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Abstract—With technological advancement and the urgency 
to decarbonize energy consumption habits, smart grids have 
gained special prominence in recent years, highlighting the 
importance of the massive integration of endogenous renewable 
sources and decision-making tools, like forecasting tools.  
The relevance and accuracy of the forecast make it possible to 
add a contribution to energy management tools in residential 
communities, from the point of view of end-users and the 
distribution network operator. This work presents the 
development of a short-term hybrid forecasting model, 
combining Long-Short Term Memory (LSTM) model forecast 
with the Holt-Winters forecast model, where the ability of the 
LSTM stands out in capturing the complex temporal patterns of 
historical time series, while Holt-Winters deals with trends and 
seasonality of historical data. Combining these models results in 
an intelligent hybrid system capable of efficiently dealing with 
the complexity inherent to renewable energy. Then, the 
forecasted results from load and solar generation are introduced 
on the home energy management model considering a small 
residential community, showing the relevance of accurate 
forecasted results tools to assist in the making decisions 
processes. 

 

Keywords—Energy community, Energy management system, 
Holt-Winters, Long short-term memory, Renewable production 
forecast 

NOMENCLATURE 

Indexes �, �� Time index / Time slot set. �, NA Appliance index/ Set of appliances 

j, NJ Battery index/ Set of batteries � Scenario decision variable. 

Parameters �, �, 	 Holt-Winters smoother parameters. 
(∙) Sigmoid function. � Total number of observations. �� The total number of shiftable equipment. �� Total number of battery energy storage systems. ����,���
,  

Maximum power allowed in the battery energy 

storage system � to charge. �����,���
 

Maximum power allowed in the battery energy 

storage system � to discharge. ����, ����� 
Efficiency of battery energy storage system � 
during the charging/discharging, respectively. 
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�����, ����� 
Minimum and maximum battery energy storage 

system capacity of unit �. � Holt-Winters seasonal period. � , �� , �! , �" Long-short-term memory weights. # , #� , #!, #" Long-short-term memory adjustment values. � Seasonality adjustment. �� Nominal power of appliance �. $ Comfort index. 

Variables %&'� Period-ahead � forecast over the time �. �&, �&(� Current/Previous seasonality at time �. )& Randomness at time �. #& Tendency at time �. *̃& Candidate memory at period �. tanh(∙) Hyperbolic tangent function. ℎ&(1 Previous output value. 2& Current input at period �. �& Input gate at period �. 3& Evaluation gate at period � *&, *&(1 
Current/previous memory cell at period �, 

respectively. 4& Output gate at period �. 56&, 5&, 57& 
Forecasted, real and average value at time �, 

respectively. 8&9:;, 8&;:9  
Time-of-use tariffs to buy or sell electricity to the 

grid, respectively. �<,&9:;, �<,&;:9 
Exchanged power from grid-to-home, and home-

to-grid on scenario �, period �. ∆� Time interval duration. ��>�<,�,& Startup of appliance �, at scenario �, time �. �?@�<,�,& Shutdown of appliance �, at scenario �, time �. A�BC , A�B� 
Startup/Shutdown cost of appliance �, 
respectively. @D<,� Discomfort index of appliance �, at scenario �.  @<,&B��"&

,@<,&"��
 

Amount of shiftable/fixed load at scenario �, 

time �, respectively. E<,�,&, �<,�,& 
Binary variables for the base and scheduled status 

of appliance �, at scenario �, time �. �<,&FG Solar production at scenario �, time �. 

�<,�,&�� , �<,�,&���  

Charging and discharging power, from the battery 

energy storage system �, at scenario �, time �, 

respectively. 
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�<,�,& 
Amount of energy stored on the battery energy 

storage system �, at scenario �, time �, 

respectively. 

I. INTRODUCTION 

From the different possibilities for the urgent 
decarbonization of the electricity sector and making it more 
environmentally friendly, resilient, profitable, and 
sustainable, the solution is to make the grid "smart". The 
Smart Grid (SG) definition could be resumed as an electrical 
network that uses a bidirectional flow of energy and 
information [1], including the role of the smart meter, whose 
capabilities include measuring and communicating users' 
energy consumption and providing additional data for 
operator monitoring and billing efficiently, signals from the 
electricity market, as well the smart energy management 
systems (EMS) in different strategic economic areas [2].  

