
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Preventive Energy Management Strategy Before
Extreme Weather Events by Modeling EVs’

Opt-In Preferences
Mohammad Reza Salehizadeh , Senior Member, IEEE, Ayşe Kübra Erenoğlu , Member, IEEE,
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Abstract— In recent literature, the value of electric vehicles
(EVs) for the resilience enhancement of urban microgrids has
been shown. Furthermore, on a larger scale, there has been
a growing recognition of the potential of EV cooperation in
enhancing the overall resilience of smart cities. To this end, the
city can be partitioned into a set of blocks, each encompassing
buildings. Within each block, EV traveling time can be ignored.
As a step forward, this study presents a Preventive Energy Man-
agement (PEM) strategy along with a rescheduling procedure by
cooperation of EVs, local distributed energy resources (DERs),
and buildings in different city blocks. Based on the available
information related to the amount of curtailed loads, two cases
are modeled and studied. In the proposed PEM strategy, EV own-
ers’ opt-in preferences such as arrival and departure times, and
the city block in which they are willing to give energy services are
modeled. As a more realistic consideration, the proposed model
does not consider the buildings’ load as a lumped load, instead
the PEM strategy is designed to consider each of the buildings
separately. The resulting optimization model is flexible enough
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İbrahim Şengör is with the Department of Electrical and Electronic
Engineering, Munster Technological University, Cork, T12 P928 Ireland
(e-mail: Ibrahim.Sengor@mtu.ie).
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to enable EVs to switch from one building to another to provide
energy in different time slots. By applying disjunctive-constraint-
based transformation, the model is recast as a Mixed Integer
Linear Programming (MILP) that could be efficiently solved
by commercial optimization solvers. The proposed approach is
applied to a benchmark and the results are analyzed. According
to the results, using EVs in the PEM strategy has been proven
to be effective and the importance of the length of the period
of service and opt-in preferences for optimal scheduling are
highlighted.

Index Terms— Distributed energy resources (DERs), electric
vehicles, natural disasters, vehicle-to-building, vehicle-to-grid,
urban resilience.

NOMENCLATURE

Abbreviations
DER Distributed Energy Resource.
PEM Preventive Energy Management.
EV Electrical Vehicle.
ECSC Energy Coordinator of Smart City.
TSO Transmission System Operator.
DSO Distribution System Operator.
SoE State-of-Energy.
V2G Vehicle-to-Grid.
MILP Mixed Integer Linear Programming.

Indices
e Index of EV.
b Index of building.
t Index of time.
bl Index of block.

Sets
T Set of times in extreme weather event period.
B Set of buildings.
E Set of EVs.
Bbl Set of buildings in block bl.
Ebl Set of EVs giving services in block bl.
TRE SC H Set of rescheduling periods.
BRE S Set of affected buildings by power mismatch

due to uncertainty.
Sb Set of parties who simultaneously cause a

mismatch in building b.
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Parameters
PCU R

T OT AL ,t Total load curtailment at time t in Case
A [kW].

Di Re Discharge rate of EV e [kW].
SoE ini

e Initial SoE of EV e [kWh].
SoEmax

e /SoEmin
e Max/Min value of SoE of EV e [kWh].

P DE Rmax
b,t The upper bound of purchase power

from local DER in building b at time t
[kW].

PCU R
b,t The amount of load curtailment in build-

ing b at time t in Case B [kW].
ρdis

t Discharge price at time t [$/kWh].
ρdown

b,t Price of decreasing power in building b
at time t [$/kWh].

P DE Rmax
b,t Maximum power provided from local

DER in building b at time t [kW].
P Pmax

b,t The upper bound of priority load curtail-
ment in building b at time t [kW].

P Dmax
b,t The upper bound of discretionary load

curtailment in building b at time t [kW].
DEe Discharge efficiency of EV e [%].
t A
e Arrival time of EV e.

t D
e Departure time of EV e.
PCU Rmax

b,t Maximum allowed value of the amount
of load curtailment in building b at time
t [kW].

Variables
Pdis

e,t Discharge power of EV e at time t [kW].
SoEe,t State of energy of EV e at time t [kWh].
P DE R

b,t Purchased power from local DER in
building b at time t [kW].

P D
b,t The amount of load curtailment in build-

ing b at time t (in Case B) [kW].
P D

T OT AL ,t The total amount of discretionary load
decreasing in building b at time t (in
Case A) [kW].

P Pdown
b,t The amount of priority load decreasing

in building b at time t [kW].
P Ddown

b,t The amount of discretionary load
decreasing in building b at time t [kW].

∝e,b,t A binary variable that is equal to one if
the EV e is connected to building b at
the time t .

I. INTRODUCTION

A. Motivation and Background

THE number of individuals living in urban areas is
expected to increase by 13% from 2018 to 2050 [1].

Recently, more than 200,000 people left without power across
the Bay Area in San Francisco, California by strong wind
storms [2] because the high density urban areas were unpre-
pared for the extreme weather conditions and demonstrating
the need for urban resilience which is defined as the capacity
of an urban system and all its interconnected social, eco-
logical, and technological networks to maintain or swiftly
regain desired functions when faced with disruption [3]. Urban
resilience also refers to the ability to adjust to changes and

efficiently transform systems that hinder present or potential
adaptability in both time and space.

Enhancing urban areas’ resilience includes maintaining
access to electrical energy when the electrical system has
been affected by high-impact, low-probability (HILP) events.
Some of these HILP events are related to digitalization in
which the data-related infrastructure of cities encounters cyber-
attacks. The others can be weather-based basis such as storms
and floods and the ever-increasing occurrence can be due to
global warming. Resiliency-oriented actions in a preventive,
corrective, and restorative manner are required to guarantee
the security and safety of urban areas and their related infras-
tructures in the case of the occurrence of HILP events. Reliable
energy procurement for a city during the period of occurrence
of extreme natural disasters is a serious challenge because
transmission lines and distribution feeders are susceptible to
outage due to various reasons, including fallen trees damaging
power lines, and lightning strikes.

The objective of this study is to provide a day-ahead energy
management strategy along with a rescheduling program to
utilize EVs for enhancing urban area resilience. This is
achieved by considering the opt-in/out behavior and location
preferences for EV services.

B. Literature Review
Urban areas need to maintain access to electrical energy

in the presence of HILP events such as natural disasters.
The presented study improves urban resilience through a
preventative strategy. The remainder of this literature review
discusses current preventative work and is divided into two
categories: energy network-based actions, and load-sustaining
focused actions.

