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ABSTRACT The emerging peer-to-peer (P2P) energy market is gaining momentum due to its escalating
market value and sustainability, granting prosumers the autonomy to trade and obtain economic benefits.
As the market expands and individual energy transactions intensify, ensuring secure operation to maintain
the system within safe boundaries becomes vital. This paper introduces a security-constrained P2P energy
market strategy for distribution networks (DNs), incorporating price-based regularization via the alternating
direction method of multipliers (ADMM). The resulting bid price reflects network constraints, imposing
penalty costs or incentives on prosumers based on the energy transaction’s impact on the system. This
leads to a clear understanding of the price formation in energy transactions. The proposed market strategy is
decentralized and easily implementable, thereby improving market-clearing scalability and computational
efficiency.We verified effectiveness and scalability of the proposed strategy, considering network constraints
of voltage deviation, line congestion, and power losses, through numerical case studies based on the IEEE 33-
node and 119-node test systems. In a 119-node test system involving 500 prosumers, all network constraints
were fulfilled with a marginal 0.6% decrease in social welfare compared to a market strategy without
regularization. The market-clearing convergence time was approximately 21 seconds, demonstrating its
suitability for a short-term, large-scale P2P energy market.

INDEX TERMS Alternating direction method of multipliers, distribution network, energy pricing, market-
clearing strategy, peer-to-peer energy market.

NOMENCLATURE
SETS, INDICES, AND FUNCTIONS
i, j Indices of sellers and buyers.
m, n Indices of nodes.
l Index of distribution lines.
k Index of ADMM iterations.
V Set of nodes in the distribution network.
E Set of lines in the distribution network.
VS , VB Set of sellers and buyers.
ESB Set of trading relationships.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mostafa M. Fouda .

B(i) Set of trading counterparts (buyers) for seller i.
S(j) Set of trading counterparts (sellers) for buyer j.
�S Feasible set of the seller’s problem.
�B Feasible set of the buyer’s problem.
�DSO Feasible set of the DSO’s problem.
US i Utility function of seller i.
UBj Utility function of buyer j.
UD Utility function of DSO.
Ci Flexibility activation cost function of seller i.
Bj Revenue function of buyer j.
Dj Additional trading cost function of buyer j.
IS Indicator function associated with regulariza-

tion of sellers’ constraints.
IB Indicator function associated with regulariza-

tion of buyers’ constraints.
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IDSO Indicator function associated with regulariza-
tion of the DSO.

P�DSO Projection function onto �DSO.
LDSO Equivalent augmented Lagrangian function of

the DSO’s problem.
PARAMETERS
N Number of nodes in the distribution network [-].
L Number of lines in the distribution network [-].
NS , NB Numbers of sellers and buyers [-].
ai, bi Coefficients of the cost function of seller i

[¢/kW2, ¢/kW].
wj, tj Coefficients of the utility function of buyer j

[¢/kW2, ¢/kW].
ui,j Bilateral trading weight between seller i and

buyer j [¢/kW ].
ps,max
i Maximum of total selling energy of seller i

[kW].
ps,min
i Minimumof total selling energy of seller i [kW].
pb,max
j Maximum of total buying energy of buyer j

[kW].
pb,min
j Minimum of total buying energy of buyer j

[kW].
υbase
n Base voltage magnitude at node n [p.u.].

υmax
n Maximum of voltagemagnitude at node n [p.u.].

υmin
n Minimum of voltage magnitude at node n [p.u.].
f basel Base power flow of line l [kW].
f max
l Maximum of power flow of line l [kW].
f min
l Minimum of power flow of line l [kW].
γ ni,j Sensitivity factor for voltage deviation at node n

according to the energy trade zi, j [p.u./kW].
ϕli,j Sensitivity factor for line congestion of line l

according to the energy trade zi,j[-].
τi,j Sensitivity factor for power losses according to

the energy trade zi,j [-].
cretail Retail price of purchasing energy from utility to

distribution network [¢/kW].
cFiT Export price of selling energy from distribution

network to utility [¢/kW].
ρ Penalty parameter [-].

VARIABLES
vn Voltage magnitude at node n [p.u.].
fl Active power flow on line l [kW].
Ploss Total active power loss [kW].
psi Total trading energy by seller i [kW].
pbj Total trading energy by buyer j [kW].
zi,j Global variable for trading energy between

seller i and buyer j [kW].
esi,j Local variable of the bidding for trading energy

by seller I [kW].
ebi,j Local variable of the bidding for trading energy

by buyer j [kW].
λsi,j Bidding energy price by seller i for the energy

transaction with buyer j [¢/kW].

λbi,j Bidding energy price by buyer j for the energy
transaction with seller i [¢/kW].

λi,j Energy price for trading energy between seller i
and buyer j [¢/kW].

λ̃i,j Extra price for trading energy between seller i
and buyer j [¢/kW].

ξ, ξ Dual variables for voltage magnitude con-
straints [¢/p.u.].

η, η Dual variables for line capacity constraints
[¢/kW].

NUPi,j Network usage price for the energy transaction
between seller i and buyer j [¢/kW].

I. INTRODUCTION
A. MOTIVATION AND BACKGROUND
The surge in distributed energy resources, smart meters,
energy storage systems (ESSs), electric vehicles (EVs),
and home energy management systems (HEMSs) is paving
the way for a peer-to-peer (P2P) energy trading market.
This emerging platform allows market participants to make
independent decision-making for energy trades in accordance
with the business opportunity and the energy flexibility [1].
With the expansion of the P2P energy trading market, tra-
ditional passive consumers are becoming active prosumers.
These prosumers can dynamically manage their energy
production and consumption, trading energy with utilities and
other prosumers [2]. While maximizing social welfare is a
primary objective in the P2P energymarket, prosumer-centric
energy exchanges pose challenges to the secure operation
of a distribution network (DN) due to increased power flow
variations [3]. Therefore, market mechanisms and clearing
strategies should appropriately reflect both prosumer benefits
and system reliability.

Grid support or ancillary services (ASs) are commonly
used strategies for the secure operation of DNs, providing
solid management in uncertain market situations [4], [5],
[6]. They implement imbalance settlement and regulation
services. Usually, these strategies are radical and processed
between P2P market clearing and market gate closure.
Moreover, the cost of implementing additional services is
usually non-negligible [7], and sensitive energy transaction
information could potentially be exposed to the service
provider [8]. A P2P energy market-clearing strategy can
be easily integrated into the existing market. Furthermore,
a decentralization-based approach is highly desirable for
scalable P2P energy markets with diverse renewables [9],
respecting the privacy of prosumers [10]. Along with these
advantages, the efficient management for network constraints
of DNs is of great interest in the research field of P2P energy
markets.

To this end, this paper explores a security-constrained
P2P energy trading strategy, considering an aspect of
decentralization and a price-based regulation for network
constraints.
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B. LITERATURE REVIEW
Several emerging issues in the field of P2P energy markets,
such as social welfare maximization [11], implementing
coordination strategies [12], improving system reliabil-
ity [13], and maintaining security against cyberattacks [14],
pose major challenges. Many market mechanism approaches,
including various auctions using game theory, have been
explored. One study [15] suggested a sensitivity analysis-
based methodology to assess the effects of P2P energy
transactions on power flows, voltages, and power losses;
the distribution system operator (DSO) ensures safe energy
transactions by rejecting high-risk trades in a continuous
double auction market. A multi-round double-auction mech-
anism using distribution locational marginal pricing signals
to manage network constraints has also been proposed [16].
Other researchers [17] have suggested a coalition graph game
paired with a local voltage management scheme to encourage
prosumers to trade cooperatively.