Considering the SG concept, demand-side management, 
and demand response programs play a crucial role as well in 
modeling the future of SG, covering the planning, 
implementation, and monitoring of public service activities, 
encouraging the use of electricity by customers, aiming to 
make desired changes in the utility load profile, helping to 
keep it as smooth as possible, adjusting the load and the 
demand during the operating period [3].  

However, the tool for the decision-making process that 
manages the renewable generation, storage and distribution 
should be accurate and responsive enough to help the players 
act wisely, with robustness and quality, reducing the 
mismatch or discomfort to users. Here, the tools or models for 
optimal scheduling, shifting the loads, or managing the local 
generation or storage, i.e., the EMS systems have been 
gaining increased interest in the last years because of 
economic help and the needed flexibility in SG. [4].  

Hence, considering SG there is also the concept of smart 
home (SH), and the home EMS considering electric vehicles, 
local endogenous electricity production (wind and/or solar), 
and/or storage, presented in models that consider the pear-to-
pear interaction, or the massive integration of electric 
vehicles, increasing the interest of research [5]. For instance, 
in [6] the advantages of SH are highlighted, emphasizing the 
comfort. By programming routine actions, users have more 
freedom, making SH more attractive. Remote control and 
monitoring, whether through smartphones or computers and 
automation based on predefined configurations offer a more 
positive outlook.  

Energy communities are defined as an extension of the SG 
concept, where agents assume the social control of energy 
resources shared through decentralization. Individual users, 
producers, and prosumers can develop independent 
initiatives, actively contributing to grid sustainability, where 
energy communities are legal entities focused on pooling 
resources, with the potential to reduce energy prices and load 
peaks [7].  

Considering the integration of accurate tools for enhance 
the SG capabilities, decision tools used in the decision-
making process are accurately needed to support and 
reinforce the signal decisions from other tools, which the 
hybrid intelligent forecasting models play an important role 
as the first stage of decision, especially when decisions are 
made in the short term [8].  

The reason to consider intelligent hybrid models is that 
such forecasting models are more capable of better combining 
the best between two or more techniques, intending to reduce 
the forecast error, providing accurate information in useful 
time, with reduced resources, outperforming other models [9]. 

For instance, in [10] it was presented a hybrid method 
based on wavelet transform, Holt-Winters forecast and 
weighted nearest neighbor for the short-term load forecast, 
i.e., for the next 24 hours ahead, considering real cases from 
the day-ahead load data in the electricity markets of California 
and Spain. In [11] a full and orderly review of the direct 
forecasting of PV power generation was presented. It 
highlighted the meaning of the correlation of the input-output 
data and the preprocessing importance of forecasting models 
by considering an analysis of several solar power forecasting 
models, including hybrid forecast models, noticing the 
opportunities and challenges of the different approaches. 

In [12] a hybrid model was presented for the ultra-short-
term forecast of domestic electricity consumption based on 
the Holt-Winters method and extreme learning machine 
network, showing a significative forecast error reduction from 
the period analyzed. In [13] was presented the implication of 
considering some intelligent soft computing techniques to 
forecast renewable energy and load demand in different time 
horizons, helping to select the best technique to keep 
microgrids sustainable and reliable. In [14] was developed a 
hybrid model based on the Holt-Winters model and gated 
recurrent unit network model for short-term load-interval 
forecasting, to deal with the inherent complexity, volatility, 
and instability of power load, which is not trackable by point 
forecast models, as reported on "Teddy Cup" data mining 
challenge, from 2022, showing high-quality results. 

Considering the previous aspects addressed, and the 
widespread information available considering hybrid 
intelligent forecast models this current work presents: 

• The development of a short-term hybrid forecasting 
model, combining the predictive capabilities of the Long-
Short Term Memory (LSTM) model with the Holt-
Winters model. 

• The hybrid forecasting model proposed will be applied to 
forecast the behavior of wind and solar production, and 
the load in the short-term, i.e., 24h, considering only the 
historical data. 