In the first category, the preventive actions that are
adopted in a pre-disturbance state can be long-term or short-
term [4]. In [4] microgrid-based planning and operation for
resiliency improvement have been reviewed and classified.
The long-term actions include network reinforcement, optimal
planning, and installing new control devices such as Flexible
Alternating Current Transmission System (FACTS). In [5],
the objective is to construct a tri-level defense-attack model
that can identify the optimal strategy for strengthening a
distribution system against malicious attacks, considering the
resources available for defense and operational restoration
measures. In [5], based on the conducted numerical analysis,
the manner in which operational resilience impacts system
hardening is investigated. In [6], a planning strategy focusing
on resilience is suggested for an active distribution network
to be prepared for potential malicious attacks. The proposed
strategy prioritizes the coordination of line hardening and
signal protection to minimize both direct and indirect failures.
To introduce a framework for improving the resilience of a
distribution network, a two-stage stochastic MILP model is
presented in [7]. In the first stage, investments are made in
multiple strategies such as strengthening power lines, imple-
menting dispersed generators, allocating mobile emergency
producers, and deploying switches. The objective of [8] is
to present a trilevel optimization model aimed at enhancing
the resilience of both transmission lines and communication
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cables through hardening. The study demonstrates that
cyber-topology interdependence can lead to increased load
losses and significantly impact the effectiveness of hardening
strategies. In [9], an approach based on the scenario degree
of severity index is presented to enhance resilience in power
systems. The proposed approach allows power grid planners
to efficiently manage multiple resilience metrics in a multi-
objective decision-making model. The proposed method is
demonstrated by applying it to determining the optimal allo-
cation of the thyristor-controlled series compensator (TCSC).

The purpose of [10] is to present a multi-stage robust
optimization approach that can effectively schedule regional
power grids in the face of tropical cyclones. Taking into
account the uncertainties over time, a resiliency-oriented
scheduling model is developed to identify proactive strategies
and response plans both before and following the occurrence
of uncertainties. In [11], a two-step programming approach is
proposed, which is based on a resilience-oriented model, for
the design of micro-turbines, photovoltaic (PV) panels, and
mobile batteries in a multi-energy microgrid. The aim is to
enhance the system’s ability to withstand high-intensity events.
This framework is developed as a mixed integer quadratic
program. It involves decision-making in investment in the first
stage and optimizing operational variables in the second stage,
all geared towards strengthening the system’s resilience.

A few related works from short-term actions can be men-
tioned: In [12], an attempt is made to improve the resilience of
distribution systems against earthquakes using a mobile battery
storage system. Additionally, a seismic model is introduced,
which considers not only the direct effects of earthquakes
but also the influence of building damage around distribu-
tion networks on power poles. To increase the resilience of
power networks during typhoons, [13] develops a three-stage
resiliency-oriented unit commitment model that considers
the stochastic nature of typhoon paths and line failures,
while coordinating preventive control, emergency control, and
restoration efforts. A two-stage emergency-focused dispatch
model for maximizing power system operations in harsh
circumstances is presented in [14]. The suggested model inte-
grates renewable energy, thermal power generation, and energy
storage into its approach through thorough case analysis utiliz-
ing real data. To enhance the resilience of transportation-power
distribution systems during extreme events, [15] introduces
a coordinated optimization methodology for deploying emer-
gency response resources within the networks. This approach
coordinates the reversal of traffic links in transportation net-
works, power line switching in distribution networks, and
management of fast charging stations’ charging piles. The
coordinated power-transportation distribution systems mathe-
matical model is formulated as a Mixed Integer Non-Linear
Programming problem based on the dynamic transportation
networks model and the multi-period distribution system
model. It is then transformed into a more computationally
effective MILP problem by using linearization methods.

Reference [16] presents a novel approach to robust schedul-
ing of electricity-hydrogen distribution networks in the event
of catastrophic events: a risk-constrained trilevel MILP formu-
lation. An enhanced nested column-and-constraint generation
technique is designed to compute the trilevel optimization

program with discrete decisions in innermost level issues
effectively.

In the second category, a set of preventive actions such as
using local distributed energy resources (DERs) and EVs are
adopted to sustain loads [17], [18]. Reference [17] introduces
a distributed control strategy designed for a fleet of EVs,
aimed at bolstering the resilience of an urban energy system
in the face of extreme contingencies. Reference [18] explores
the benefits of enhancing resilience through smart vehicle-
to-grid (V2G) control, the significance of electric vehicle
owner cooperation for system resilience, and the synergistic
effects of photovoltaic (PV) and EV interaction within an
urban multi-energy microgrid. To improve resiliency, in [19],
the performance of a battery/PV system is simulated for
healthcare centers situated in the Rohingya refugee camp in
Bangladesh. Reference [20] presents a strategy for residential
buildings to sustain self-powered operations during scheduled
grid outages by utilizing plug-in hybrid electric vehicles
(PHEVs) as backups for residential PV systems, integrating
the load-shifting capabilities of smart homes, and employing
a stochastic programming approach to manage uncertainty in
residential PV solar power generation.

The attention to the role of EVs in resilience improvement
has increased in recent years. EV discharging is used as
both network-based actions [21], and load-sustaining focused
actions [18], [22]. Also, they are used as preventive [22]
or restorative actions [21]. A resiliency-oriented, multi-stage
critical load restoration approach for distribution systems
integrating on-call EVs under the fleet operator framework in
advance of a high-intensity load replacement event is proposed
in [21]. The primary focus of the model is to maximize the
cumulative service time of demands weighted by load priority
with the lowest possible number of EVs. In [22], coordination
between EV battery and reserve battery has been performed for
resilience improvement. As another endeavor outlined in [23],
critical load restoration and energy loss minimization during
natural disasters are achieved through a shared EV parking lot.

In the scale of a smart city, sustaining loads in urban
areas via EV discharging is an effective way to improve
resilience. By 2030, it is desired to have a 50% market share
for EV sales in the U.S. [24]. As a feasible solution, based
on the presented definition of urban resilience, a coordinated
fleet of EVs with the cooperation of their owners can be
considered as a “socio-technical network” that can help smart
cities on the temporal and spatial scale to be returned to
its desired energy function in the case of occurrence of a
contingency. As mobile emergency resources, EVs could be
scheduled to give energy services to different urban areas
during extreme periods. The value of EV coordination for
resilience improvement is assessed in [18] wherein two
categories (individual-prioritized and system-prioritized) are
defined based on their SoE preferences for EV participation in
resiliency-oriented V2G. In the proposed PEM strategy, this
point is considered more comprehensively because the EVs
are asked to offer their minimum desirable SoE (SoEmin).
SoEmin would be applied to avoid range anxiety. In addition,
arrival time, departure time, and the block of city that they
are willing to give energy service are included in the modeled
opt-in preferences that we consider in the PEM strategy.
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Table I compares the features of this paper with EV-related
papers aimed at enhancing resiliency. From the literature
review above, the following research gaps are observed:

• None of the aforementioned studies precisely models EV
preferences.

• None of the aforementioned studies models the opt-in/out
aspect presented in this model.

• None of the resiliency-related studies considers different
prediction scenarios for load curtailments at the building
level or aggregative level of buildings in city blocks.

To address all of these gaps, this paper proposes a day-ahead
energy management strategy along with a rescheduling pro-
gram to utilize EVs for enhancing urban area resilience. This
includes modeling the opt-in/out behavior and location of
service preferences of EVs.