As another application of market mechanisms, a Stack-
elberg game-based energy sharing framework was also
proposed, considering line capacity constraints [18], in which
an energy-sharing provider sets varied prices for each
region, accounting for the operation of the DN. Meanwhile,
a cooperative energy market mechanism was proposed for an
activeDN, inwhich theDSOmanages voltages by controlling
tap changers and shunt capacitors [19]. A zero-sum P2P
settlement method focused on demand-side reserve comfort
and allocating costs related to constraint violation using the
Vickrey–Clarke–Groves mechanism [20]. Two studies [21],
[22] presented P2P energy market strategies that consider
uncertainties in energy prices, renewable generation, and load
demand. In one [21], an uncertainty price is charged to the
equipped prosumers according to their energy reserves, while
the other [22] proposes a general Nash bargaining model
based on a hybrid stochastic/robust optimization approach
that achieves market balance by adjusting the computational
burden and conservativeness.

Optimization-centric approaches have proven highly effec-
tive in addressing P2P energy market reliability issues [23].
For instance, in an electrical-distance-driven matching strat-
egy, the DSO prioritized matching agents based on the
shortest electrical distance [24]; this strategy efficiently
reduced power losses and line use, although it did not
consider voltage impact. For applications in building-to-
building energy transactions, a multilevel bidding method
for inverter-based heating, ventilation, and air conditioning
(HVAC) systems was proposed, factoring in transactive
capacity and historical locational marginal prices [25]; this
approach helped save user energy costs and alleviate network
power congestion. In a P2P energy sharing strategy for a
cluster of smart energy buildings, the two-level optimization
problem for each building helped establish a fully distributed
strategy, resulting in load profile smoothing in the regional
building cluster [26].
For the short-term market clearing, a generalized fast

dual ascent method was applied to improve the convergence

region [27]; this research implemented the sensitivity analysis
of nodal voltage and power losses and leveraged the
Lagrangian-relaxation method to enhance the computational
performance in a distributed manner. A primal–dual gradient
method was also proposed, considering line flow constraints
and potential line use charges as congestion signals [28],
in which convergence time was significantly reduced. For
a framework of P2P energy market, a blockchain-based on-
chain power flow calculation model was proposed in a P2P
negotiation, allowing the swift smart contract betweenmarket
participants [29]. This scheme applied a self-adjustment
power loss allocation to the result of initial power flow
calculation and updated nodal voltage within network voltage
requirements.

Decentralization-based methods have attracted substantial
interest. For example, a fully decentralized mechanism for
coordinated active/reactive power management achieved P2P
energy trading with voltage regulation [30]. In addition,
a fully decentralized market-clearing mechanism was devel-
oped using a Lagrangian approach [31]; it employed a
projected gradient method to integrate power loss constraints
into the market mechanisms, considering a network fee
associated with the electrical distance. Another research
group developed an alternating direction method of mul-
tipliers (ADMM)-based market clearing for P2P energy
trading, albeit without considering technical constraints [32].
Subsequently, various enhancements to the ADMM-based
market clearing have been introduced [13], [33], [34], [35],
[36]. The works [13] and [33] leveraged the projected
gradient method to integrate line flow and voltage constraints
into the ADMM-based market-clearing process. In [34],
the power losses and transaction fees allocation strategy
was integrated into the market-clearing process. Another
enhancement used an exogenous cost allocation scheme to
alleviate line congestion [35]; however, this scheme did not
guarantee safe network conditions with complete certainty.
Meanwhile, the work [36] verifies the effectiveness of the
ADMM-based market clearing algorithm through a real-
time simulation using Hardware-in-the-Loop (HIL). Table 1
represents a comparison of this work to the reviewed
articles in the literature review. In comparison to other
studies, this work comprehensively accounts for all relevant
physical factors, including voltage, line constraints, and
power loss. These factors are addressed by introducing a
regularization step in the global variable update of the
ADMM algorithm, which also establishes pricing related
to network constraints. Additionally, the decentralized and
privacy-preserving properties are essential in P2P energy
trading, ensuring both the autonomy of the participants and
the protection of sensitive prosumer data. The proposed
method is designed to maintain these properties with minimal
intervention from the DSO.

C. MAIN CONTRIBUTIONS
This paper presents a novel security-constrained P2P energy
market-clearing strategy, designed to optimize bidding,
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FIGURE 1. Overall schematic diagram of the proposed security-constrained P2P energy trading strategy. The main contribution of this work is the
incorporation of Step (ii) in the ADMM process, resulting in a regularized ADMM for P2P energy trading.

FIGURE 2. Modeling of players in the P2P energy market.

TABLE 1. Comparison of relevant literature on P2P energy markets. ‘X’
means that the property is not considered, ‘O’ means that the property is
considered.

ensure prosumer benefits, and efficiently manage network
constraints, including bus voltage deviation, line congestion,
and power losses. An overall schematic of this process is
depicted in Fig. 1. The proposed strategy entails modeling
the interests of each market player via energy trading. The
prosumers’ interest is to maximize their benefits by trading

energy. Their energy trading can change the power flow of
the distribution network, and the DSO’s interest is to maintain
system reliability during the trading. To satisfy all their
interests, a price-based regularization of ADMM is utilized in
this paper. Through the price-based regularization of ADMM,
the DSO adjusts local prosumer bids for enhanced reliability
management. Notably, a penalty cost or an incentive imposed
on each energy transaction properly reflects the associated
network constraints, of which extra cost can be applied to a
design of transaction fee. In addition, the proposed strategy
provides the privacy-preserving property of prosumers,
making it practical for real-world P2P energy trading.

The primary contributions of this paper are summarized
as follows. 1) The proposed P2P energy trading strategy
optimizes bidding outcomes, considering both the maxi-
mization of social welfare and the secure operation of the
distribution network. 2) Within the formulation of market
model, the regularization of ADMM method evaluates the
breach of network constraints, including voltage deviation,
line congestion, and power losses. 3) The pricing mechanism
is tied to network constraints. Depending on the impact of
the energy transaction on the distribution network, either
a penalty cost or an incentive is imposed on prosumers.
This mechanism is applied to a novel design of the
energy transaction fee in the P2P energy market. 4) The
proposed P2P market strategy is decentralized, scalable, and
computationally efficient, supporting the privacy-preserving
property of prosumers.

D. PAPER ORGANIZATION
The structure of this paper is organized as follows: Section II
details the models for a seller, a buyer, and the DSO within
the P2P energy market. In Section III, the design of the
P2P energy market is presented, along with the formulation
of optimization problem based on ADMM regularization.
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Section IV provides detailed steps for the implementation
of the proposed strategy. The results of numerical case
studies are presented in Section V. Finally, Section VI offers
concluding remarks.

