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Abstract

The large-scale introduction of distributed photovoltaic (DPV) increases the need for retailers to consider and quantify the
differences in monthly electricity consumption of customers to maximize their interests in trading in the forward electricity
market. For customers with DPV, retailers need to predict net electricity consumption (NEC), which is actual electricity
consumption (AEC) minus DPV generation. However, the DPV is behind the meter and DPV generation data is invisible to
retailers. Therefore, the issue of how to distinguish the transition of customers from no DPV to with DPV and their DPV
installation information needs to be addressed. To better capture the additions of DPV timely under high penetration of DPV,
a decoupling-based monthly NEC prediction model considering the DPV installation update is proposed. Firstly, the features
are extracted from the hourly NEC data of known customers with DPV to distinguish other customers whether installing
DPV. Secondly, an online update framework of DPV installation evaluated by two validations is proposed. Thirdly, based on
the difference in the electricity consumption series before and after the installation of DPV, the NEC is decoupled into AEC
and DPV generation. Finally, the monthly DPV generation prediction results are subtracted from the monthly AEC prediction
results to obtain the final monthly NEC results. Different scenarios of DPV penetration are set in case studies to test the
performance between the proposed model and other direct models. The results indicate the superiority of the proposed
method under high penetration of DPV.

Keywords: Retailers; Forward Electricity Market; Distributed Photovoltaic Penetration; Monthly Net Electricity
Consumption Prediction; Online Update Framework
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1. Introduction

In the past decades, the traditional monopoly utility form
of supplying electricity to customers has revealed a series of
problems such as negativity and inefficiency, and the
deregulation of the electricity industry in various countries
has introduced market competition, which has activated the
electricity market and improved economic efficiency [1-2].
Under the retail competition model, retailers participate in
the wholesale market on behalf of small customers, and then
sell electricity to small customers in the retail market,
profiting from the price difference. Retailers need to predict
customers' electricity consumption in the coming month
before purchasing electricity in advance in the forward
electricity market [3]. The error of prediction affects the
final profit, and the imbalance of electricity is the source of
the trading risk. Therefore, an accurate monthly electricity
consumption prediction is beneficial in helping retailers plan
the amount of electricity to be purchased in advance, which
concerns their interests.

The monthly electricity consumption prediction is
confronting new obstacles in the current environment, where
the proportion of distributed energy generation is increasing.
The large-scale installation on the demand side of the power
system, represented by distributed photovoltaic (DPV),
allows customers to generate their electricity. The
characteristics of customers' electricity consumption curves
during the daytime are altered by DPV generation. The
electricity consumption that needs to be bought by retailers is
considered net electricity consumption (NEC), which refers
to the AEC minus the distributed energy generation. This
paper focuses on DPV, and the NEC in this paper refers to
the AEC minus the DPV generation. The DPV penetration is
the ratio between DPV generation and the total power
generation in a given period [4].

Therefore, the stochastic nature of DPV generation
overlaid with the uncertainty of customer load brings new
characteristics to monthly NEC. This brings new questions
for retailers to consider when predicting monthly NEC for
customers: 1) Is the original method of predicting monthly
electricity consumption considering DPV still applicable? 2)
The installation of DPV by customers is a random event, so
DPV for households in a certain area is constantly changing
over time. As DPV penetration increases, how can retailers
get first-hand information about DPV installations of
customers to guide monthly NEC prediction? To address the
above issues, it is necessary to figure out novel methods of
monthly NEC considering the increasing DPV penetration
[5].

The impact of DPV penetration on monthly NEC
characteristics varies with different levels. The study of
monthly NEC has significant implications for grid dispatch,
demand-side management, and forward electricity market
trading. The NEC prediction ideas can be classified into two
categories: the direct idea and the indirect idea. The direct
idea, whose prediction target is the NEC, involves using the
DPV generation data monitored by the additional metering
equipment installed, but this will significantly increase the
cost due to the large number of DPV. The indirect idea is
decomposing the NEC into AEC and DPV generation by
mining the relevant information included in various data
sources with adequate temporal and spatial granularity [6-9],
with the prediction targets being the AEC and DPV

generation produced after NEC decomposition. Deep
learning algorithms [10] and probabilistic statistics [11] are
popular among scholars studying net load prediction. In [12],
the proposed ANN-based short-term residential net load
forecasting method is validated in 75 single-family
composition micro-neighborhood cases in the Netherlands.