C. Regulatory Consideration

Energy management in a smart city involves the coor-
dination and aggregation of various components such as
generation, distribution, consumption, and storage facilities.
In this paper, we consider the Energy Coordinator of Smart
City (ECSC) as an entity other than DSO. While the DSO
plays a crucial role in managing the electricity distribution
infrastructure, the ECSC is responsible for managing different
aspects of energy in a smart city. This assumption is consistent
with some real examples. The Borrego Springs microgrid
in San Diego serves a community of customers wherein
distribution network assets are managed by the utility, but
the DERs are owned by customers and independent power
producers [25].

Hu et al. [26] showed that extreme weather events are
predictable at least 1 day ahead. In research performed in
NREL [27], two machine-learning methods named ensemble
boosted tree (EBT) and decision tree (DT) have been employed
to predict outage possibility of recloser and substation. By hav-
ing such information, through power flow analysis, it is
possible to predict the amount of load curtailment in different
nodes of the distribution network and city blocks. Also, in [28],
a logistic regression model is used to forecast weather-related
day-ahead outage power. According to this, in Step 1 of Fig. 1,
we assume that the amount of load curtailment due to the
extreme weather event is predictable.

MIT researchers demonstrated the value of V2G in transi-
tion to a low-carbon energy system in the case of the New
England power system [29]. That research shows that by
just 13.9% of participation in the V2G program, over $700
million in savings would be obtained. However, despite being
technologically mature, owners’ willingness to participate in
V2G is not enough yet. A survey in Germany conducted
by Geske and Schumann [30] shows that a non-monetary
factor “range anxiety” i.e., fear of running out of SoE is the
dominant reason for unwillingness to participate in the V2G
program. In this paper, to tackle this obstacle, the EV owners
are enabled to choose SoEmin as an opt-in preference. On the
other hand, the role of monetary incentives for V2G promotion
is confirmed in Norway [31]. In this regard, we consider a
price signal for rewarding EV owner’s participation in the

Fig. 1. The proposed PEM strategy.

proposed PEM strategy. Apart from the aforementioned policy
recommendations that we will include in our proposed REVF-
SCH model, the participation of EVs in extreme conditions
is not far from reality in recent years. The experience of
the 2021 Texas winter storm shows that people may not be
willing to participate in normal conditions for giving energy
service, but they show a higher willingness to participate
in extreme periods [32]. As another contribution of other
mobile resources in resiliency enhancement, a mobile hydro-
gen energy resource “Hornet” preserved the essential loads for
six hours during the strike of Super Typhoon in China [16].

Performing Steps 2,4 and 6 of the PEM strategy requires
proper communication technologies that allow communication
between ECSC and the between ECSC and the participants,
especially EVs. There are a few ways such as using cellular
networks, such as 4G or 5G, and IoT platforms and protocols,
such as Message Queuing Telemetry Transport (MQTT) or
Constrained Application Protocol (CoAP). Also, Advanced
Metering Infrastructure (AMI) technologies like smart meters
enable ECSC to gather real-time data on the electricity con-
sumption of buildings.

D. Contributions and Highlights

The major contributions of this work are summarized as
follows:

• For the first time, an optimal PEM strategy is designed
for improving urban areas’ resiliency against extreme
weather events by coordination of EV fleet, buildings,
and local DERs.

• The detailed EV preferences including opt-in and opt-out
(arrival and departure time) are modeled in the proposed
strategy.

• The optimal strategy is designed in a way to include this
possibility for EVs to give energy service to all buildings
located in an urban area in their service time.

• The proposed strategy is formulated for two cases: In
Case A, the ECSC is asked to curtail the total amount of
load in the city blocks under its management each time
during an extreme weather event period. In contrast to
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Case A, in Case B, the amount of load curtailment is
given to ECSC for each of the buildings.

In other words, our work uncovers EV owners’ opt-in
preferences for increasing the value of Vehicle-to-Building
(V2B) for resilience enhancement.

E. Organization

After presenting the Introduction in Section I, the developed
PEM strategy is brought in Section II. Section III describes
numerical analysis by presenting a set of associated tests that
are used to discuss the results. Finally, the conclusion and a
set of suggestions are given in Section IV.

II. PEM STRATEGY

A holistic view of the proposed scheme, along with the
assumptions of the problem is presented in subsection A. The
detailed mathematical model of the proposed PEM strategy for
Case A is presented in Subsection B. Then, the linearization
of the model using disjunctive-constraint-based transformation
is brought in Subsection C. The modeling consideration for
Case B is presented in Subsection D. As the day-ahead
program might require modifications because of the possible
uncertainties, the relevant mathematical model is provided in
Subsection E.

A. The Proposed Scheme

It is assumed that the smart city is partitioned into a set
of city blocks with a set of buildings and the traveling time
of EVs inside each of them is ignorable. From an energy
resilience perspective, finer spatial scale partitioning can be
performed than what exists by integrating various energy-
related criteria. However, it is out of the scope of this paper.
In this study, we assume that through a set of incentive
mechanisms, a set of EVs participate in PEM. The design of
incentive mechanisms requires a set of socio-techno studies
that is out of the scope of our study. It is also assumed
that the amount of load curtailment for Cases A and B is
given to the ECSC. Figure 1 shows the overall scheme of
the proposed approach. It is mentioned that in most countries,
the responsibility for predicting extreme weather events falls
under the authority of national meteorological agencies or
departments such as the National Oceanic and Atmospheric
Administration (NOAA) in the U.S. Assume that it is predicted
that a powerful extreme weather event such as a storm to occur
between tE S and tE E in the next day. Based on the received
information and power flow analysis, the TSO or DSO predicts
the amount of load curtailment for buildings located in various
urban areas. There are two cases: In Case A, the total amount
of curtailed load for all buildings is given to ECSC and
the ECSC should manage the shortage of power by using
EVs’ discharging, decreasing power of loads, and local DER’s
power. In Case B, the amount of load curtailment for each of
the buildings is given to ECSC. The mathematical models for
both of these cases are brought in the next subsections.

It is noted that a building may consist of different loads with
different importance degrees. A Value of Resilience standard

(VOR123) proposed by the Clean Coalition, considers three
tiers for loads in resilience studies: i) Mission-critical, life-
sustaining loads, ii) Priority loads, and iii) Discretionary
loads [37], [38]. Based on this categorization, in this model,
we do not consider mission-critical, life-sustaining loads for
curtailment purposes.

It is preferred to curtail discretionary loads instead of
priority loads such as lighting, electrical facilities for maintain-
ing perishable food items, etc. After receiving the predicted
amount of load curtailment data from TSO/DSO, the ECSC
schedules to procure energy for buildings with the cooperation
of EV owners, residents of the buildings inside the city blocks,
and local DERs (Step 2 of Fig. 1). The residents could partic-
ipate in non-essential load curtailments to procure energy for
essential loads. The optimal decision of the ECSC is dependent
on the cooperation of each party. Due to the following reasons,
in this schedule, the challenge of ECSC is mostly related
to the coordination of EVs: First, a high number of EV
owners is required to participate. Second, as described in the
next subsection, both monetary and non-monetary factors can
hinder EV participation which is attempted to relieve in this
paper.