II. MODERING OF MARKET PLAYERS
A. PLAYERS IN THE P2P ENERGY TRADING MARKET
The P2P energy market considered in this paper adopts the
decentralized approach, a major trend among recent P2P
frameworks [11]. The setup involves prosumers (sellers and
buyers) and the DSO on a DN (Fig. 2). The prosumers,
positioned at local buses, interact with the system, prioritizing
their profits through minimization of activation costs or
maximization of usage benefits. The DSO ensures system
operational reliability by moderating energy trading between
prosumers. As depicted in Fig. 2, sellers and buyers engage
in bidding, which could result in potential issues such as
voltage deviation or line congestion. The DSO reviews
bidding information from the sellers and buyers and adjusts
the bidding quantity by updating network usage price when
the potential issues arise. The model for each market player
is designed with a specific objective, represented as a
utility function; these are further elaborated in the following
sections.

B. BENEFIT-SEEKING PROSUMERS
Let us assume the voltage and the power flow in a DN can
be analyzed based on algebraic graph theory, which first
generates a DN in the graphical notation G(V, E). Here, V =

{1, . . . ,N } is the set of nodes and E = {1, . . . , L} is the
set of distribution lines. The prosumers, among the buses in
G, can be either sellers or buyers depending on the energy
availability. Each group of sellers and buyers can be denoted
as VS := {1, . . . ,NS} and VB := {1, . . . ,NB}, respectively.
Let us further define the set of the trading relationship ESB ⊂

VS × VB; then, the P2P energy market in the DN G can be
written as T (VS ,VB,VSB). Additionally, the counterpart set
of a prosumer can be defined as B(i) ⊂ VB for the seller
i ∈ VS and S(j) ⊂ VS for the buyer j ∈ VB.
In case of the group of sellers, each seller i ∈ VS

maximizes its utility US i by minimizing the flexibility
activation cost Ci [11]. The seller’s problem is stated as:

max USi = −Ci(psi ), (1a)

Ci(psi ) = ai(psi )
2
+ bipsi , (1b)

psi =

∑
j∈B(i)

esi,j, (1c)

ps,min
i ≤ psi ≤ ps,max

i , (1d)

esi,j ≥ 0, ∀j ∈ B(i). (1e)

Here, ai and bi are positive coefficients subject to each
seller, ensuring the convexity of the problem. (1c), (1d),
and (1e) are constraints enforced on the trading energy esi,j
from seller i to buyer j and the total trading energy psi from
the seller i. First, (1c) indicates the total energy sold by seller i

is equal to the sum of traded energywith all partners j ∈ B(i).
Constraint (1d) insists that the total energy sold is bound by
minimum and maximum limits. The constraint (1e) imposes
a non-negativity condition on the traded energy.

Each buyer j ∈ VB maximizes the utility composed of
the revenue Bj from utilizing the purchased energy and the
bilateral trading cost. Likewise, the buyers’ problem is stated
as:

max UBj = Bj(p b
j ) − Dj(ebj ), (2a)

Bj(p b
j ) = tjp b

j − wj(p b
j )

2, (2b)

Dj(e b
j ) =

∑
i∈S(j)

ui,jebi,j, (2c)

p b
j =

∑
i∈S(j)

ebi,j, (2d)

p b,min
j ≤ p b

j ≤ p b,max
j , (2e)

ebi,j ≥ 0, ∀i∈S(j). (2f)

The benefit for the buyer is defined as the convex quadratic
form shown in Equation (2b), where tj and wj are positive
coefficients. The buyer’s problem is also considered an
additional cost given in Equation (2c), which is associated
with the preference for the energy type and is represented
by the bilateral trading weight ui,j [10], [32]. For instance,
the trading coefficient ui,j is small when buyer j prefers the
low-carbon energy resource from seller i, and vice versa.
Alongside the utility function, trading energy constraints are
provided in Equations (2d), (2e), and (2f). These respectively
refer to the condition of the total trading energy pbj for buyer j,
the bounds of the total trading energy, and the non-negativity
condition on the trading energy ebi,j from seller i to buyer j.

C. RELIABILITY-SEEKING DSO
Network issues often discussed include voltage deviation,
line congestion, and incidental power losses [13], [15]. From
the perspective of system reliability, the DSO addresses these
issues to ensure stable operation of the DN. Initially, network
constraints for voltage deviation and line congestion are
formulated based on the presented sensitivity factor. Given
these constraints, indicator functions are modeled to validate
whether the network status lies within the feasible operation
set, which is explained in the following section.

Let υn represent the voltage magnitude at node n ∈ V
and fl represent the active power flow in line l ∈ E , which
lead to the corresponding vectors υ := [υ1, . . . , υN ]T and
f := [f1, . . . fL]T, respectively. For υ and f , let υmin, υmax,
fmin, and fmax denote the minimum and maximum limits of
nodal voltages and line power flows, respectively. We also
consider the base conditions under the normal operating
state are given as υbase

= [υbase
1 , . . . , υbase

N ]
T
and f base =

[f base1 , . . . , f baseL ]
T
. The sensitivity factors for the voltage

deviation and line congestion are then provided in terms of
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the trading energy zi,j between seller i and buyer j:

γ ni,j =
∂υn

∂zi,j
, (3)

ϕli,j =
∂fl
∂zi,j

, (4)

which is motivated from the mutual voltage sensitivity
coefficient and the power transfer distribution factor [8]. The
detailed derivation of Equations (3) and (4) are described
in Appendix A. With the above sensitivity factors, the node
voltage and the line power flow have the following deviations
in consequence of the energy trading:

1υn =

∑
(i,j)∈ ESB

γ ni,jzi,j, (5a)

1fl =

∑
(i,j) ∈ ESB

ϕli,jzi,j. (5b)

Each lower and upper margin of the voltage magnitude at
node n and the power flow at line l is obtained from the bound
constraints and the base conditions, leading to:

δυ lower
n = υ min

n − υ base
n , (6a)

δυ
upper
n = υ max

n − υ base
n , (6b)

δf lower
l = f min

l − f base
l , (6c)

δf upper
l = f max

l − f base
l . (6d)

Here, the relationship between (5) and (6) clearly provides
the information of the feasible region to maintain system
reliability.

Regarding power losses, the DSO adjusts bids between
prosumers with the aim of minimizing total power loss.
While line power loss results from energy transactions, the
associated economic impact is often excluded from prosumer
benefit calculations. To accurately account for the cost arising
from incidental power losses, we introduce a sensitivity
factor to evaluate power loss due to energy trading, and
subsequently propose an opportunity cost for recovery.

First, the sensitivity factor to assess the incidental power
loss due to the energy trading between seller i and buyer j can
be given as below:

τi,j =
∂P loss

∂zi,j
, (7)

which is motivated from the bilateral exchange coeffi-
cient [15]; its detailed derivation is provided in Appendix.
Using this sensitivity factor, the total power loss can be
estimated by

∑
i,j τi,jzi,j. Assuming there are the non-negative

incidental power losses resulting from the energy trading, it is
possible to estimate the opportunity cost of the recompense
by the DSO. Specifically, the recovery cost is calculated
based on the retail price cretail in the case of purchasing and
the export price cFiT in the case of selling [37], of which
understanding leads to:

c loss
i,j =

{
c retail · τi,j, if τi,j ≥ 0
c FiT · τi,j, otherwise

for ∀(i, j) ∈ ESB.

