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Shaving in a Grid-Connected PV Storage System
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Abstract—In modern power systems, it is important to compen-
sate net load forecast errors which are caused due to variability
and uncertainty of load and renewable energy source powers
for improving the stability and reliability. Super capacitor (SC)
is a well suited component for compensating forecast error
due to its power and energy density characteristics. In this
article, a novel method is proposed for net load forecast error
compensation through SC application. The proposed method is
simple and general which can be used at industry scale while
implementing the energy management applications. In order to
test the performance of the proposed method, a grid-connected
photovoltaic storage system is considered. The forecast error in
load/PV powers is compensated while limiting both grid demand
and feed-in powers to their optimal limits. Battery energy storage
system charge/discharge schedules are controlled by a rule-
based peak shaving method to minimize the day-ahead average
peak demand of the system. For controlling SC charge/discharge
schedules, the proposed net load forecast error compensation
method is used. It is observed that the peak demand and feed-in
powers are reduced significantly with the proposed method as
compared with the case when there is no net load forecast error
compensation.

Index Terms—Battery energy storage, demand and feed-in
limits, peak shaving, renewable energy sources, super capacitor

NOMENCLATURE

A. Notations
ηbc{ηbd} Battery charge{discharge} efficiency
C Capacitance of SC
E∗

bd Dischargeable energy of the battery
Ei

sc Initial estimate of SC energy
Ebc{Ebd} Energy needed to charge{to be dis-

charged by} the battery over a day
Ebr Battery energy rating
Enlfc{Egc} Available net load feed-in{grid} energy

to charge the battery over a day
Esc Energy of SC
P i
sc Initial estimate of SC power
P l
bc{P l

bd} Charge{discharge} power limit of bat-
tery
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Pnv
g−peak Peak grid power over a day when there

is no forecast error
Pnv
g (t) Grid power when there is no forecast

error
Pbc{Pbd} Battery charge{discharge} powers
Pb{Pg} Battery{grid} power
Pdl Demand limit
Pfil Feed-in limit
Pl{Ppv} Load{PV} power
Pnld{Pnlf} Net load demand{feed-in} power
Pnlfc−b{Pgc−b} Net load feed-in{grid} power used to

charge the battery
Pnlfc{Pgc} Available net load feed-in{grid} power

to charge the battery
Pnlfe Net load forecast error
Pnl Net load power
Pscr Rated power limit of SC
Psc Power of SC
SoCb−i{SoCb−f} Battery SoC at the start{end} of the day
SoCbl{SoCbu} Battery SoC lower{upper} limit
SoCb{SoCsc} SoC of the battery{SC}
SoCsc−i SoC of SC at the start of the day
SoCscl{SoCscu} SC SoC lower{upper} limit
T Total predictive horizon
t Time
Tr Each time slot duration
t1 Time slots when net load feed-in power

to charge the battery is more than the
feed-in limit

td, tc Discharge mode, charge mode times
Vbr Voltage rating of the battery
Vscr Nominal voltage of SC
Vsc Open circuit voltage of SC
Pl−r Rated load power
Ppv−ins PV source installed power
Pgd Grid demand power
Pgf Grid feed-in power
Pgd−p Peak grid demand power
Pgf−p Peak grid feed-in power
Rlfe Load forecast error range
Rpvfe PV power forecast error range

B. Indices
f Index of average hourly forecast values
o Index of optimal value
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I. INTRODUCTION

The net load forecasts help power system operators in opti-
mizing power generation, reduce the need for backup power,
and improve the overall performance of the power system.
However, the errors associated with the net load forecasts
are unavoidable due to the reasons such as uncertainty in
end user behavior as well as weather conditions, and data
limitation [1]. Therefore, it is important to consider the net
load forecast errors in power systems planning and operation
to ensure grid stability, frequency regulation, reliability, and
cost-effectiveness [2], [3]. Moreover, the net load forecasts
are used for implementing energy management applications
which help in distributed energy resource scheduling, energy
market operation, etc [4]. These net load forecast errors are
mainly due to variability and uncertainty of load and renewable
energy powers such as photovoltaic (PV) powers, etc. The
difference between minutely power and hourly average power
is defined as variability whereas the difference between the
hourly average forecast power and hourly average power is
defined as uncertainty [5]. With this variability and uncertainty,
the net load power varies for every 5 to 15 minutes of
the day [6]. There are several techniques used for net load
forecast error compensation in the existing literature such as
model predictive control [7], neural networks [8]. Further, it
is possible to compensate the net load forecast errors using
flexible loads and energy storage devices [9]–[11].