The opt-in preferences, including all these important factors
are integrated into the mathematical model (1)-(19) that is
solved by ECSC (Step 3 of Fig. 1). By solving this opti-
mization model, the day-ahead schedule for preventing energy
outages in the city blocks is obtained, i.e., the amount of
non-essential load curtailment in each city block, the building
sequences in which each EV should give energy services, the
amount of discharge/charge power in each time, the amount of
power that should be delivered by each DER, and the amount
of power to be purchased from the grid. The output variables
are fed back to the participants (Step 4 of Fig. 1). Due to the
uncertainties that may occur, a rescheduling plan (24)-(38) is
designed and performed (Step 5 of Fig. 1) before the time of
occurrence of the extreme weather event and the pertaining
variables will be sent to the participants (Step 6 of Fig. 1).

B. Mathematical Model: Case A

Min C D A
P E M = C D A

EV + C D A
DEC + C D A

DE R (1)

s.t. P RLC
b,t − P I N

b,t = 0 ∀b ∈ B, t ∈ T (2)

0 ≤ P Pdown
b,t ≤P Pdown,max

b,t ∀b ∈ B, t ∈ T (3)

0 ≤ P Ddown
b,t ≤P Ddown,max

b,t ∀b ∈ B, t ∈ T (4)

0 ≤ Pdis
e,t ≤Di Re.opte,t ∀e ∈ E, t ∈

[
t A
e t D

e

]
(5)∑

b∈B
∝e,b,t ≤ 1 ∀e∈ E, t ∈ T (6)

SoEe,t = SoE ini
e ∀e ∈ E, t = t A

e (7)
SoEe,t = SoEe,t−1+1SoEe,t

∀e ∈ E, t ∈

(
t A
e t D

e

]
, t> (t A

e +1) (8)

SoEmin
e ≤ SoEe,t≤SoEmax

e ∀e∈ E,t (9)

0 ≤ P DE R
b,t ≤P DE Rmax

b,t ∀b ∈ B, t ∈ T (10)∑
b∈B

PCU R
b,t = PCU R

T OT AL ,t ∀t ∈ T (11)

0 ≤ PCU R
b,t ≤PCU Rmax

b,t ∀b ∈ B, t ∈ T (12)
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TABLE I
TAXONOMY TABLE OF EV-BASED RESILIENCE IMPROVEMENT PAPERS

where

C D A
EV =

∑
e∈E

∑
t∈T

Pdis
e,t .ρdis

t (13)

C D A
DEC =

∑
b∈B

∑
t∈T

× (P Pdown
b,t .ρPdown

b,t + P Ddown
b,t .ρDdown

b,t ) (14)

C D A
DE R =

∑
b∈B

∑
t∈T

P DE R
b,t .ρDE R

b,t (15)

P RLC
b,t = PCU R

b,t − P Pdown
b,t − P

Ddown
b,t ∀b ∈ B, t ∈ T

(16)

P I N
b,t = P DE R

b,t +

∑
e∈E

∝e,b,t DEe.Pdis
e,t ∀b, t ∈ T

(17)

1SoEe,t = −1T .
Pdis

e,t

DEe
∀e ∈ E, t ∈

(
t A
e t D

e

]
, t> (t A

e +1)

(18)

∝e,b,t≤ M.opte,t .ue,b.Pdis
e,t ∀e ∈ E, b ∈ B, t ∈ T (19)

As indicated in (1), in this model, the cost function
(C D A

P E M ) is composed of discharging cost of EVs (C D A
EV ),

cost of decreasing power (C D A
DEC ), and the cost of pur-

chased power from local DERs (C D A
DE R) which are denoted

in (13)-(15), respectively. Each term has been assigned appro-
priate price-based weights in its respective equation. It is noted
that the price assigned to priority loads in (14) should be much
higher than that of discretionary loads (ρPdown

b,t ≫ ρDdown
b,t ).

The power balancing for each building is guaranteed by (2)
wherein residual load curtailment from each of the buildings
(P RLC

b,t ) should be compensated by the inflow of power to that
building (P I N

b,t ), i.e., for building b at time t , load curtailment
minus priority and discretionary loads’ decreasing should
be equal to local DER’s power plus total discharge power
injection. The residual load curtailment (the amount of load

curtailment minus the amount of priority and discretionary
load decreasing) and the inflow power of each of the buildings
are formulated in (16), and (17), respectively. In (17), the
term of

∑
e ∝e,b,t DEe.Pdis

e,b,t , which is the discharge power
from the EVs to building b at time t , is non-linear because of
having the product of variables Pdis

e,b,t and ∝e,b,t. In the next
subsection, we recast (17) by a set of linear expressions. It is
noted that ∝e,b,t will be zero if the EV e is not willing to give
service at time t (opte,t = 0) and/or building b (ue,b = 0).
Also, ∝e,b,t will be zero if there is no discharge at time t .
To guarantee these points, (19) is considered in the model,
where M is a big number. The amount of decreased priority
and discretionary loads of each building should be less than
or equal to an upper limit prescribed by the building managers
as in (3) and (4), respectively. Equation (5) implies that the
discharging power of each EV should be less than or equal
to the discharge rate of each EV, respectively. As previously
stated, we define a binary parameter opte,t which is equal
to 1 if the EV e declares readiness to participate in energy
service at time t . Thus, if opte,t is zero, Pdis

e,t becomes
zero, i.e., the EV e would not provide energy service at
time t .

To ensure that each EV at a specific hour could be connected
to a maximum of one building, inequality of (6) is included in
the proposed mathematical model. Equations (7)-(9) describe
the SoE of EV. The initial value of SoE of each EV is assigned
by (7). SoE of EV changes in an interval when the EV battery
is discharged. As represented in (8), the SoE of EV at time
t is equal to the SoE at t-1 plus the change of SoE due
to discharging in that interval (1SoEe,t ). The expression of
1SoEe,t is denoted in (18) wherein 1T is time granularity
and must be in second. The SoE of each EV battery lies
within a predetermined limit, as modeled in (9). SoEmin

e can
be set by considering the EV’s desired SoE at the departure
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time. The injected power from local DERs to the buildings
(P DE R

b,t ) might be limited at each time. Equation (10) adds
this constraint to the optimization model. In Case A, the total
amount of load curtailment for all city blocks at each time
(PCU R

T OT AL ,t ) is given to the ECSC. The assigned curtailment
to each building at time t ( PCU R

b,t ) should be obtained in
a way that (11) is satisfied. Moreover, an upper bound for
PCU R

b,t should be considered in (12) where the upper bound of
PCU R

b,t (PCU Rmax
b,t ), is less than

∑
b (P Pmax

b,t + P Dmax
b,t ). It is

mentioned that even if the amount of energy reserve provided
by EVs is not sufficient, the model is still capable of managing
resilience by decreasing power or by DER penetration.