• As an extension of this research, the forecasted results will 
be introduced on the home EMS like in [4], considering a 
small residential community, composed of 5 houses with 
smart features, including the inputs that resulted in a 
forecast of the load and PV generation. 
The ability of the LSTM stands out in capturing the 

complex temporal patterns of historical time series, and  
Holt-Winters with smooth features, deals with trends, 
seasonality, and randomness of historical data.  

With the combination of LSTM and Holt-Winters models, 
it is possible to present a forecast model capable of efficiently 
dealing with the inherent complexity of producing and 
exchanging renewable energy in small communities. 
Considering the contribution addressed, the current work will 
show as a goal the relevance of accurate forecasting results to 
assist in the making decisions process, like scheduling, 
shifting the load, or considering the users’ high-level comfort 
indices as reported in [15] assisting the home EMS. 
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The remaining work is as follows: Section II shows the 
main mathematical information that models the hybrid 
forecasting tool and the main concept of the home EMS 
considered. Section III shows the study cases, main results, 
and respective analyses. Section IV shows the main 
conclusion and intentions for future works. 

II. MATHEMATICAL PROBLEM INFORMATION 

A. Holt-Winters Model 

Holt-Winters model is part of a class of exponential 
smoothing models originally designed to analyze the behavior 
of time series data, decomposing the historical data into trend, 
seasonality, and randomness components. Common ways 
include the additive or the multiplicative methods. In this 
work, the multiplicative method is used, where the trend and 
seasonality components are multiplied by the time series 
average value, generating the forecast profile. Mathematically 
it is described as [16]: 

)& = � I 5&�&(�J + (1 − �)()&(1 + #&(1) (1) 

#& = 	()& − )&(1) + (1 − 	)#&(1 (2) 

�& = � I5& )&J + (1 − �)�&(� (3) 

%&'� = ()& + #&�)�&(�'� (4) 

where Eq. (1) )& represents the randomness of data 5& at period �, and � denotes the randomness smoothing parameter. Eq. 

(2) denotes the trend #& of data at period �, and 	 denotes the 
trend smoothing parameter. Eq. (3) shows the length of 
seasonality from the data 5& at period �, where � denotes the 
seasonality smoothing parameter. Finally, Eq. (4) constructs 
the forecast data � period ahead. 

B. Long Short-Term Memory Network Model 

Long Short-Term Memory (LSTM) model is an evolution 
of recurrent neural networks, developed to overcome the 
challenges that often occur with the use of gradients like in 
conventional networks. The LSTM innovation lies in the 
introduction of the state cell and gate structure, providing the 
ability to handle long-term dependencies, and mitigating the 
gradient risk [17], [18]. 

The fundamental concept of LSTM involves the state cell 
and three types of gates: Input, responsible for updating the 
state of the cell, and deciding what information to add. 
Evaluation determines which information will be ignored. 
and the Output, responsible for determining the output of the 
current cell. The conceptual model is presented in Fig.1. Each 
LSTM gate performs a specific function in each iteration [17]. 

 
Fig. 1. Conceptual structure of LSTM model proposed. 

• Compute the Candidate's Memory (*̃&), obtained by 
applying the hyperbolic tangent function (tanh) to the 
linear combination of the values of the previous output ℎ&(1, and the current input data 2&, weighted by � , 
increased by an adjustment value # : *&N = tanh(� × Pℎ&(1, 2&Q + # ) (5) 

• Compute the Input Gate (�&), by applying the sigmoid 

function R
(∙)S to the linear combination of the 

previous output ℎ&(1, and the current input data 2&, 
weighted by ��, increased by an adjustment value #�: �& = 
(�� × Pℎ&(1, 2&Q + #�) (6) 

• Compute the Evaluation Gate (3&), like the input gate, 

the sigmoid function R
(∙)S is applied to the linear 

combination of the values of the previous output ℎ&(1 
and the current input data 2&, weighted by the weight �", and added by the adjustment value #": 3& = 
R�" × Pℎ&(1, 2&Q +  #"S (7) 