In [10], [11], the size of energy storage devices is opti-
mized while compensating the forecast error of wind power.
However, the drawback in those works is that the particular
energy storage device type and its modelling details are not
discussed. In [12], the battery energy storage devices are
considered and their size is optimized while minimizing the
forecast errors of wind power. However, the drawback is
that if the battery is used for charging and discharging with
respect to minutely variation of net load power, its lifetime
is reduced. In general, the super capacitor (SC) is used along
with the battery to absorb the transients/ripples during load
changes to increase the lifetime of the battery [13], [14].
The conventional SC is a high power and low energy density
device [15]. Considering the minutely variation of net load
power, it is difficult to use conventional SC for compensating
the forecast error due to their low energy density ratings.
However, a hybrid SC with high energy density rating can
be used for compensating forecast error [16]. In the existing
literature of net load forecast error compensation [7]–[12], the
application of SC for net load forecast error compensation is
not discussed. In order to fill this research gap, a generalized
net load forecast error compensation method is proposed in
this paper specifically using SC which can be applied for real-
time implementation of any energy management application
involving net load forecasts. The various methods/devices used
for net load forecast error compensation are given in Table I.

Further, in this article, in order to know the impact of
proposed method, a grid-connected PV-BESS system is chosen
where BESS is used for peak shaving application. Peak
shaving is chosen as it is an important energy management ap-
plication which provides several benefits to energy consumers

TABLE I
METHODS/DEVICES USED FOR NET LOAD FORECAST ERROR

COMPENSATION

Reference Method/device used for
net load forecast error compensation

[7] Model predictive control
[8] Artificial neural networks
[9] Flexible loads

[10], [11] Energy storage devices
[12] BESS

Proposed SC

as well as to grid operators [17]. Peak shaving improves
load factor and helps in achieving economical operation of
generation [18]. It is also helpful for increasing the efficiency
and for reducing consumers energy costs [19]. Moreover, peak
shaving is useful for better voltage profile in distribution
networks [20]. In [21], the implementation of a computational
method to minimize the peak power consumption is discussed.
In [22], a heuristic algorithm known as MinPeak is formulated
to reduce the peak demand. However, the energy storage is not
used for the peak shaving application. In [23], an attempt is
made to reduce the peak power through the determination of
the discharge quantity of energy storage. In [24], the peak
shaving is done while minimizing the operating costs of the
system where the trajectory of state of charge (SoC) of the
battery is considered as one of the control variables. This
leads to twenty four control variables over a day with hourly
dispatch of the battery. Further, the peak shaving application
via demand/feed-in power limits with the help of the battery
energy storage systems (BESS) is presented in literature. In
[25]–[28], only the demand limit (DL) is considered, but not
the feed-in limit (FIL). The significance of FIL for voltage
profile improvement in distribution systems is discussed in
[29]. The consideration of FIL avoids voltage rise issues and
also increases the efficiency of the system.

Recently, a peak shaving method is proposed in [30] through
rule-based approach which is the suggested approach by IEEE
Std 2030.7 [32] for microgrid control purpose due to their
advantages like easy implementation, easy maintenance, clear
meaning of the chosen rules, and low cost. The proposed
method in [30] considered both DL and FIL. However, this
method does not consider the round-trip efficiency of battery
and its power limits. Moreover, the load and PV powers
are used as separate inputs for deciding the battery modes
which leads to the complexity of peak shaving method (two
different charge modes and more number of rules). To avoid
these limitations, the rule-based method is improved while
addressing the modelling issues of battery and considering the
only one input i.e., the net power at a particular node in [31].
However, the forecast errors of load and PV power are not
considered for real time implementation. In order to fill this re-
search gap, the proposed net load forecast error compensation
method is applied in the considered grid-connected PV-BESS
system and its impact on peak shaving operation is analysed.
The qualitative comparison of existing works with proposed
method based on peak shaving method and consideration of
forecast error compensation is given in Table II.
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TABLE II
QUALITATIVE COMPARISON BASED ON PEAK SHAVING METHODS AND CONSIDERATION OF NET LOAD FORECAST ERROR COMPENSATION

Reference Method of peak shaving operation Forecast error compensation
[21] Electric vehicle (EV) charging control X
[22] Appliances scheduling ×
[23] Energy storage discharging control ×
[24] Coordination of distributed generators, BESSs, and voltage regulating devices X
[25] Coordination of PVs, BESSs, and EVs ×
[26] Utilization of energy storage systems and real time thermal ratings ×
[27] Scheduling of BESSs ×
[28] Appliances scheduling considering DL ×
[29] Feed-in power limitation ×

[30], [31] Optimized rule-based approach considering both DL and FIL ×
Proposed Optimized rule-based approach considering both DL and FIL X

The overall contributions of the paper are given as follows.