C. Equivalent Linear Problem

Because of the nonlinear equation of (17), the mathematical
model is not MILP. To substitute (17) with a few equivalent
linear expressions, by getting inspiration from previous studies
( [39], [40]), we apply disjunctive-constraint-based transfor-
mation and substitute ∝e,b,t DEe.Pdis

e,t by a positive variable
P I N J

e,b,t in (17):

P I N J
e,b,t = ∝e,b,t DEe.Pdis

e,t ∀e, b,t (20)

Also, the following linear expressions are added to the model:

P I N J
e,b,t − DEe.Pdis

e,t ≤ N .(1−∝e,b,t) ∀e, b,t (21)

−N.(1−∝e,b,t)≤P I N J
e,b,t − DEe.Pdis

e,t ∀e, b,t (22)

0 ≤ P I N J
e,b,t ≤DEe.Di Re.∝e,b,t ∀e, b,t (23)

If the EV e gives energy to building b at time t, ∝e,b,t
would be equal to 1. Then, the RHS of (21) and the LHS
of (22) become zero. Hence, P I N J

e,b,t − DEe.Pdis
e,t = 0. Also,

P I N J
e,b,t would be zero for ∝e,b,t = 0. By considering (23),

if ∝e,b,t = 0, we have P I N J
e,b,t = 0. If ∝e,b,t ̸= 0, the lower and

upper bounds of P I N J
e,b,t would be equal to those of DEe.Pdis

e,t .

D. Modeling Considerations in Case B

In comparison to Case A, Case B provides the ECSC with
a higher level of detailed information. In Case B, the amount
of load curtailment for each building at each time (PCU R

b,t ) is
given as input data. Hereby, (11) and (12) are omitted from
the model. From a mathematical modeling perspective, the
feasible set of the optimization model will be a few sets whose
intersections are empty. To show that let us redefine the sets of
resultant optimization model ((1)-(10), (13)-(19)): BL is the
set of city blocks, Bbl is the set of buildings in city block bl.
Ebl is the set of EVs that give energy service to block bl. For
more clarification, we re-write the model for Case B ((1)-(10),
(13)-(19)) with the newly defined sets:

Min C D A
P E M = C D A

EV + C D A
DEC + C D A

DE R (24)

s.t. P RLC
b,t − P I N

b,t = 0 ∀t ∈ T, b ∈ Bbl , bl ∈ BL (25)

0 ≤ P Pdown
b,t ≤P Pdown,max

b,t

∀t ∈ T, b ∈ Bbl , bl ∈ BL (26)

0 ≤ P Ddown
b,t ≤P Ddown,max

b,t

∀t ∈ T, b ∈ Bbl , bl ∈ BL (27)

0 ≤ Pdis
e,t ≤Di Re.opte,t

∀t ∈

[
t A
e t D

e

]
, e ∈ Ebl , bl ∈ BL (28)∑

b∈Bbl
∝e,b,t ≤ 1 ∀t ∈ T,e∈Ebl , bl ∈ BL (29)

SoEe,t = SoE ini
e t = t A

e , ∀e ∈ Ebl , bl ∈ BL (30)
SoEe,t = SoEe,t−1+1SoEe,t

∀t ∈

(
t A
e t D

e

]
, t> (t A

e +1), e∈Ebl , bl ∈ BL (31)

SoEmin
e ≤ SoEe,t≤SoEmax

e

∀t ∈

[
t A
e t D

e

]
, e ∈ Ebl , bl ∈ BL (32)

0 ≤ P DE R
b,t ≤P DE Rmax

b,t

∀t ∈ T, b ∈ Bbl , bl ∈ BL (33)

where

C D A
EV =

∑
bl∈BL

∑
e∈Ebl

∑
t∈T

Pdis
e,t .ρdis

t (34)

C D A
DEC =

∑
bl∈BL

∑
b∈Bbl

∑
t∈T

× (P Pdown
b,t .ρPdown

b,t + P Ddown
b,t .ρDdown

b,t ) (35)

C D A
DE R =

∑
bl∈BL

∑
b∈Bbl

∑
t∈T

P DE R
b,t .ρDE R

b,t (36)

P RLC
b,t = PCU R

b,t − P Pdown
b,t − P

Ddown
b,t

∀t ∈ T, b ∈ Bbl , bl ∈ BL (37)

P I N
b,t = P DE R

b,t +

∑
bl∈BL

∑
e∈Ebl

∝e,b,t DEe.Pdis
e,t

∀t ∈ T, b ∈ Bbl , bl ∈ BL (38)

1SoEe,t = −1T .
Pdis

e,t

DEe
∀t ∈

(
t A
e t D

e

]
,

t> (t A
e +1), e∈Ebl , bl ∈ BL (39)

∝e,b,t ≤ M.opte,t .ue,b.Pdis
e,t

∀t ∈ T,e ∈ Ebl , b ∈ Bbl , bl ∈ BL (40)

In Case B, equations (24)-(33) correspond to
equations (1)-(10) in Case A, respectively. Similarly,
equations (34)-(40) correspond to equations (13)-(19),
respectively. To streamline the presentation, detailed
descriptions are referenced in the previous subsection
for brevity. In all constraints ((25)-(40)), we index bl which
belongs to set BL (bl∈ BL). Hence, the feasible set is
separable for all blocks. On the other hand, from (34)-(36),
it is understood that the objective (cost) function (24) is the
sum of cost functions belonging to each city block. In this
way, we have the following compact representation of the
model for Case B:

Min C D A
P E M =

∑
bl∈BL

C D A
P E M (Xbl) (41)

s.t. F (Xbl) = 0 ∀bl ∈ BL (42)
G (Xbl) ≤ 0 ∀bl ∈ BL (43)

where (41) is the compact form of objective function (24), (42)
is the compact form of (25), (30), (31), (37), and (38). Also,
(43) is the compact form of (26)-(29), (32), (33), and (40).
Xbl is a vector that represents the corresponding variables
of Case B in Block bl. The optimization (41)-(43) can be
separately solved for each block (bl ∈ BL) and the related
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variables are obtained. Since the optimization models for all
blocks are solved in parallel and the size of the problem is
reduced, the solution speed will be decreased substantially in
comparison to Case A.

E. Rescheduling

At any time from day-ahead to real-time, if the ECSC is
notified that the parameters of the model deviate from what
is inserted in the primary DA scheduling model, rescheduling
should be performed. The deviated parameters can be about
one or more than one party such as EVs, buildings, and local
DERs.

Assume that the ECSC is informed that EVe will arrive
with delay and its arrival time will be t A2

e instead of t A1
e ,

where t A1
e ≤ t A2

e . Hence, in
[
t A1
e t A2

e
]
, rescheduling should

be performed. If ECSC is notified that a delay in the arrival
time will occur for more than one EV that is in the same
city block, rescheduling needs to be performed in the affected
periods. Assume T sch

e1 =
[
t A1
e1 t D1

e1
]

and T sch
e2 =

[
t A1
e2 t D1

e2
]

are
the scheduled periods of EV1 and EV2 energy service. EV1
and EV2 arrive with delay i.e., t A2

e1 and t A2
e2 . The affected

periods that require rescheduling are
[
t A1
e1 t A2

e1
]

and
[
t A1
e2 t A2

e2
]
. If

there is an intersection between these periods, cost allocation
among the parties should be performed.