(8)

Thus, the total recovery cost in the DN can be obtained from
the collective vector of the recovery cost closs as below:

π loss
:=

∑
(i,j)∈ ESB

c loss
i,j zi,j = (c loss) Tz. (9)

Using (5), (6), and (9), the DSO problem maximizes
the system reliability in terms of voltage deviation, line
congestion, and incidental power losses.

max UD = −(c loss) Tz, (10a)

δυ lower
n ≤

∑
(i,j)∈ESB

γ ni,jzi,j ≤ δv upper
n for ∀n ∈ V, (10b)

δf lower
l ≤

∑
(i,j)∈ESB

ϕli,jzi,j ≤ δf upperl for ∀l ∈ E . (10c)

The adjustment based on (10) naturally sacrifices a portion
of prosumer benefits, of which the relationship implies
the trade-off between the system reliability and the market
economy. The proposed market strategy captures the gap
between the interests of the DSO and prosumers and secures
the best bid as an operationally and economically sound
balance. The gap of interests is evaluated as a network usage
price (NUP) and is used to calculate a penalty cost or an
incentive of the P2P market clearing problem, of which
supplementary ideas are presented in the overall market
design.

III. MARKET DESIGN
A. OPTIMIZATION PROBLEM OF THE P2P ENERGY
TRADING MARKET
The P2P energymarket is generally concerned with maximiz-
ing overall utility. Typically, the most considered objective
function is social welfare, which combines generation
costs and benefits accrued from energy purchased by
prosumers [11]. The proposed optimal problem considers
both financial interests and system reliability. The overall
utility of the P2P energy market can be derived from the sum
of individual utilities of prosumers and the DSO. Considering
the overall utility and all the network constraints, the P2P
energy trading problem can be formulated as:

maxU =

−

∑
i∈VS

Ci(p s
i ) +

∑
j∈VB

(
Bj(p b

j ) − Dj(e b
j )

)
−(closs)T z

}
,

subject to: (1c), (1d), (1e), (2d), (2e), (2f), (10b)), (10c),

and (11a)

e s
i,j = zi,j, : λsi,j, ∀(i, j) ∈ ESB, (11b)

ebi,j = zi,j, : λbi,j, ∀(i, j) ∈ ESB. (11c)

Here, dual variables are denoted at the right side of the
corresponding constraints. λsi, j and λbi,j refer to the bidding by
sellers and the buyers, also called the energy price. Normally
in this formulation, the price biddings from seller and buyer
differs, i.e., λsi,j ̸= λbi,j, and the final bid of energy price
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is derived from the average of λsi,j and λbi,j. The price gap
between the biddings from seller and buyer is called a NUP,
and the split price is imposed on prosumers.

Also, the regularizations from the constraints of (1c),
(1d), (1e), (2d), (2e), (2f), (10b), and (10c) are formulated
apart from the constraints pertaining to the consensus
terms (11b) and (11c). The regularization terms are formu-
lated as the indicator functions enforced on each market
player:

IS (es) =

{
0, if es ∈ �S

∞, otherwise
, (12a)

�S =

{
es ∈ R|ESB|

: (1c), (1d), and (1e) for ∀i ∈ VS
}

.

(12b)

IB(eb) =

{
0, if eb ∈ �B

∞, otherwise
, (13a)

�B =

{
e ∈ R|ESB|

: (2d), (2e), and (2f) for ∀j ∈ VB
}

.

(13b)

IDSO(z) =

{
0, if z ∈ �DSO

∞, otherwise,
(14a)

�DSO =

{
z ∈ R|ESB|

: (10b) and (10c)
}

. (14b)

Based on the indicator functions, the optimization problem
of (11) is reformulated as:

min


∑
i∈VS

Ci(psi ) −
∑
j∈VB

(
Bj(p b

j ) − Dj(e b
j )

)
+

(c loss) Tz+ IS (es) + IB(eb) + IDSO(z)

 , (15a)

e s
i,j = zi,j, : λsi,j, ∀(i, j) ∈ ESB, (15b)

e b
i,j = zi,j, : λ b

i,j, ∀(i, j) ∈ ESB. (15c)

The global consensus problem of (15) can be computed
in parallel for each player based on the ADMM approach.
Considering that the calculation step k is transitioned to k+1,
each variable is updated as follows.

• e-update by prosumers: (16), as shown at the bottom of
the next page.

• z-update by the DSO:

zk+1
= arg min

z∈ �DSO

{
− UD+ρ

∥∥∥zk − ēk+1
− λ̃k

/
ρ

∥∥∥2
2

}
,

= arg min
z∈ �DSO

{
(c loss)T zk+ρ

∥∥∥zk − ēk+1
−λ̃k

/
ρ

∥∥∥2
2

}
,

(17a)

= arg min
z∈ �DSO

ρ

∥∥∥∥∥zk − ēk+1
−

λ̃k

ρ
+
c loss

2ρ

∥∥∥∥∥
2

2

 ,

= P�DSO(ē
k+1

+ (2λ̃k − c loss)
/
2ρ),

ēk+1
i,j =

1
2
(e s,k+1
i,j + e b,k+1

i,j ), (17b)

λ̃ki,j =
1
2
(λb,ki,j − λ

s,k
i,j ). (17c)

• λ-update by prosumers:

λ
s,k+1
i = λ

s,k
i − ρ(e s,k+1

i − zk+1), (18a)

λ
b,k+1
j = λ

b,k
j + ρ(e b,k+1

j − zk+1). (18b)

Here, the z-update problem includes a modification in
the definition of the dual variable (17c) instead of
an averaging step in the original consensus-ADMM
formulation in [38]. The above sub-problems are iter-
atively solved by the corresponding market players,
which leads to the optimal solution of the original
problem (11).

Stopping criteria for the iterative process are given based
on the primal and dual residuals [38]:∑

i∈VS

∥∥∥r s,k
i

∥∥∥2
2
+

∑
j∈VB

∥∥∥r b,k
j

∥∥∥2
2

≤ ε2pri, (19a)

∥∥∥sk∥∥∥2
2

= ρ2
∥∥∥zk − zk−1

∥∥∥2
2

≤ ε2dual, (19b)

where rs,ki := es,ki − zki,j and rb,kj := eb,kj − zki,j are the
local primal residuals of seller i and buyer j at iteration k ,
respectively; sk := ρ(zk − zk−1) is the dual residual at
iteration k .