• Memory Cell Update, based on the results of the 
evaluation and input gates. The previous value of the 
memory cell *&(1 is multiplied by the result of the 
evaluation gate 3&, added to the product of the input gat �&, and the candidate's memory *&: *& = ( 3& × *&(1)  + (�& × *̃&) (8) 

• Compute the Output Gate, where the sigmoid function R
(∙)S is applied to the linear combination of the 

values of the previous output ℎ&(1 and the current 
input data 2&, weighted �!, added with an adjustment 
value #!: 4& = 
(�! × Pℎ&(1, 2&Q +  #!)  (9) 

• Compute the LSTM Unit Output (ℎ&), is calculated by 
multiplying the output port result 4& by the hyperbolic 
tangent of the current memory cell *&: ℎ& = 4& × tanh(*&) (10) 

C. Proposed Forecasting Model and Error Quantification 

The proposed hybrid forecasting model considers the 
strategic combination of profile forecasting results, without 
consideration of exogenous data, from the LSTM model, and 
the Holt-Winters model, as shown in Fig.2. Initially, the 
historical data is normalized to facilitate LSTM training. 
Simultaneously, the Holt-Winters method is applied to the 
LSTM test data, incorporating the smoothing parameters, �, �, 	, from the Holt-Winters model.  

The final step combines the results of the forecast models, 
considering the error minimization, which includes the Root 
Mean Square Error (RMSE) and the Mean Average 
Percentage Error (MAPE), with the test data in a feed-forward 
neural network, which is the best solution found will be the 
lower value or the best result after the number of epoch ~400 
to 1000 epochs is reached considering the forecast profile 
data. Then, the results are converted to values with the same 
magnitude as the historical data, and the forecasted results are 
shown. 

Evaluation Gate

Input Gate Output Gate

Memory CellT · T ·VW XW�&

� 

��

3&�"
*&N *& 4&

�!
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Fig. 2. Proposed hybrid forecast model. 

The RMSE and MAPE are described as follows: 

RMSE = ]1� ^R5& − 56&S:C
&_1  (11) 

MAPE = 1�  ^ |5& − 56&||57&|C
&_1 × 100 (12) 

where � corresponds to the day-ahead forecast period, i.e., 

24h, 5& and 56&, correspond to the real and forecasted value, at 

time �, and 57& is the mean value of 5& to avoid the instability 
of the criterion when data is close to 0. 

D. General Home Energy Management Model 

The generalized mathematical formulation follows the 
mixed integer linear programming (MILP) model by 
following the concept developed in [4]. Here, the objective is 
to optimize energy management in a residential community, 
aiming to reduce users' daily expenses and considering 
penalties for discomfort associated with the changes in the 
operating hours of household appliances. The objective 
function is: d�� e

= f^ g<<∈i f^j8&9:;g<,&9:;∆� − 8&;:9g<,&;:9∆�klC
&_1 m m

+ n^ g<<∈i f^ ^j��>�<,�,&A�BC + �?@�<,�,&A�B�klo
�_1

lC
&_1 mp

− I^ jA�BC + A�B�klo
�_1 J

+ f^ g<<∈i I^ $j@D<,�' + @D<,�( klo
�_1 Jm  

(13) 

In Eq. (13), the first term describes the cost of energy 
transactions between the home and the grid, considering a 
Time-of-Use (TOU) price package mechanism, where 
electricity prices vary over time, weighting the costs in the 
objective function, associated with the purchase and sale of 
energy between the home and the grid. The second term 
describes the cost of starting/stopping appliances, allowing 
sustainable habits by penalizing frequent starting/stopping 

situations. The A�BC and A�B� parameters with high values 
represent the cost associated with these operations. 

The third term describes the cost of discomfort by shift 
loads, indicating the total cost of startup/shutdown 
controllable appliances along the scheduling period. The four 
terms describe the total cost associated with discomfort, 
penalizing the independent shifting load from the scheduled 
period, influenced by the comfort index $.  

The lower of $ means that the user is with the peer-to-peer 
transaction even if comfort is reduced. The high value of $ 
means the opposite. In this work, it was assumed $ = 250. 
The sensitivity analysis was performed in [15] discussing the 
impact of the discomfort index on optimal operation of SH. 