Since the rescheduling should be performed with fewer
changes in the day-ahead PEM strategy, it is performed just
in the corresponding buildings where that power balance has
been deviated. In the rescheduling procedure, neither the EV
traveling path nor the amount of discharge power in each
period should change because changes in the discharge power
of an EV at time t affect its SoE in the next periods [t t D

e ] and
consequently the schedule of the next periods. To maintain
the schedule with minimum change, the EVs should not
participate in the rescheduling program. In this regard, we have
three types of decision variables: the decreasing power in
each building’s primary and discretionary loads, and power
produced by local DERs. For time t which belongs to the
rescheduling period (t ∈ TRE SC H =

[
t RE SC H
1 t RE SC H

2
]
),

the following model can be solved in each affected building
b ∈ BRE S :

Min C RE SC H
P E Mb,t = C RE SC H_P

DECb,t + C RE SC H_D
DECb,t + C RE SC H

DE Rb,t

(44)

s.t. P O F−I N
b,t − P RE SC H

b,t = 0 (45)

0 ≤ P RE SC H_Pdown
b,t ≤P Pdown,max

b,t − P Pdown
b,t (46)

0 ≤ P RE SC H_Ddown
b,t ≤P Ddown,max

b,t − P Ddown
b,t (47)

0 ≤ P RE SC H_DE R
b,t ≤P DE Rmax

b,t − P DE R
b,t (48)

where

C RE SC H_P
DECb,t = P RE SC H_Pdown

b,t .ρ
RE SC H_Pdown
b,t (49)

C RE SC H_D
DECb,t = P RE SC H_Ddown

b,t .ρ
RE SC H_Ddown
b,t (50)

C RE SC H
DE Rb,t = P RE SC H_DE R

b,t .ρ
RE SC H_DE R
b,t (51)

P RE SC H
b,t = P RE SC H_Pdown

b,t + P RE SC H_Ddown
b,t

+ P RE SC H_DE R
b,t (52)

where

P O F−I N
b,t = P O F

b,t − P I N
b,t (53)

In the above model, the power imbalance (P O F−I N
b,t ),

Pdown
b,t , P DE R

b,t , P Pdown
b,t , and P Ddown

b,t are given from solv-
ing the day-ahead PEM optimization of II-B or II-D. The
rescheduling cost of (44) is minimized subject to con-
straints (45)-(3). Equation (45) ensures power balance in
the affected building b. In this building, the imbalance of
power (P O F−I N

b,t ) obtained from day-ahead scheduling (53)
is compensated by rescheduling power. Equations (46)-(48)
maintain the upper bound of the rescheduled power for
priority load, discretionary load, and DER, respectively.
Equations (49)-(51) show the terms of the objective func-
tion. According to (52), rescheduled power can be obtained
from priority load, discretionary load, and DER, respectively.
It is mentioned that similar to any rescheduling scheme in
power systems, the prices used in the rescheduling phase are
much higher than those used in the day-ahead scheduling
i.e. ρDE R

b,t ≪ ρ
RE SC H_DE R
b,t , ρPdown

b,t ≪ ρ
RE SC H_Pdown
b,t

, and

ρDdown
b,t ≪ ρ

RE SC H_Ddown
b,t

.
The total rescheduling cost

∑
b∈BRE S

∑
t∈TRE SC H

C RE SC H
P E Mb,t

should be allocated among the parties that cause uncertainty.
A simple procedure that can be adopted is to solve the
rescheduling model (4)-(3) by considering only contingency
about each party. Hereby, the rescheduling cost will be
Ci,b,t ∀i ∈ Sb, where Sb in the set of parties who simultane-
ously cause a mismatch in building b. A straightforward way
to allocate the cost among them is to calculate the share of
each of them as

∑
b∈BRE S

∑
t∈TRE SC H

Ci,b,t∑
i∈Sb

Ci,b,t
• C RE SC H

P E Mb,t .

III. NUMERICAL ANALYSIS

The proposed PEM strategy is implemented to a benchmark
with a few related tests. The devised mathematical models
that are used in the PEM strategy are solved via GAMS v.
44.2.0 language with solver CPLEX v.22.1.1.0 [41]. Also,
we use MATLAB v. R2023a, and Excel 365 for analysis and
demonstrating data. All simulations are performed on a server
with a 64-core 9.9 GHz CPU and 256.0 GB RAM. After
presenting data in subsection A, the results and discussions are
provided in subsection B. Scalability analysis and comparison
tests are presented in subsections C and D, respectively.

A. Data and Assumptions

Assume that the ECSC is notified by the TSO/DSO that
there will be an energy interruption in two city blocks due to
a storm from 18:00 to 00:00 tomorrow. The schematic for the
city blocks is shown in Fig. 2. Assume that each city block
contains 4 buildings. In other words, 8 buildings are predicted
to be affected by the storm. The ECSC invites the EV owner
to participate in the PEM. Assume EV1-EV5 participate in
city block1 and EV6-EV10 participate in city block2.

Figure 3 illustrates the opt-in preference of EVs for provid-
ing energy service in each interval. In this figure, the arrival
and departure time of each EV (t A

e and t D
e ) are depicted.

As depicted in Fig. 3, the period of maximum EV participation
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Fig. 2. EVs’ locational willingness-to-participation.

Fig. 3. Opt-in preference of EVs.

is from 19:10 to 20:15, during which 8 EVs are willing to
participate in the PEM. Also, 50% of EVs’ arrival time is
18:00. The average time that all EVs are willing to give energy
service is 230.5 minutes. The average duration for blocks 1 and
2 are 246 and 215 minutes, respectively. Assume that the
participating EVs have specifications of Audi e-Tron, BMW
i3, Tesla Model X, Chevrolet Bolt, and Mercedes EQC. Hence,
we have 10 EVs from each brand, as shown in Table II.

The maximum SoE and charging rate of each EV are given
in Table III of [42]. Each EV determines its minimum SoE to
mitigate range anxiety, which has been identified as a barrier
to V2G participation [30]. The values of minimum, maximum,
and initial SoE of each EV (SoEmin

e , SoEmax
e , and SoE ini

e )

indicated by each EV are shown in Fig. 4. We consider that
SoEmin

e = 15 kWh for all EVs and the initial SoE is equal
to the maximum SoE value which means EVs with their
best initial SoE participate in the energy service program.
The difference between SoE ini

e and SoEmin
e can indicate the

operational capacity (OCe = SoE ini
e −SoEmin

e ∀e ∈ E) of EV
e in the PEM. In this regard, the Operational Capacity (OC) of
EVs in block bl can be defined as

∑
e∈Ebl

OCe/
∑

e∈E OCe.

Based on the assumptions made in this case study, EVs’ OC
would be equal to 48.5724% and 51.4276% for city blocks
1 and 2, respectively. It is observed that the OC of EVs is
very close in two blocks.

