 5 and Fig. 6 present
the values of the MG-MGs; bids and the accepted values of
the MGi-MG; for active power and reactive power,
respectively. The maximum value of MG-MGj active power
bids is 2320 kW that belongs to MG, for hour 17:00. Further,
the maximum value of MG-MGj active power accepted bids
is 1254 kW that belongs to MG for hour 17:00.

Fig. 7 and Fig. 8 present the values of the MG4-MGg bids
and the accepted values of the MG4-MGs for active power
and reactive power, respectively. The maximum value of
MG4-MGg active power bids is 8553 kW that belongs to MGe
for hour 17:00. Further, the maximum value of MG4-MGg
active power accepted bids is 4820 kW that belongs to MGg
for hour 17:00. Fig. 9 depicts the 123-bus test system
photovoltaic arrays and wind turbines electricity generation
for the day-ahead horizon. The estimated energy generation
of photovoltaic arrays and wind turbines are 8.229 MW and
14.962 MW, respectively.

Fig. 10 presents the accepted values of active power VPP
bids, the 123-bus system active loads, the active power
generation of DERs of DSO, and the DSO active power
import from the wholesale market. The estimated values of
the accepted active power bid of VPP and DERs active power
generation are 89.368 MWh and 212.854 MWHh, respectively.

Reading VPP data and wholesale market data i

Hourly photovoltaic arrays and wind turbines electricity *
injection scenario generation and reduction

Hourly PHEVs electricity injection/withdrawal scenario
generation and reduction

The Second Stage Optimization

Minimizing the DSO energy procurement 3
the day-ahead energy and ancillary service markets
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Fig. 2. The 123-Bus IEEE test system.
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TABLE I. THE OPTIMIZATION INPUT.

System parameter Value
Number of solar irradiation scenarios 400
Number of wind turbine power generation scenarios 600
Number of PHEVSs contribution scenarios 1500
Number of solar irradiation reduced scenarios 40
Numb@r of wind turbine power generation reduced 60
scenarios
Number of PHEVSs contribution reduced scenarios 50
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Fig. 5. The MG;-MG:; active power bids and the accepted values of bids.
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Fig. 11 presents the accepted values of reactive power
VPP bids, the 123-bus system reactive loads, the reactive
power generation of DERs of DSO, and the DSO reactive
power import from the wholesale market. The estimated
values of the accepted reactive power bid of VPP and DERs
reactive power generation are 54.184 MVARh and 133.236
MVARA, respectively.

Fig. 12 and Fig. 13 show the estimated values of TSSs
and PHEV parking lots of charge and discharge, respectively.
The net transacted energy of PHEV parking lots is 380.91
MWh. Fig. 14 and Fig. 15 present the active power and
reactive power values of DRP groups for the planning
horizon, respectively.

The net transacted active energy of DRPs is 3.3168 MWh.
The net transacted reactive energy of DRPs is 1.606 MVARh.
Fig. 16 depicts the VPP accepted values of reserve bids for
the day-ahead scheduling horizon. Two cases are considered
in the case study:

*  Case 1: Optimization of VPP scheduling considering

Wz = 0.
*  Case 2: Optimization of VPP scheduling considering
WZ = 1.

Fig. 17 presents the CWI values for the scheduling
horizon with and without the proposed algorithm. The
maximum values of CWI for scheduling horizon with and
without the proposed algorithm are 0.1728 and 0.43,
respectively. The proposed algorithm successfully reduced
the CWI by about 59.81%. Table II presents the VPP
profits/costs for two cases. By assessing Table II it is obvious
that the penalties of VPP are reduced from case 1 to 2 due to
considering CWI. The net profit of VPP is increased by about

26%.
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Fig. 9. The 123-bus test system photovoltaic arrays and wind turbines
electricity generation for the day-ahead horizon.
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TABLE III. THE VPP PROFIT FOR DIFFERENT CASES.

Case 2 profits (MUs) Case 1 profits (MUs)
Active Power 173710.1 199071.8
Reactive Power 18987 21683.16
Reserve 160505.2 185158.8
Penalties -61033.4 -174165
Sum 292169 231749

IV. CONCLUSION

This work proposed a two-stage model for the optimal
scheduling of microgrid-based virtual power plants, which
transacted energy and ancillary services with the distribution
system. The proposed model considered different energy
sources such as photovoltaic arrays, wind turbines, and
PHEVs. The capacity withholding opportunities of VPP was
considered and a stochastic optimization process was utilized.
The net profit of VPP was increased by about 26%. The
authors are working on the real time ancillary service models
to consider in the proposed optimization framework.
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