Considering the uncertainty of human behavior and
distributed energy generation, probabilistic algorithms have
received attention recently [13]. In [14], a new hybrid
probabilistic scheme approach is proposed to model the
uncertainties associated with electrical and thermal load
demand and renewable distributed output. Reference [15]
provides a detailed description of the application of
probabilistic prediction methods in solar irradiance
prediction and load prediction. In [16], it finds that
increasing the proportion of DPV output power in the net
load of residential customers can improve the clarity and
reliability of probability prediction in spring and winter. The
photovoltaic generation prediction method proposed in [17]
aiming for invisible photovoltaic sites is different from [18],
which belongs to unsupervised learning. Therefore, the
model training does not require historical data of the sites,
and the proposed method applies to high penetration.

In addition, with the support of advanced metering
facilities, it is easy to collect a full range of electricity data
[19]. Reference [20] designs the experiments and verifies
that the data obtained from smart meters have advantages in
mining residential electricity consumption features and that
the extracted features interpret residential electricity
consumption features better than those using the standard
load profile methods. For the huge amount of data collected
from smart meters, reference [21] proposes a clustering
algorithm that reduces dimensionality while preserving load
characteristics.

Despite the developments in NEC prediction, there are still
issues that need to be addressed and improved. First, they fail
to account for non-solar customers' DPV installation
information changes, resulting in a portion of DPV
generation not being included in the NEC calculation. This
portion is commonly referred to as the AEC prediction error,
as it can cause variances in the extraction of customer load
characteristics, affecting the NEC prediction accuracy.
Second, it is insufficient to research the NEC characteristics
based only on the NEC curve under variable weather
conditions. As an example, the possible scenarios behind a
decrease in the net load curve during daytime hours
compared to neighboring days are 1) slightly better weather
conditions and a minor increase in DPV generation, 2) a
combination of lower actual customer electricity
consumption and smaller DPV generation, and 3) no DPV
installation (NEC equals AEC), where the AEC decreases.
The first two cases may also be mistaken for no newly
installed DPV due to the similarity to the AEC curve.

The main contributions of this paper are as follows:

(1) A novel monthly NEC prediction method that utilizes
decoupling technology is proposed to sort out the factors
affecting NEC and the degree of influence (For example,
weather factors have an impact on both AEC and DPV
generation, but the impact mechanism is different) so that the
model can be more targeted.

(2) An online update framework of customer DPV
installation information is proposed to address the
incomplete, non-reciprocal, and severely delayed DPV



installation statistics held by grid dispatch operators or
retailers and improve the performance of the monthly NEC
prediction model further.

(3) The validations are proposed to evaluate the
performance of the online update framework. In particular,
based on the differences in fluctuation between AEC and
DPV generation, it is judged whether it is the error of the
AEC prediction or the installation of DPV.

The rest of the paper is shown below: The problem
statement and overall framework will be introduced in
Section Il. Then, the specific process of the proposed method
will be presented in Section Ill. Next, the data set, case
study, and performance evaluation will be proposed in
Section 1V. Finally, the conclusion and future work will be
written in Section V.

2. Problem statement and overall framework

2.1 Problem statement

Since the NEC is equal to the AEC minus DPV
generation and the DPV penetration is variable, it is
necessary to study the effect of DPV generation on the
characteristics of the AEC. The typical daily curve of NEC
is called the duck curve, which is famous for its “belly”
appearance during the daytime [22]. How monthly NEC
characteristics vary with DPV penetration needs to be
known. In addition to the numerical difference, there is a
difference in the slope change of the monthly AEC and
monthly NEC curves for an individual residential customer,
as shown in Fig. 1. The numerical and shape difference
between monthly AEC and monthly NEC is expanded as the
DPV penetration increases for a cluster of 300 customers, as
shown in Fig. 2. How the NEC curves differ from AEC
depending on the rate and trend of the change in DPV
penetration for a cluster of 300 customers in Fig. 3. When
the DPV penetration increases to a particular level, the NEC
curve differs significantly from the AEC curve.
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Fig. 1.The comparison of monthly AEC and monthly NEC for a customer

,x10

— AEC data
— NEC data

=
=

RS
L

Electricty Consumption(kWh)

°
®

Direction of the increasing DPV penetration

2010/7 2010/9

o

T . \ \
2010/11 2011/1 2011/3 2011/5
Time(Month)

Fig. 2.The comparison of monthly AEC and monthly NEC for 300
customers under different fixed DPV penetration

~

|——AEC data

—NEC data in changing pattern 1
|—NEC data in changing patter 2
|—NEC data in changing pattern 3