For Case A, the total load curtailment (PCU R
T OT AL ,t ) is shown

in Fig. 5. As indicated, the maximum value is 16.848 kW
which is related to the curtailment load of Building 1 at
18:45. It is assumed that the buildings in each city block
are near enough to each other that the traveling time of

Fig. 4. SoEmin, SoEini, SoEmax.

Fig. 5. Load curtailment for Cases A and B.

EVs is negligible. In this numerical analysis, time granularity
is considered 5 minutes. Hence, by considering the extreme
period from 18:00 to 00:00, we have 72 times.

For Case B, the load curtailment for each building is
depicted in Fig. 5. In each building, maximum priority and
discretionary load curtailment would be P Pdown,max

b,t and
P Ddown,max

b,t , respectively. By demanding load curtailment
from the TSO/DSO side, the building energy management

would be under pressure. The more is
PCU R

b,t

P Pdown,max
b,t +P Ddown,max

b,t
,

the severity of curtailment would be higher from the perspec-
tive of energy management. Based on this, we can define a
Curtailment Degree of Severity as:

C DS (b, t) =
PCU R

b,t

P Pdown,max
b,t + P Ddown,max

b,t

(54)

It is possible to consider weights for priority and discretionary
upper bounds in the denominator. As mentioned previously,
we did not allow priority load curtailment at this stage of the
study. Since the number of buildings in each block is 4, the
average of ¯C DS (b, t) over time and the building of each city
block is

∑
b
∑

t C DS(b,t)
72∗4 .

C DS (b, t) =
PCU R

b,t

P Pdown,max
b,t +P Ddown,max

b,t
The value of

¯C DS (b, t) for city Blocks 1 and 2 is equal to 0.212446.
In this way, it is assumed that the average curtailment degree
of severity is considered equal for two city blocks.
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TABLE II
EV BRANDS

Fig. 6. Price data including discharge price, price of DER generation, price
of discretionary and priority load curtailment.

With careful consideration of the motivations of EV owners,
in most emergency cases, individuals typically do not seek
solely to maximize their profit. Hence, if the preferences of
EV owners are met (for example, if the SoE value becomes
higher than SoEmin as discussed in section II-B), they would
likely be willing to participate with a reasonable discharge
price. As evidence, during Hurricane Sandy in 2012, many
EV owners in the affected area lent their vehicles to provide
electricity to hospitals, shelters, and charging stations for
people’s devices, see [43]. Hence, it would be rational to
consider the EV discharge price to be lower than discretionary
load curtailment and local DER prices in emergency cases,
as shown in Fig. 6. Additionally, as depicted in Fig. 6, the
prices considered for priority loads are higher than those for
discretionary loads and DERs.

B. Results and Discussion

The implemented model (Equations (1)-(16) and (18)-(23))
contains 17 blocks of equations, 22,341 single equations,
9 blocks of variables, 15,006 single variables, 59,007 non-zero
elements, and 5,760 discrete variables. After solving the MILP
problem, the optimal value for the objective function C D A

P E M
obtained equal to $2421.497. Without using EVs, the objective
function would be $8821.44, i.e., deploying EVs, in this
case, the study reduces PEM strategy cost by about 72.55%.
Moreover, there would be priority load curtailment in contrast
to the case with EV. Table III shows the value of priority load
curtailments. This finding confirms the conclusions of previous
research such as [18] that showed the effectiveness of using
EVs in PEM in extreme events.

The power balance between the total amount of curtailment
and the load curtailments that are devoted to the buildings is

Fig. 7. Curtailment assignment to each building in Case A.

Fig. 8. Share of each block in curtailment.

Fig. 9. EV services in the buildings located in City Block 1.

Fig. 10. EV5 and 10 services in different buildings.

shown in Fig. 7. This result confirms that the PEM strategy
was able to successfully meet the curtailment requirement
imposed by the TSO/DSO. The percentage of assigned cur-
tailment to each block is depicted in Fig. 8. On average, the
share of block 1 is 67% and the share of block 2 is 33%.
Figure 9 shows the scheduled EV services in the buildings of
City Block 1, throughout the energy service period. To better
demonstrate the EV services in the building, another schematic
is depicted in Fig.10. It is noted that as we stated previously,
the city blocks are clustered in a way that the traveling time
of EVs between the buildings is ignorable.

Figure 11 shows the discharging power of EVs in city
block 1. On the right side of Fig. 11, we depict the discharge
power for EV5 and EV10. The maximum value for discharging
power of EV5 is 8.1116 kW and happened at 23:55 in building
1. For EV10, this value is 5.5221 kW and happened at 21:10
in building 7. The sum of EV discharge power in Blocks
1 and 2 is illustrated in Fig. 11. In Block 1, the maximum
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Fig. 11. EV discharge power in City Block 1.

Fig. 12. Purchased power from local DERs.

Fig. 13. Decreasing discretionary loads of buildings.

discharge power was 15.3581kW at 23:55. This value is
9.5011 kW at 18:15. In Fig. 8, we depicted the share of
each block in curtailment. It is observed that the peak for
curtailment share occurred at 23:55 and 18:15 for Blocks
1 and 2, respectively. This means that for each block the peak
of discharging has happened in the peak of curtailment share.
Also, it is observed that at 18:50, we have no EV discharging
in either block. Further investigation reveals that the price
of DER generation at 18:50 (3.064 $/kWh) is less than that
discharge price (3.668 $/kWh). Hence, at 18:50, we have DER
generation instead of EV penetration. The purchased power
from local DERs is shown in Fig. 12. The decreasing power
of discretionary loads is shown in Fig. 13.

According to equations (2), (16), and (17), the curtailed
load (shown in Fig. 8) should be compensated by DER

TABLE III
PRIORITY LOAD CURTAILMENT IN THE CASE WITHOUT EV

Fig. 14. The share of each party in load curtailment of each building (Case B).

Fig. 15. The share of EVs’ in discharge power in each hour.

power (shown in Fig. 12), decreased load (shown in Fig. 13),
and EV discharging. It is noted that the value of priority
load curtailment is zero. The results indicate that due to the
participation of EVs in the PEM strategy, the share of DER
power and decreased power of buildings is lower than the share
of EV discharging.

For Case B, the obtained PEM cost is $3243.315. The share
of EV discharge, DER generation, and load decrease in meet-
ing the curtailment requirement of each building are shown in
Fig. 14. As observed, the contribution of EV discharge power
is greater than that of load curtailment and DER generation.
It is confirmed that if there is proper motivation for increas-
ing EVs’ willingness in participation for energy services in
extreme weather events, their role would be highlighted in an
optimal PEM strategy. The share of each EV in total dispatch
power in each hour is shown in Fig. 15.