The limitations inherent to the problem are associated with 
the technical and economic restrictions related to the load, the 
energy interaction between the home EMS and the electrical 
grid, and the use of the battery energy storage system (BESS), 
briefly described next. Eq. (14) describes the amount of 

dispatchable load in each time interval @<,&B��"&, dependent on 

the device's nominal power, ��, and its operational status, 
determined by the binary operational variable �<,�,&. 

@<,&B��"& = ^ �<,�,&��
lo
�_1  (14) 

Eq. (15) limits unnecessary appliances’ occurrences 
outside of the normal cycle, described through startup ��>�<,�,& and shutdown �?@�<,�,&, over the period scheduled. 

Eqs. (16) and (17) indicate the discomfort index of a 
controllable appliance depends on whether the appliance is 
being used during the standard/shifted operating period, 
implying, e.g., the discomfort index will be “0”, influenced 
by the shifted binary variable E<,�,&, or assume a positive 

value. ��>�<,�,& − �?@�<,�,& = �<,�,& − �<,�,&(1     ∀� > 1  (15) 

@D<,�( ≥ 1�� P ^ � × E<,�,& − ^ � ×lC
&_1

lC
&_1 �<,�,&Q (16) 

@D<,�' ≥ 1�� P ^ � × �<,�,& − ^ � ×lC
&_1

lC
&_1 E<,�,&Q (17) 

Eq. (18) describes the limitations related to the energy 
transactions between the SH, the grid, and the restrictions 
imposed by the BESS in each time scenario. Considering the 
technical constraints related to the operation of BESS and 
home EMS with the grid, Eq. (19) describes the dynamics of 
BESS in each time interval, determining the amount of energy 
stored in the BESS based on the energy stored in the previous 
period, the charge and discharge efficiency and the charge and 
discharge power. This is also guaranteed by other constraints 
like the minimum and maximum energy stored over time and 
the status of BESS operation, controlled by a binary variable. 
More details have been provided in [19]. �<,&9:; − �<,&;:9 + �<,&FG

= @<,&v�� + @<,&B��"& + ^ �<.�.&�� − ^ �<.�.&���lB
x_1

lB
x_1  

(18) 

�<,�,& = �<,�,&(1 + �����<,�,&�� Δ� − 1�����  �<,�,&��� Δ� (19) 
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III. STUDY CASES AND RESULTS 

For the hybrid forecast model, the data used 
(wind/solar/load) were collected from different sources, such 
as REN [20], REE [21], and OMEL [22]. The data used to 
consider the previous 14 days was discretized into hourly 
periods, allowing the forecast for the next 24 hours. It should 
be noted that the forecasting tool does not use exogenous data. 
The hybrid forecast model was developed in MATLAB 
R2023b. The energy community's management model was 
developed in Python, using the Jupyter Notebook v3.12 
environment, dotted with the Gurobi v11.0.0 optimizer. 

Figs. 3 denotes the shifted and fixed loads profiles, 
respectively in kW. Here, fixed loads are considering the 
lighting, TVs, and other users’ not-shiftable appliances. 
Considering the shifting loads, and the maximum user’s 
comfort level i.e., $ = 250, the home EMS will run 
considering the possibility that even with the signals provided 
from the grid, the priority is to provide the maximum comfort, 
otherwise, the penalization will be high. Even so, the home 
EMS was capable of shifting some loads, and creating new 
scheduling profiles as will be shown in the next results. 

Fig. 4 shows the summary of all historical data, 
considering the period of 336h, with a time-step of 1h, for 
each profile (wind, solar, load) in kW. The community is 
composed of 5 SHs, with a contracted power of 10.35 kVA 
each, participating in peer-to-peer (P2P) energy transactions, 
allowing the purchase and sale of energy within the energy 
community, or with the grid itself, which transactions were 
limited to a maximum capacity of 40% and 35%, respectively. 
Solar forecast with winter days was normalized (black line) 
and presented in Fig. 5. The solar installations in each SH 
consist of 6 panels of 395 Wp each, i.e., a capacity of 2.38 kW 
per SH. Table 1 shows the BESS-incorporated SHs. 