— Changing pattern 1
40 — Changing pattern 2
— Changing pattern 3

2o e
» o ®

I
~

DPV Penetration(%)
Electricty Consumption(kWh)

-

L H H
20107 20109 201011201V1 201¥3 20115 08 20107 20109 201011 201¥1 201¥3 201V5
i ime( Month)

Time( Month) Time( Month)

Fig. 3.The comparison of monthly AEC and monthly NEC for 300
customers under different changing patterns of DPV penetration
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Fig. 4.The process of customer classification

Driven by incentive or subsidy policies, residents are
enthusiastic about installing DPV. Therefore, there is a
possibility of untimely reporting of customer DPV
installation  information,  incomplete  statistics, or
non-authorized private installation. It is not conducive to the
monthly NEC prediction results. After some time, new solar
customers may add, requiring the retailers to update the
solar customer information. It is necessary to identify the
characteristics that reflect the transformation of customer
status (including non-solar customers and solar customers),
as shown in Fig. 4. LetP_, , Py, and P, respectively

denote AEC, DPV generation, and NEC of each customer.
After dividing all customers into solar customers and
non-solar customers, monthly AEC is predicted for
non-solar customers and monthly NEC is predicted for solar
customers. The relationship among AEC, DPV generation
and NEC is shown as follows:

z Puey, = Z( Ploag, = Ui Popy, ) 1)

1eQ 1eQ
where U, indicates whether the | th customer has
installed DPV and 0-1 variable. Q is the set of customers.

2.2 Benefits for Decoupling of Net Electricity Consumption

The benefits of decoupling the NEC will be discussed in
two aspects. From the perspective of qualitative analysis, it
can be seen in (1) that monthly AEC plays a positive growth
role on NEC, while DPV generation plays a decreasing role
on NEC. Under the joint effect, AEC plays a positive
growth role on NEC, while DPV generation plays a
decreasing role on NEC. When NEC eventually exhibits a
descend trend due to the combined influence of AEC and
DPV generation, the causes could be 1) AEC decreases, 2)
DPV generation grows, and 3) AEC decreases more than
DPV generation. For machine learning, if the NEC is
directly used as input, the selected parameters may not
reflect the inherent characteristics of the NEC change
pattern. The ambiguity in learning the patterns behind the



changes in NEC could easily further lead to large prediction
errors when the changes in DPV penetration are more
complex.

From the perspective of influencing factors, since changes
in either AEC or DPV generation directly affect NEC, the
factors that affect AEC and DPV generation also affect
NEC. Reference [23] found that the problem of predicting
DPV power generation and AEC can be converted into
predicting solar irradiance and ambient temperature through
the derivation of mathematical equations. The mechanisms
of ambient temperature on DPV power generation and
actual power consumption are different. The high
temperature of DPV panels is not favorable for the operation
of power electronics [24]. Besides, the summer and winter
are the peak periods of actual residential demand for
electricity [25]. Therefore, modeling AEC and DPV
generation separately after decoupling the NEC can make
the mapping relationship between input and output variables
clearer and the model more relevant.

2.3 Overall framework

Stage 1: Online update of DPV installation information

Extract DPV features from historical data of few solar customers
whose DPV i ion information is known

]
Detect DPV installation date based on hourly NEC data
and classify the customers into two categorizes

I
¥ ¥
Solar customers

Non-solar customers

Monthly NEC
data after DPV
installation

Monthly AEC
data without DPV
installation

I I

‘ AEC prediction ‘

Monthly AEC data
without DPV
installation

Yes

Stage 2: Net electricity consumption decoupling

DPV generation = Real NEC - AEC prediction result ‘

¥

‘ DPV capacity estimation model based on SVR ‘

Stage 3: Net electricity consumption prediction

add the results to get monthly NEC result

Predict DPV generation and AEC separately and ‘

Fig. 5.Data updates and prediction framework

Fig. 5 illustrates the overall framework of the monthly
NEC prediction method with an online DPV installation
information update. It concludes with three stages on the
whole and the detailed processes of each stage are
introduced in section Ill. Stage I: Online Update of DPV
Installation Information. To identify the solar customers and
pave the way for NEC decoupling, this stage is divided into
two steps. First, customers are classified into solar and
non-solar customers by the extracted characteristics
characterizing DPV installations. Then, an online DPV
installation check is performed for non-solar customers, as
shown in Fig. 6. Stage Il: NEC Decoupling. NEC is
decoupled into AEC and DPV generation. The DPV
capacity information is afterward obtained from the DPV

generation as the input. Stage I11: Monthly NEC Prediction.
The monthly NEC is obtained by separately predicting the
monthly AEC and the monthly DPV generation.
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3. Proposed methodology
3.1 Feature Exaction and Classification