B. ADJUSTMENT OF BIDDINGS VIA NUP
DSO problem governs the network problems pertaining to
voltage deviation, line congestion, and incidental power loss,
of which regularization is reflected in the z-update (17).
If there is a feasible solution for (17a), the objective
function is convex and the strong duality holds. Providing
the feasibility of the problem, the equivalent augmented
Lagrangian can be written as:

LDSO =

∑
(i,j)∈ESB

[
c loss
i,j zk+1

i,j + ρ(zk+1
i,j − ēk+1

i,j − λ̃ki,j

/
ρ)2

]
+ ξT (δυ lower −

∑
(i,j)∈ESB

γi,jz
k+1
i,j )

+ ξ̄T (
∑

(i,j)∈ESB

γi,jz
k+1
i,j − δυupper )

+ ηT (δf lower −

∑
(i,j)

ϕi,jz
k+1
i,j )

+ η̄T (
∑

(i,j)∈ESB

ϕi,jz
k+1
i,j − δf upper ), (20)

where ξ , ξ ∈ RM are dual variables for the voltage
magnitude constraint (10b) and η, η ∈ RL for the line
capacity constraint (10c). Regarding the KKT conditions
associated with (20), the stationarity condition with respect
to zi, j leads to:

∂LDSO
∂zk+1
i,j

= 0 ⇔ 2ρ(zk+1
i,j − ēk+1

i,j ) − 2λ̃ki,j + c loss
i,j

+ (−ηT + η̄T )ϕi,j + (−ξT + ξ̄T )γi,j = 0 (21)
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Hence:

λ̃ki,j = ρ(zk+1
i,j − ēi,jk+1) +

1
2
(c loss
i,j + c const

i,j ) (22)

c const
i,j = (−ηT + η̄T )ϕij + (−ξT + ξ̄T )γi,j, (23)

where clossi, j corresponds to the opportunity cost of alleviating
the incidental power loss according to (8) and cconsti, j is the cost
incurred by voltage deviation and line congestion. Providing
that the global problem (15) is solved so z∗i,j = esi,j and
z∗i,j = ebi,j hold, (15) can be rewritten as:

λ
b,∗
i,j − λ

s,∗
i,j = c loss

i,j + c const
i,j . (24)

Note that λ
s,∗
i,j and λ

b,∗
i,j are the final biddings for energy

price from the seller i and the buyer j, respectively. The
relationship expressed in Equation (24) implies that there is
an additional cost or an incentive for the implementation of
the P2P energy trading. Specifically, the collective cost for
the DN is obtained as:∑
(i,j)∈ESB

(λb,∗i,j − λ
s,∗
i,j )z

∗
i,j =

∑
(i,j)∈ESB

c loss
i,j z∗i,j +

∑
(i,j)∈ESB

c const
i,j z∗i,j.

(25)

This can be interpreted as an overhead for the P2P
energy trading. Thus, from the perspective of the market
design, we hereby define (24) and (25) as a network usage
price (NUP) and a network usage cost (NUC), respectively.
Especially, Equation (24) implies that the NUP is associated
with the network constraints, reflecting the impact of energy
transactions on the system reliability.

For further market design, the problem of which mar-
ket player pays the NUC can be considered. There are
conventional approaches to impose a transaction fee on pro-
sumers [31], [35]. Alternatively, there can be an inducement
that the DSO exclusively covers the NUC to promote the
participation of newly emerging prosumers. In the following
discussions in this paper, the trading energy price is defined as
the average of the final energy price biddings from the seller
and the buyer, leading to (26). In addition, an extra price is
derived by splitting the NUP and expressed in Equation (27),
which can be the penalty or incentive for the corresponding
energy transaction between the seller i and the buyer j.
Considering the final trading energy z∗i,j, the extra cost for
the energy transaction can be calculated as λ̃∗

i,jz
∗
i,j, which can

be considered a transaction fee of the corresponding energy

trading.

λ
∗

i,j =
1
2
(λb,∗i,j + λ

s,∗
i,j ), (26)

λ̃∗
i,j =

1
2
(λb,∗i,j − λ

s,∗
i,j ). (27)

IV. IMPLEMENTATION OF THE PROPOSED P2P ENERGY
TRADING ALGORITHM
A. OVERALL MARKET CLEARING PROCESS
To address the optimization problem described in (15), this
paper introduces a market-clearing process based on ADMM
regularization with global variable consensus. The complete
process is depicted in Fig. 3. The optimization problem (15)
can be broken down into three subproblems: (i) a local
problem for updating trading energy, (ii) a global problem
for adjustment, and (iii) a local problem for updating trading
price. In step (i), prosumers submit their optimal bidding,
accounting for both their neighbors and local constraints.
In step (ii), the DSO, after undergoing privacy-preserving
processes, aggregates the bidding information and adjusts
the trading energy for the sake of system reliability. Finally,
in step (iii), the prosumers update their trading prices based
on the information broadcasted from the DSO. These three
steps are iteratively performed until the market participants
find the optimal bidding result according to (15).

The market clearing process is conducted in parallel for
each market player (Fig. 3). Note that there are underlying
communication lines among market players. Assuming a
bidding on a single time slot, the DSO first casts an
initiation signal to prosumers, so they can make the first
bids: (λs,ki,j , e

s,k
i,j ) for the seller i and (λb,ki,j , eb,ki,j ) for the buyer

j. Then, the seller i and the buyer j locally compute the
trading energy by solving the optimization problem (16):
es,k+1
i,j and eb,k+1

i,j . Next, the seller i collects the local

bidding information (λb,ki,j , eb,k+1
i,j ) from the buyer j, and

evaluates λ̃ki,j using (17c). Seller i sends an information

set (̃λki,j, es,k+1
i,j , eb,k+1

i,j ) to the DSO. Here, note that the
evaluation of (17c) is conducted locally, so the DSO
cannot access the direct information of energy prices, which
supports the privacy-preserving property of prosumers. For
the DSO, the global variable zk+1

i,j is updated by solving the
optimization problem (17a), and then broadcast to both the
seller i and the buyer j. Subsequently, each prosumer updates
the energy trading prices using (17b) and (18): λ

s,k+1
i,j and

λ
b,k+1
i,j . These processes are iteratively conducted until the

es,k+1
i = arg min

eiS∈ �S

Ci(p s
i )+∑

j∈B(i)

(
−λ

s,k
i,j (e

s,k
i,j − zki,j) +

1
2ρ(e

s,k
i,j − zki,j)

2
)  , (16a)

eb,k+1
i = arg min

ejB∈ �B

 −Bj(p0bj ) + Dj(e
b,k
j )+∑

i∈B(j)

(
λ
b,k
i,j (e b,k

i,j − zki,j) +
1
2ρ(e

b,k
i,j − zki,j)

2
)  . (16b)
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FIGURE 3. Flowchart of the proposed market clearing process. The local
optimal biddings are implemented in Step (i), the global variable are
ad-justed based on the obtained biddings considering network
constraints in Step (ii), and then local biddings are updated by the
renewed global variable in Step (iii). These processes are iteratively
conducted until the stopping criteria is met.

stopping criteria (19) are met. In the market clearing process,
the prosumer’s optimization problem (16) and the DSO’s
optimization problem (17a) can be solved using a commercial
optimization solver.

V. CASE STUDIES AND RESULTS
This section presents the analysis of the proposed P2P
energy trading strategy, which specifically demonstrates the
effectiveness and the scalability based on the case studies on
the IEEE 33-node test system and 119-node test system. All
simulations were performed using MATLAB, MATPOWER
toolbox [39], and Gurobi Optimizer [40] on an Intel Comet
Lake 3.8 GHz processor with 8 cores and 32 GB of memory.

A. SIMULATION SETUP
In the common setup for the simulations, we only consider the
active power and load for the power flow calculation. In the
implementation of ADMM, the penalty parameter is set to
ρ = 0.02 and the tolerances for the stopping criteria are set
to ε2pri = 10−8 and ε2dual = 10−8. In the market clearing
process, the total communication delay per iteration is set to
60ms as in [41]. Regarding of the extra cost due to purchasing
or exporting energy by the DSO, cretail and cFiT are set to
7 ¢/kW and 3 ¢/kW, respectively.