It is evident from this figure that the number of hours
each EV is willing to participate directly affects its share in
hourly discharge power. For instance, EV3 and EV7 have a
limited contribution to the total discharge power because their
participation hours are less than others (55 and 65 minutes,
respectively).
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On the day of extreme weather event occurrence, the
ECSC is notified that EV6 and EV9 participate by 10 min-
utes of delay i.e. instead of 18:00 and 18:35, they will
participate at 18:10 and 18:45. The ECSC should perform
rescheduling by solving optimization model of (44)-(53)
for periods [ 18 : 00 18 : 10 ] and [ 18 : 35 18 : 40 ]. Since
∝e6,8,18:00 = 1 and ∝e9,6,18:35 = 1, rescheduling should
be performed in Buildings 8 and 6 respectively. In these
periods, the lack of discharge power of EV6 (1.692632 kW)
and EV9 (1.305263 kW) should be compensated for by
more DERs generations and more decreasing power in these
buildings. By implementing optimization model ((44)-(53)),
P RE SC H_DE R

8,18:00 = 1.692632 kW , P RE SC H_DE R
6,18:35 = 1.2335 kW ,

and P RE SC H_Ddown
6,18:35 = 0.071763 kW . Since these reschedul-

ing periods have no intersection, cost allocation is not required
and the rescheduling cost of the first and second periods should
be paid by EV6 and EV9, respectively.

C. Scalability Management

Since the developed models of Case A and B are MILP, the
complexity of the problem will be increased by increasing the
number of binary variables. The number of binary variables
∝e,b,t is increased by increasing the number of EVs, the
number of buildings, and the number of t. The problem is
more severe for Case A. For example, in the discussed case
of subsection B, we have 10 EVs, 8 buildings and 72 intervals
(based on 5 min granularity) for Case A. Hence, we have
10×8×72 = 5760 binary variables. By increasing the number
of EVs and buildings, the number of binary variables increases,
and the computational complexity is increased thereafter. Two
solution approaches are proposed to reduce the complexity:
(i) Reducing the number of intervals by decreasing time gran-
ularity: In the above case studies and scenarios, we consider
72 intervals based on 1T = 5 min. By increasing the size
of the problem, we can increase 1T . For a case study with
the number of buildings and EVs equal to 20 and 16, if we
consider 1T = 20 min. The number of integer variables would
be the same as the previous case study (20×16×18 = 5760),
(ii) Using engineering-driven insights for converting Case A
to Case B: As described in II-D, Case B provides detailed
data on the amount of load curtailment for each building
at every time period. As shown in II-D, (41)-(43) can be
solved separately for each block and the computational effort
decreases in comparison to that of Case A. One option is
that if we have total load curtailment at time t in Case A
(PCUR

TOTAL,t), we can decompose it to obtain the amount of load
curtailment in building b at time t (PCU R

b,t ) by collaboration
of ECSC and households. As shown in Fig. 16, the share of
each building from the curtailed load (PCU R

b,t ), is obtained
by weight ℵb. To calculate ℵb, the collaboration between
ECSC and households is required by adopting an engineering
insight. To this end, the households give information about
their loads to the ECSC and the ECSC determines the assigned
weights (ϑP,b, σD,b) to the priority and discretionary loads of
all buildings, respectively.

In parallel, the households assign related weights to their
priority and discretionary loads (ςband1 − ςb), respectively.

Fig. 16. Converting Case A to Case B for managing scalability.

Fig. 17. Scalability test based on the algorithm of Fig. 16.

Finally, ℵb is obtained through the collaborative weighting
performed by ECSC and Households, as shown in Fig. 16. It is
mentioned that the other forms of weighting can be designed
for this purpose.

D. Comparison Analysis

In subsection B, while interpreting Fig. 15, we discover that
the length of service time of EVs is significant and influences
the PEM strategy. Now, we examine the arrival and departure
times of each EV. The proposed PEM strategy is tested for
Case A by changing the arrival and departure times of EVs
without changing the length of service time. To this end, let us
perform three tests by assuming different arrival and departure
times of EVs 3 and 4.

Test1: T sch
e3 = [23 : 0523 : 55], T sch

e4 = [1821 : 30] .

Test2: T sch
e3 = [22 : 0522 : 55], T sch

e4 = [1922 : 30] .

Test3: T sch
e3 = [21 : 0521 : 55] , T sch

e4 = [2023 : 30] .

After conducting PEM for these tests, a few measures have
been obtained and are listed in Table IV. Analysis of Table IV
reveals that the preferences of EVs, such as arrival time and
departure time, influence the measures of the PEM strategy.

Besides arrival and departure times, several opt-in prefer-
ence metrics, such as the initial SoE, minimum SoE value, and
service duration, influence the performance of PEM metrics.
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TABLE IV
THE IMPACTS OF OPT-IN PREFERENCES OF EV3 AND 4

One measure is the proportion of reserve energy that an
EV offers (SoE ini

e − SoEmin
e ) divided by the total curtailed

energy required in that period (
∫ t D

e
t A
e

PCU R
T OT AL ,t dt). Additionally,

another measure is the proportion of service time to the total
PEM service time ( t D

e −t A
e

t F −t S ). By multiplying these measures,
a single index named the Resiliency-based Value of EV Opt-
in (RVEO) is defined, which aggregates all opt-in preference
metrics:

RV E Oe =
SoE ini

e − SoEmin
e∫ t D

e
t A
e

PCU R
T OT AL ,t dt

.
t D
e − t A

e

t F − t S (55)

In continuation, we are going to evaluate the impact of RVEO
on the PEM’s major indices. For this purpose, we will assess
a few scenarios. As shown in Table V, the scenarios are
designed in a way that by increasing the number of EVs and
buildings, the value of RVEO decreases. To address scalability,
we adopted transforming Case A to Case B, as described in
subsection C. We assume ςb = 0.8. Also, ϑP,b and σD,b are
equal for all buildings. The comparison results of Table V
shows, first, the effectiveness of using EVs in comparison with
the case without using EVs, and second, the importance of
EV opt-in preferences and their impacts on the PEM’s perfor-
mance metrics. Table V shows the results for a set of scenarios
where, by increasing the number of EVs without improving
the average RVEO, the PEM performance deteriorates. Also,
Fig. 17 shows the scalability tests. The results show that by
converting Case A to Case B, the model can be solved in a
reasonable execution time.

IV. CONCLUSION

In this work, we proposed a preventive energy management
(PEM) strategy by modeling EV owners’ opt-in preferences in
the blocks of a smart city in responding to extreme weather
events. Two case studies were introduced and modeled. Also,
a rescheduling procedure along with a cost allocation mecha-
nism has been proposed in case of uncertainty occurrence. The
numerical results confirmed the conclusions of the previous
research that showed the effectiveness of using EVs in PEM
in extreme events in two ways: first, the less obtained optimal
cost function, and second, less curtailment of priority loads.
Moreover, the impacts of the length of period of service and
opt-in preferences of EVs have been demonstrated in the
results analysis. Besides the minimum of State of Energy
(SoE) to avoid a range anxiety, opt-in preferences should be
considered in any policy design for the promotion of Vehicle-
to-Grid (V2G) or Vehicle-to-Building (V2B). These points
are the main contributions that we modeled and examined

through our numerical study. In future work, the provision of
traveling possibilities among city blocks and its effect on the
optimal resiliency-related cost can be investigated. In addition,
modeling battery degradation in the PEM strategy can be taken
into consideration.
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