The difference between NEC and AEC comes from the
amount of DPV generation. Typical features to distinguish
the DPV installation are extracted using hourly electricity
consumption data from a small number of customers who
are known to be solar customers. The fine-grained data
helps study the monthly electricity consumption [26]. The
monthly NEC curves smooth out fluctuations compared
with the daily electricity consumption curve. It is easier and
more obvious to extract the DPV features from the daily
electricity consumption curve.

During the DPV generation period, the actual electricity
consumption curve is abated by DPV generation to the
extent that it first increases to a peak and then decreases.
Based on this, it is mathematically described from different
perspectives, as mentioned in [27]. When installing DPV,
the magnitude of the slope will decrease during the period of
sunrise. The magnitude and rate of change of the slope in
the morning are considered features. The calculations are
shown below:

Set,g :<PNet,Hgdg.M,.Yl - PNet.Hg,M,,YJ )/(Hg+Ag - Hg) (2
fg :(scl-g+Ag ~Sa.g )/(H9+Ag - Hg) ®

where s, , is the slope of the cut lineat H,. r,, is the

average rate of change of the slope during H, and Hyiag -

T denote time and consist of the hour H,, month M, , and
yearY;, namelyT ={H ,M;,Y;},teT . Among them, g, i,
and j represent the number of hours H, month M and year Y
respectively.

The irradiation intensity at noon is the greatest during the
day, so the magnitude of NEC decreases the most during
this time. The degree of concavity at noon is calculated as
follows:

log = (PNet,ng,M,.Vl - PNet.Hgl.M,.Vl )/(ng - Hg,)

Q)
_PNet.Hg,M,,YI 19 €[9,.9,]



where 1, represents the degree of concavity during H
and H, P, denote the electricity consumption of each
customer whose DPV information is unknown and
P, = { Pt Poss. Porv, ] - Let BR° be the electricity
consumption of each customer whose DPV information is
known and define P’ = {R, ;, R, Poev. | -

Customers are classified into solar customers and
non-solar customers according to the change of features
before and after the installation of DPV. For known solar
customers, the features show a significant difference before
and after the installation of DPV. The changes before and
after the installation of DPV for the same feature are
recorded as references. For other customers, these features
of the daily electricity consumption series are calculated in
turn. By determining whether the changes of each feature of
the two adjacent days match the references, the customers
are classified into two categories. If yes, the customer is
classified as a solar customer. If not, the customer is
currently a non-solar customer.

3.2 DPV Installation Update Check

Let Q, denote the number of solar customers after
classification, |, €Q,; Q, denote the number of non-solar
customers after classification, |, €Q,. To capture the new
DPV installations by non-solar customers, the hourly
electricity consumption series data of non-solar customers
are predicted. The hourly AEC data of each non-solar
customer is predicted per day based on an artificial neuron
network [28] and the prediction errors per time are recorded.
The error between the prediction results and the actual
electricity consumption data collected from the smart meters
is calculated. The non-solar customer whose hourly AEC
prediction error is higher than the average of the former error
&£, 15 suspected of installing DPV newly and the equations
are as follows:

1

Eay = E;gk (5)
YLoad.Hg,M,,VJ = Yioad Hy M, v, ‘ > Eqy (6)
where ¢, is the error of the prediction of P_,,,, v and

kiis the time of the prediction. §, .y, ,y, 18 the real AEC of

Pload. v, M, and Yioad,Hy. M,y

AEC P,

Load,Hy ,M;.Y; *

Further verification is required to determine whether the
error is caused by the DPV installation and to exclude the
cause of the prediction method. The time-series data
contains trend and fluctuation information [29]. The random
fluctuations of the AEC and NEC sequences during the
daytime DPV generation period are different. Based on this,
the analysis compares the stochastic fluctuations of the
adjacent two-day electricity consumption series. The
stochastic fluctuations P, in the AEC series are

Net, fluctuation
obtained by removing the trend Py, from the actual
consumption series, as shown in the following:

is the predicted result of

P.