First, an IEEE 33-node test system consisting of 10 pro-
sumers (5 sellers and 5 buyers) is considered in the simulation
of a single time slot (Fig. 4). Note that the DSO, virtually
installed in the backbone of DN, is marked at node 0 for
simplicity. The energy sellers are located in bus 13, 19, 22,
26, and 30 and the energy buyers in bus 17, 21, 24, 28, and
32, while the remaining buses are assumed to be passive
consumers. The base system load is 3,715 kW, as in [42],
which is used to calculate the base condition of the system:
υ base, f base, and Ploss. Before considering the network
constraints, we put the DN in Fig. 4 as a graph notation
G(V, E) with the node set V {0, 1, . . . , 32} and the line
set E = {1, . . . , 32}. Here, we also consider labels for the
distribution lines as l1, . . . , l32 for the simplicity. Then, for
the nodal voltages υn ∈ [0.95, 1.05] for n ∈ V , and for the
line power flow fl ∈ [−4MW, 4MW] for l ∈ {1, . . . , 11}
and fl ∈ [−1 MW, 1MW] for l ∈ {12, . . . , 32} are given
as the network constraints.

In addition to the physical configurations, the trading
relationship of prosumers can be expressed as a graph
notation T (VS , VB, ESB), where VS = {1, . . . , 5} is the set
of sellers, VB = {1, . . . , 5} is the set of buyers group, and
ESB is the set of connections between the sellers and buyers.
The sellers and the buyers are labelled as s1, s2, . . . , s5 and
b1, b2, . . . , b5 for the discrimination. Additionally, we use an
alternative notation sibj for the trading relationship (i, j) ∈

ESB. Each prosumer relies on the predefined utility to make
the best bid; the details, including the trading relationship, are
described as shown in Fig. 5. The communication structure is
also presented to help clarify how the consensus-ADMM for
the proposed strategy is implemented on the system.

In another simulation set, a 119-node test system that
includes various number of prosumers is considered. Specif-
ically, the number of prosumers is set to 100, 200, 300, 400,
and 500, wherein the ratio between the numbers of sellers and
buyers remains consistent. It is worth noting that a single bus
can host multiple prosumers, and moreover, both sellers and
buyers can reside in the same bus. Additionally, each buyer
has 5 randomly selected trading counterparts from the set of
sellers. In this context, we employ theMonte-Carlo method to
develop the set of prosumer information, including location,
utility function, and trading constraints.

Leveraging the test systems described above, the effective-
ness and the scalability of the proposed P2P energy trading
strategy are demonstrated. Case I–III investigate the former
aspect using the IEEE 33-node test system, while Case IV
evaluates the latter aspect using the 119-node test system,
along with a comparative analysis of the proposed strategy
and other methods.

B. CASE I: ENERGY TRADING WITHOUT THE REGULATION
BY THE DSO
Figs. 6(a)–(d) show the results of the market clearing process
without any regulation by the DSO, i.e., network constraints
of voltage deviation, line congestion, and power losses when
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FIGURE 4. An IEEE 33-node test system with five sellers and five buyers, and network constraints for the voltage
deviation and the line congestion.

FIGURE 5. Communication structure and prosumer information in the simulation of the IEEE 33-node test system.

only benefits of the sellers and buyers are of interest. For
the specific settings, the terms of (closs)

T
z and IDSO(z) are

assumed to be null in (15) and the bilateral trade weights are
ignored; thus, ui,j = 0 for ∀(i, j) ∈ ESB. Figs. 6(e) and 6(f)
show the profile of bus voltage and line power flow as the
result of P2P energy trading.

Fig. 6(a) shows the trading energy resulting from the
ADMM-based consensus process. The total traded energy of
each prosumer satisfies the given energy trading constraint.
Also, some bidding points of the trading energy hit zero,
where the corresponding buyers are b2 and b3. This is because
the utilities of b2 and b3 as in Fig. 5, are less competitive
compared to others from the perspective of the system.
Fig. 6(d) illustrates each of the selling prices and the buying
prices are illustrated on a two-dimensional Euclidean plane
with the symmetrical price formation drawn on the solid red
line. Here, the NUP can be derived directly by calculating
the y-coordinate gap between the bidding point (λsi,j, λbi,j)

and the red line. In the viewpoint of market clearing, the
symmetrical equilibrium price is ideal since it requires the
assumption of either of the following: the system resources
are limitless, or the impacts from the P2P energy trading
are negligible. Such evenness is also observed in the energy
prices across the trading relationships, implying that the
physical characteristics of system are ignored and the energy
price biddings throughout the given P2P energy trading
market are conducted under the equivalent game conditions.
The slightly lower points located at around 5.07 ¢/kWh are
subject to the dead transactions, where the corresponding
buyers are b2 and b3.
Thus, under unmanaged energy trading, both the bus

voltage constraint and the line flow constraint are violated.
In case of the node profile, the voltage magnitude at
nodes 8–17 and nodes 27–32 falls short of the lower limit
0.95 pu, as shown in Fig. 6(e). In case of the branch profile,
the power flow at lines 25–27 exceeds the 1 MW capacity,
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FIGURE 6. Optimal bidding results and network profiles with no regularization: (a) trading energy, (b) price biddings
be-tween sellers and buyers, (c) selling prices, (d) buying prices, (e) bus voltages, and (f) power flows.

FIGURE 7. Comparison of optimal bidding results: (a) trading energy, (b) price biddings between sellers and buyers,
(c) selling prices, (d) buying prices, (e) bus voltages, and (f) power flows.

as shown in Fig. 6(f). The total power loss in the system
is 16.72 kW.

C. CASE II: EFFECT OF EACH REGULARIZATION BY DSO
In this case study, the regularizations of the proposed P2P
market clearing strategy are explored in terms of the system
reliability. The effects of regularization by the DSO are
presented from three perspectives: voltage deviation, line
congestion, and power losses. For each regularization, the
general utility involves the indicator functions regarding of

the voltage constraints (10b), line flow constraint (10c),
and the cost function (closs)

T
z , respectively. The pricing

mechanism of the NUP due to the regularization is explained
as well. Fig. 7 provides details followed by a comparison with
the result of Case I.

1) CASE II-A: REGULARIZATION OF VOLTAGE DEVIATION
The results of the regularization are presented
in Figs. 7(a) and 7(b), which show the changes in trading
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FIGURE 8. Optimal bidding results with complete regularization by the DSO and consideration of bilateral trading weights:
(a) trading energy, (b) price biddings between sellers and buyers, (c) selling prices, (d) buying prices, (e) bus voltages, and
(f) power flows.

energy and energy price bids compared to Case I, denoted
by blue points. Figs. 7(c) and 7(d) illustrate the changes
in selling and buying prices, respectively. As a result of
regularization, the voltage deviation of the system is well-
managed, satisfying the given constraint (Fig. 7(e)). However,
the system still experiences a violation of the power flow
constraint at line 25 (Fig. 7(f)). Furthermore, the total power
loss in the system is obtained as 11.12 kW.