Fig. 5 shows the tariffs allowed in Portugal divided into 
simple, two-step, and three-step tariffs, announced and 
updated every year by the main regulator [23]. Table II shows 
a summary of the schedule and users’ preferences to use their 
shiftable load. All the forecast simulations ran considering 6 
attempts looking for the best average MAPE for the LSTM 
model. All the smoothing parameters of Holt-Winters were 
adapted accordingly with the forecast profile (wind, solar, or 
load). Hence, the hybrid forecasting model considered 
training data a set of 312 hours, and the test data are the 
previous 24 hours before the forecast. Figs. 8-10 show the 
forecasting results for the wind, solar, and load, considering 
an average MAPE of 13.30, 15.89, and 3.78, respectively.  

Fig. 10 shows the scheduled and shifted load profiles 
between SH 4 and 5, as an example of the effectiveness of 
results from the solar generation forecast introduced in home 
EMS with maximum index comfort adjusting the loads of 
different houses, helping the grid to reduce the peak load.  

(a) (b) 

Fig. 3. Shiftable (a) and fixed (b) loads considered in the home EMS 
model. 

 
(a) (b) 

 
(c) 

Fig. 4. Historical data, (a) wind power, (b) solar power, and (c) load. 

 
Fig. 5. Normalized solar profile considered in home EMS model. 

TABLE I. MAIN PARAMETERS CONSIDERED IN BESS z{ 

(kWh) 

z|} 

(kWh) 

~����X  

(kW) 

~������  

(kW) 
��X ���� 

z��V 

(kWh) 

z��� 

(kWh) 

2.0 2.0 2.5 2.5 0.9 0.85 4 1 

 
Fig. 6. Tariff considered in the home EMS model. 

 
Fig. 7. Home EMS scheduling results, considering the base case (black) 

and shift loads on SH 4 (red) and SH 5 (blue). 
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TABLE II. RESUME ABOUT SCHEDULED LOADS AND USERS’ PREFERENCES 

   Base Case  

Load 
�� 

(kW) 

∆W 

(h) 

Start 

(h) 

Finish 

(h) 

Pref. 1 

(h) 

Pref. 2 

(h) 

Wash. Mach. 2.0 3 15:00 18:00 08:00 18:00 

Dry. Mach. 4.0 1 18:30 19:30 18:30 22:30 

Dishwasher 2.0 2 09:00 11:00 09:00 18:00 

W. Heat. (�1) 3.5 2 04:00 06:00 00:00 06:00 

W. Heat. (�:) 3.5 2 16:00 18:00 09:00 18:00 

Ch. EV (�1) 7.5 3 18:00 21:00 18:00 00:00 

Ch. EV (�:) 7.5 3 4:00 7:00 00:00 08:00 

AirCond. (�1)  2.0 2 6:00 08:00 00:00 08:00 

AirCond. 

(�:)  
2.0 2 18:00 20:00 15:00 20:00 

AirCond. 

(��)  
2.0 2 22:00 00:00 20:00 00:00 

 

  
Fig. 8. Forecasted (blue) and real 

(black) wind power profile. 
Fig. 9. Forecasted (blue) and real 

(black) solar power profile. 

 
Fig. 10. Forecasted (blue) and real (black) load profile. 

IV. CONCLUSION 

In this work, a hybrid forecasting model was presented to 
help the HEMS insert in an energy community composed of 
five houses, considering the forecast data from solar and load. 
The successful combination of LSTM and Holt-Winters 
techniques allowed, with the reduced computational burden 
(around 1 minute), acceptable MAPE values for wind (13.30), 
solar (15.89), and load profiles (3.78). The forecasted results 
helped HEMS to manage the production and need of SHs, by 
shifting the loads, even considering that users desired the 
maximum comfort. In future research, it is suggested to 
extend the studies about the hybrid forecasting model 
developed facing more randomness from solar generation, 
detailed comparison, and further analysis result, introducing 
more differences between the SHs and EVs behavior. 
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