Net, fluctuation

= PNel.t - PNet,lrend (7)

Wavelet packet analysis divides the time-frequency plane
more carefully, and it has a higher resolution of the
high-frequency part of the signal than the binary wavelet
[30]. Wavelet package decomposition is performed on the
electricity consumption series to extract the high-frequency
components. It is determined which segment of
high-frequency information is distinguishable between AEC
and NEC by comparing the decomposed hourly AEC and
NEC data before and after the DPV installation for known
solar customers, which is then used to determine whether a
non-solar customer becomes a solar customer. As a result, if
the above two validations are met, the prediction error is
determined to be due to the addition of DPV, implying that
this non-solar customer becomes a solar customer.

3.3 Net Electricity Consumption Decoupling

The difference between AEC and NEC is DPV generation.
Before installing DPV, the curves of hourly AEC and the
hourly NEC are overlapped. According to the hourly AEC
prediction of the day before the date of installation of DPV,
the amount of DPV generation is obtained by using the
hourly AEC on the day of installation of DPV minus the
hourly AEC prediction results, as shown in the following
equation:

kZ kZ
Yicadm, v, = Z Ynet,Hgmy, T Z Yopv 1, MY, ®)
q=1 a=k,
where K, is the total number of the hours in DPV
installation month M, andk, is the number of the hours
after installing DPV in the month M; .

The predicted DPV generation after decoupling is shown
as:

= — 9
yDPV,Hq,M, Y yLoad,Hq,M,,Y‘ yNet,Hq,M,,VJ 9)

3.4 DPV Capacity Estimation

The customer may install the DPV on any day of the
month, so the smart meter collects the NEC data after the
installation of the DPV. To restore the monthly AEC data,
the actual NEC data is used to add the predicted DPV
generation in the days after the installation of DPV. In light
of the support vector regression (SVR) model's benefits in
handling small sample data and excellent generalization [31],
the model is based on SVR. Let x be the vector of the

inputs of SVR, namely X =[ X, XX, |. It includes weather
conditions X,, (such as sunny, rainy, and cloudy),
temperature X, and DPV generation X, . Lety denote the

DPV capacity information of a few solar customers whose
DPV information is known. A small number of the known
solar customer hourly data is set as the training set, and the
rest of the solar customer hourly data is set as the test set.
Targeted training samples are as follows:

D={(x Y1) (% ¥2). (% ¥a)o o (%0 ¥a)f - (10)
f(x)=wx+b (11)

where f(x) is a function expected to be obtained through
learning, and w and b are the parameters to be determined.



3.5 Monthly Net Electricity Consumption Prediction

To make the output of the prediction model better follow
the actual results, the seasonal trend is removed. Differential
operations can smooth a class of non-smooth sequences (i.e.,
sequences with a trend). The essence of the differential
operator is to extract determination information by
self-regression:

I (12)
Vix = (A-B)'x =2 (-D)Cix,

where d is the differential order. B is the value of the
Bayesian information criterion and C is the value of the
Akaike information criterion (AIC). AIC criterion for
determining the order of the model: S is the total number

of unknown parameters of the model. &7 is the estimate of
the variance of the series. N is the length of the series.

28
+_

AIC(S)=Iné? (13)

Then the monthly AEC and DPV generation are predicted
separately based on the auto-regressive integrated moving
average (ARIMA) of order (p, d, q):

V”X(t)zzp“qilvdx(t—i)+a‘ —ieja‘,j (14)

where Vis the dth difference operator, a, is white noise
with variance 52, ¢ and 0, are model parameters [32].

The AEC and DPV generation obtained by NEC
decomposition have seasonal cycle variations to different
degrees. A differential operation with a step size of the cycle
length for a series with a fixed cycle can usually extract the
cycle information better. The ARIMA model parameters p
and g are determined by the trailing and truncated tails of
the auto-correlation and partial correlation coefficients
respectively.

3.6 Evaluation Criteria

To quantify the accuracy of the DPV installation update
check validations, the accuracy a,,,. Is calculated by the

following:

aupdate = ncor /nml (15)

where n,, is the correct identification number of non-solar
customers converted to solar customers. n_, is the real

tol
number of all non-solar customers to be identified that are
converted to solar customers.

To quantify the accuracy of the proposed method, the
error is evaluated using the mean absolute percentage error
(MAPE) and root mean squared error (RMSE):

Vo) (8

MAPE = %iﬂym “Va

=

an

1 m
RMSE =\’_Z|ypre‘ “VYaq ’
mi

where 'y, is the predicted value of NEC and vy, is the
real value of NEC. m is the number of the sequence vy,
and vy, .