To rectify the low voltage condition, the proposed strategy
identifies optimal biddings, resulting in increased total supply
at s1, s4, and s5 and decreased or vanished total consumption
at b1 and b5 compared to Case I. Notably, in Case I, prosumers
s1, s4, s5, b1, and b5 are located at a risky area (nodes 8–17 and
nodes 27–32) under a lower voltage condition. In particular,
all selling prices at s1 appear to increase, while the buying
price for the trading relationship s1b2 decreases significantly,
causing a sharp increase in trading energy z∗1,2 (Fig. 7(a)).
The price bidding of s1b2 is positioned in the incentive area,
at the bottom right of the red line (Fig. 7(b)), hence both
selling and buying energies are incentivized due to the price
advantage. Note that the price bidding points for s4b3, s4b4,
and s5b4 in Fig. 7(b) are located in the incentive area, leading
to observed increased in their corresponding trading energies
as in Fig. 7(a). In contrast, for buyers b1 and b5, the price
bidding points for s2b1, s4b1, and s3b5 are located in the
penalty area, at the top left of the red line in Fig. 7(b), thereby
hindering corresponding transactions in Fig. 7(a).

2) CASE II-B: REGULARIZATION OF LINE CONGESTION
The bidding results of regularization according to line
congestion are presented as orange plots as shown in

Figs. 7(a)–(d). Each energy trading in the system is adjusted
in accordance with the proposed strategy, followed by
the network profiles of Figs. 7(e), and 7(f). Regarding
power flow, it is observed from Fig. 7(f) that the flow at
line 25 is kept within the acceptable capacity. However, the
violations of voltage at nodes 9–17 and nodes 29–32 remain
(Fig. 7(e)). The total power loss in the system is obtained
as 14.11 kW.

Depending on the impacts upon the power flow at line 25,
the trading relationships can be divided into three groups:
moderating, exacerbating group, and neutral. These groups
are based on the sensitivity factor defined by Equation (4).
Thus, the group to which the trading relationship belongs,
determines the area in the energy price bidding, i.e., the
incentive area, penalty area, and neutral red line. Moreover,
in the test system of Fig. 4, prosumers s4, s5, b4, and b5 are
located in the branched distribution line starting from line 25.
The trading relationships where the energy trading headed
toward the reverse direction of line 25 (from the node 25 to the
node 5) would moderate the power flow at line 25, i.e., s4bj
and s5bj for j ∈ {1, 2, 3}. Conversely, the energy trading
headed toward the forward direction of line 25 (from the node
5 to the node 25) would exacerbate the power flow, and the
corresponding trading relationships are sib4 and sib5 for i ∈

{1, 2, 3}. The remaining relationships have no impact on the
power flow at line 25. This topology-based intuition agrees
with the bidding results presented in Fig. 7(b), in which the
moderating group is in the incentive area, the exacerbating
group in the penalty area, and the remaining points along the
red line. Following the price biddings, each trading energy is
adjusted as well, as shown in Fig. 7(a).
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FIGURE 9. Bidding process for s1b2, s2b3, and s3b4: (a) trading variables evolution, (b) price bidding process between s1 and
b2, (c) price bidding process between s3 and b3, and (d) price bidding process between s3 and b4.

FIGURE 10. Scalability analysis of the proposed scheme according to the
number of prosumers: (a) required number of iterations and (b) average
communication and computation times.

3) CASE II-C: REGULARIZATION OF INCIDENTAL POWER
LOSSES
The bidding results of regularization according to incidental
power losses are presented as the green plots as shown
in Figs. 7(a)–(d). Compared with the other regularization
approaches, this regularization contributes less to the adjust-
ment of energy trading due to the setting of the cost function
(closs)

T
z. It should be noted that an incentive can be imposed

when the transaction between a seller and a buyer reduces
power loss. As an example, Fig. 7(b) shows that some
biddings are located in the incentive area. In the case of the
network profile, there are trivial improvements compared to
the results of Case I (Figs. 7(e), and 7(f)), ending up with
the failure of both the managements of voltage deviation and
line congestion. The total power loss is obtained as 15.65 kW,
which represents a reduction of 1.07 kW compared to the
result of 16.72 kW in Case I. This result shows that the total
power loss can be reduced by imposing the cost associated
with the power loss.

D. CASE III: ENERGY TRADING WITH THE COMPLETE
REGULARIZATION
This case study describes the result of the proposed P2P
energy market clearing strategy with the complete regu-
larization by the DSO and analyzes the effect from the
implementation of the bilateral trading weights (Fig. 8).
In addition, to intuitively understand the proposed strategy,

TABLE 2. Comparison of the market clearing methods in the modified
119-node distribution network.

the evolution of trading energy and its prices is presented as
in Fig. 9.

1) CASE III-A: COMPLETE REGULARIZATION
The navy blue plots in Figs 8(a)–(d) represent the bidding
results of trading energy, selling price, and buying price
after implementing the proposed P2Pmarket clearing strategy
with the complete regularization by DSO. Following the
optimal bidding results, the system reliability against the
voltage deviation and the line flow congestion is successfully
achieved (Figs. 8(e) and 8(f). Additionally, the total power
loss in the system is obtained as 11.09 kW, better than
that obtained in via partial regularization in Case II. Fig. 9
demonstrates the evolution of selling and buying prices,
showcasing three trading relationships: s1b2 with a positive
NUP, s3b3 with a neutral NUP, and s3b4 with a negative NUP.
The total computation time is found to be less than 1 second.

2) CASE III-B: COMPLETE REGULARIZATION WITH
BILATERAL TRATE WEIGHT u1,1 = 1.0 ¢/kW
The results of this case are shown as cyan plots in Fig. 8. Price
modification via the bilateral trade weight u1,1 = 1.0 ¢/kW
affects the buying price at s1b1 (Fig. 8(d)). The energy prices
from buyer 1 to sellers 1, 2, and 4 are identical in Case III-A,
whereas the buying price decreases to λb1, 1 = 4.89 ¢/kW
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in Case III-B. This represents the perceived price and is
considered as the price after tax [28]. The actual cost for buyer
1 to purchase energy from seller 1 consists of the buying price
and the bilateral trade weight, which gives λb1, 1 + u1,1 =

5.89 ¢/kW.
For further analysis, it can be seen in Fig. 8(a) that

there is no difference in the results of trading energy
between Case III-A and Case III-B. Considering the buyer’s
problem in Section II-B, a positive bilateral trade weight
debases the utility of energy transactions; thus, energy trading
at s1b1 becomes less competitive due to u1,1, resulting
in a dead transaction without making any change. Such
intactness in the P2P energy market enables a straightforward
understanding of the price formation; the new price of λb1.1
can be calculated by subtracting u1,1 = 1.0 ¢/kW from
the previous price of λb1,1 = 5.89 ¢/kW. Following this,
the selling price λs1,1 is affected by the same amount while
preserving the value of NUP (i.e., λb1,1 − λs1,1).
As shown in Figs. 8(e) and 8(f), the system reliability

against the voltage deviation and the line flow congestion is
successfully achieved as intended.

3) CASE III-C: COMPLETE REGULARIZATION WITH
BILATERAL TRATE WEIGHT u1,2 = 1.0 ¢/kW
The results of this case are shown as magenta plots in
Fig. 8. Compared to Case III-B, the energy transaction is
directly influenced by the price adjustment of λb1,2, which
affects all biddings in the P2P energy market are affected.
The buying price λb1,2 decreases to 2.74 ¢/kW due to u1,2
and the corresponding trading energy decreases compared
(Figs. 8(a) and 8(d)). The energy prices from buyer 2 to
sellers 1, 2, and 5 are identical in Case III-A; however,
each of the buying prices related to the buyer 2 changes,
impacting the corresponding trading energies z∗1,2, z

∗

2,2, and
z∗5,2, in Case III-B. Thus, the transactions related to z

∗

1,2, z
∗

2,2,
and z∗5,2 are affected, of which the relationships correspond
to s1b1, s1b5, s2b1, s2b4, and s5b5. The same process works
likewise in all the related transactions. Therefore, in this case
study, we find that a single manipulation of price can have
widespread influences on the P2P energy market.
Although there is the price modification and the readjust-

ment in the bidding processes, system reliability in terms of
voltage deviation and line congestion is successfully achieved
(Figs. 8(e) and 8(f)).

E. CASE IV: SCALABILITY ANALYSIS
For the scalability analysis, the algorithm is tested using a
modified 119-node test system [43] with various numbers of
prosumers. For simplicity, we assume that prosumers consist
of equal numbers of sellers and buyers. The number of
partners of each buyer is set to five. Additionally, we assume
that the subproblems of all prosumers are solved in parallel;
the maximal solver time is used to evaluate the computation
time. We also assume that the communication delay is 60 ms
per iteration as in [41].

First, the performance of the proposed method is compared
to the performances of an ADMM without regulariza-
tion [32], a primal-dual gradient method [28], and a
centralized method. The number of prosumers is set to 300,
and the proposed algorithms only consider the regularization
pertaining to the line flow. Table 2 presents a comparison
between the proposed method and other methods. In terms
of the total traded energy and social welfare, both the
proposed method and the primal-dual gradient method
attain the optimal solution provided using the centralized
method. Although the proposed algorithm requires more
computation time than the primal-dual gradient approach,
it requires less communication time due to fewer iterations.
Since communication time is more significant, the proposed
method converges faster than does the primal-dual gradient
approach.
Next, the algorithm is tested by varying the number

of prosumers varies; 100 Monte-Carlo simulations are
performed for each case, considering the complete reg-
ularization. Fig. 10(a) displays the number of iterations
required based on the number of prosumers. As the number
of prosumers increases, the number of iterations does not
increase significantly. Thus, the communication time remains
almost constant (Fig. 10(b)). However, as the number of
prosumers increases, the computational time also increases
due to the increasing dimension of the projection space in
the regularization step. For instance, with 500 prosumers, the
number of matchings (i.e., the dimension of the projection
space) is 1,250. Nonetheless, the total convergence time
remains practical for real-time large-scale market operation
(5 or 15 minutes). This result verifies the validity, scalability,
and effectiveness of the proposed P2P market clearing
strategy.

VI. CONCLUSION
This paper presents a novel P2P energy trading strategy based
on ADMM regularization. The proposed strategy allows the
P2P energy market to find the optimal bids to maximize
prosumers benefits while satisfying network constraints.
The proposed market design reflects the interests of each
market player, including the economic benefits of selling and
buying energy, as well as reliability considerations such as
voltage deviation, line congestion, and power losses. Due to
price-based regularization, an energy transaction involves a
NUP that reflects the given network constraints, resulting in
penalty costs or incentives imposed on prosumers. Further-
more, the proposed ADMM-based strategy is decentralized
and scalable. Case studies demonstrate the computational
effectiveness and scalability of this strategy for a reliable
P2P energy market. Compared to the primal-dual method,
the proposed method clears market with less communication
and convergence time. In the case study with 300 prosumers,
convergence time was reduced by 74.9%.
Future research should explore the challenges and opportu-

nities associated with the P2P energymarket clearing strategy
under uncertainty conditions. As observed in the case studies,
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a single price modification can lead to extensive changes in
bidding results. While uncertainty can introduce significant
complexity in the market clearing problem, it is a common
occurrence in practical operations. In addition, the proposed
method requires a solution to simplify the regularization
step (z-update) because the computation time of the DSO
increases as the number of prosumers and the system size
increase. The use of ESSs and EVs has also garnered interest
due to their potential to provide flexibility to microgrids.
Specifically, the sharing economy of ESSs can be beneficially
applied to the P2P energy market, providing advantages for
both the secure operation of the network and the social
welfare of market players. For broader applicability of the
P2P energy market, an AC/DC hybrid distribution system as
a testbed application will be explored in future research.

APPENDIX
REFERENCES
The purpose of this Appendix is to provide detailed deriva-
tions of the proposed sensitivity factors (3), (4), and (7). The
introduced factors evaluate the impacts on a DN due to energy
transactions between prosumers, of which derivation hence
employs branch-based matrices while the previous work
in [15] presents node-based sensitivity factors. Note that the
subjects of the sensitivity factors(3), (4), and (7) correspond
to the bus voltage deviation, the line flow deviation, and the
incidental power losses, respectively.

First, let us consider indices i ∈ VS and j ∈ VB for a
seller and a buyer in the P2P energy market T (VS , VB, ESB),
indices n, m ∈ for nodes in the DN G(V, E), and matrices
of AS

∈ RN×NS and AB
∈ RN×NB which map the

group of sellers and buyers to nodes in the DN. A voltage
sensitivity factor in [44] is presented as R ∈ RN×N with the
(n, m) element indicating the incremental voltage variation at
node n due to the power injection at node m. By multiplying
the mapping matrices, the voltage sensitivity factor can be
rewritten as below:

RS
= RAS

∈ RN×Ns , (A1)

RB
= RAB

∈ RN×NB (A2)

From (A1) and (A2), the sensitivity factor (3) can be
obtained as below:

γ ni,j = RS
ni − RB

nj, (A3)

where RS
ni denotes the (n, i) element of RS and RB

nj denotes
the (n, j) element RB.

Next, the sensitivity factor (4) related to the line flow
congestion can be obtained from the injection shift factor,
which in given by [45]:

ψ := B̃dCB−1
∈ RL×N . (A4)

For G(V, E), C denotes the reduced incidence matrix, and
B̃d and B denote the branch and nodal susceptance matrices
of the DN, respectively. Here, the (l, n) element of (A4)
indicates the incremental change in the line power flow at line

l due to the power injection at node n. In the same manner as
in (A1) and (A2), the factor (A4) can be rewritten as follows:

9S
= 9AS

∈ RL×NS , (A5)

9B
= 9ABRL×NB . (A6)

Then, it is straightforward to obtain the sensitivity
factor (4) from (A5) and (A6), which is:

ϕli,j = 9S
li −9B

lj, (A7)

where 9S
li and 9

B
lj denote the (l, i) element and the (l, j)

element of each corresponding matrix, respectively.
Lastly, the sensitivity factor (7) related to the incremental

power losses is to be derived. In [46], the loss sensitivity
factor νn in terms of node n can be written as below:

νn =
∂P loss

∂Pn
=

L∑
l=1

2 · fl · rl
N∑
n=1

9 ln, (A8)

where Ploss, Pn, fl , and rl denote the total active power loss,
the power injection at node n, the line power flow on line
l, and the resistance of the line l , respectively. And 9 ln is
the (l, n) element of 9. Considering the row vector ν :=

[ν1 νN ], the followings can be defined:

νS := νAS
∈ RNS (A9)

νB := νAB
∈ RNB . (A10)

Therefore, the i-th element νSi of (A9) and the j-th element
νBj of (A10) lead to:

τi,j = νSi − νBj . (A11)
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