4. Case Study

4.1 Dataset and Parameter Settings

The dataset used in our work is from an Australian grid
named Ausgrid [33]. The framework proposed in this paper
is for a real-life situation where DPV penetration is
constantly changing. Based on a half-hourly dataset of 300
known solar households over three years, including hourly
DPV generation and hourly AEC, DPV installation dates and
DPV generation have been randomly selected to be added to
the non-solar customers' AEC series. Thus, DPV penetration
is increasing by adding solar customers. Three scenarios
have been set up as shown in Fig. 7. As the penetration of
DPV changes, it is obvious that the difference between
monthly NEC and actual monthly electricity consumption
becomes larger. Scenario 1: three hundred customers without
DPV for three years; Scenario 2: One hundred customers
without DPV installation and two hundred solar customers,
of which two hundred solar customers' DPV installation
dates are randomly determined over three years, reaching 27%
penetration by the end of the third year; Scenario 3: three
hundred solar customers by the end of the third year,
reaching a penetration of 39%. The DPV installation dates
for three hundred solar customers have been randomly set
over the three years.
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4.2 Results and Analysis

Fig. 8 illustrates the comparison of the fluctuation of
electricity consumption sequence before and after the
installation of DPV by one customer. Although the AEC
curve and the NEC curve are very similar due to the small
output of DPV, the characteristics of the AEC series are
found to be changed during the noon hour after the
installation of DPV by observing the fluctuation of the two
curves. As seen in Fig. 9, adding the validation of random
fluctuations in the electricity consumption series has a
positive effect on improving the accuracy of DPV
installation updates. This is because when the weather is bad
or the DPV capacity is small, it is somewhat strained to
determine whether to install DPV only by the average error
of AEC prediction.

The monthly prediction results of NEC, AEC and DPV
generation based on the method proposed in this paper under
scenario 3 are respectively shown in Fig. 10, Fig. 11 and Fig.
12. It can be seen that the proposed method overall performs
well. Above all, the performance evaluation of the proposed
method and direct NEC prediction based on ARIMA under
different scenarios is shown in Table 1. When in the absence
of DPV installations, the direct prediction method is slightly
better than the method proposed in this paper, because the
cumulative error of decomposition and reorganization is
larger in this case. However, when the simulated scenario is
that the DPV penetration rate changes over time, the method
proposed in this paper has the advantage of detecting the
installation of DPV and updating the database of solar
customers, making the monthly NEC prediction by the
decomposition better than the direct prediction. This
advantage becomes obvious as the DPV penetration
increases.
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Fig. 9. Comparison of the accuracy of the DPV installation update check
with and without fluctuation validation in scenario 2 and scenario 3
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Fig. 12. Monthly DPV generation prediction results under scenario 3

Table 1 Performance evaluation of the proposed method and ARIMA under
different DPV penetration

Scenario Method MAPE RMSE (kW)

Proposed

1 Method 0.1174 14372.59
ARIMA 0.0983 14461.18
Proposed

2 Method 0.0927 11892.62
ARIMA 0.1094 13574.31
Proposed

3 Method 0.0825 10876.52
ARIMA 0.1126 13892.45

5. Conclusion

Some of the factors affecting DPV and AEC are the
same but have different mechanisms of action, such as
weather. There are also different influencing factors, such as
calendar effects for AEC and national policies for DPV.
Considering the different patterns of variation of DPV and
AEC under the action of multiple influencing factors, the
idea of decoupled prediction is proposed. To cope with the
difficulty of uncertainty added to the monthly electricity
consumption prediction by the random additions of DPV, a
monthly electricity consumption prediction method under
the framework of online update of DPV information is
proposed. Given the continuous updating of the DPV
database, the process of change in DPV penetration is
simulated in this paper, making the prediction of DPV
generation more realistic. The validation that the fluctuations
of monthly AEC series are injected new characteristics of
DPV generation is used to determine the former non-solar
customers have installed DPV, which ensures that the newly
installed DPV generation is subtracted. The proposed
monthly NEC prediction model taking into account DPV
installation information update outperforms the direct model
based on ARIMA under high DPV penetration.



Though the DPV installation check for each non-solar
customer in turn is easier to find DPV additions, it also
increases the time of prediction. Future work could improve
this point and extend the proposed method to monthly NEC
prediction considering the demand response to verify its
applicability [34-36]. Furthermore, the integration of various
distributed renewable energy generation [37-40] and a
massive amount of data collected from advanced metering
infrastructure will bring more challenges.
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