1) To propose a net load forecast error compensation method
using SC considering net load forecast error as input.

2) To apply the proposed forecast error compensation method
in a grid connected PV storage system to know its impact
on peak shaving operation.

The organization of the paper is as given here. Section II
presents the overview of proposed control method. Section III
discusses the peak shaving method. Section IV describes the
proposed net load forecast error compensation method using
SC. The simulation results and conclusions are presented in
Section V and VI, respectively.

II. OVERVIEW OF PROPOSED CONTROL

The proposed method needs to be tested at a generalized
point of common coupling (PCC) or node of a system. If the
proposed method performs effectively at a generalized node,
it can be applied at any node in a power system irrespective of
the size of the system. Therefore, in this work a grid-connected
system consisting of load, PV source, the battery, and SC is
considered as shown in Fig. 1 [13]. The load is connected
at the ac bus of the system. The normalized average hourly
day-ahead load power profile with respect to its peak value is
shown in Fig. 2 [30]. The PV source is connected to dc bus via
a dc/dc converter. The normalized average hourly day-ahead
PV power profile with respect to its peak value is shown in
Fig. 2 [33]. The battery is connected at dc bus via a dc/dc
converter which is used for peak shaving operation. The SC
is connected at the dc bus via a dc/dc converter which is used
for compensating forecast error in load and PV powers.

The overview of proposed control for the considered system
is given in Fig. 3. As per the proposed control, the real time net
load power is used to decide charge/discharge schedules of the
battery and SC. The net load is considered to be varying for
each 5 minutes as per [6]. However, it is to be noted that the
battery powers are controlled for each one hour considering
the day ahead hourly average power profiles to reduce the
number of charge and discharge cycles of the battery over
a day which in turn results in the increased life time of the
battery. Accordingly, the net load power is expressed as sum
of its average hourly net load power forecast and forecast error

as given in (1).

Pnl(t) = P f
nl(t) + Pnlfe(t) (1)

where ‘t’ implies the time slot [(t − 1) × Tr, t × Tr] and
Tr is chosen as 5 minutes. The forecast error is the sum of
variability and uncertainty of net load power.

The net load power is considered as difference between the
load power and PV powers as given in (2),

Pnl = Pl − Ppv. (2)

Further, the average hourly net load power forecasts which
are positive over the day are considered as net load demand
powers as given in (3).

P f
nld(t) = P f

nl(t), P
f
nl > 0

= 0, otherwise.
(3)

The net load power forecasts which are negative are considered
as net load feed-in power as given in (4).

P f
nlf (t) = −P

f
nl(t), P

f
nl ≤ 0

= 0, otherwise.
(4)

The proposed peak shaving method provides the battery sched-
ules using average day-ahead hourly net load power forecasts
as input. The net load forecast error compensation method
provides SC charge/discharge schedules using net load forecast
error as input. In order to implement the proposed control,
the dc/dc converters of battery and SC are operated in current
control mode for supplying the required charge/discharge
power to the dc bus of the system.

III. PEAK SHAVING METHOD

The battery charge/discharge schedules are optimally con-
trolled based on peak shaving method which is presented in
this section [31]. The objective of the peak shaving method is
to minimize the peak demand over a day considering the day-
ahead forecasts of that particular day. In this scenario, there
exists a certain dischargeable energy of battery which can limit
the peak demand of the day to a certain value i.e., DL for any
given day based on the available renewable energy and the
load demand. Therefore, the DL is considered as constant for
a particular day. Based on the DL, the discharge and charge
modes of the battery are decided as discussed follows.
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Fig. 1. Considered grid connected PV hybrid storage system.
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Fig. 2. Normalized day-ahead load demand and PV power forecasts profiles
[30], [33].

A. Discharge and Charge Modes of the Battery

The modes of battery are chosen to limit grid power to DL
considering there is no forecast error.
1) Discharge Mode: When the net load demand forecast is

more than DL i.e., P f
nld(t) > Pdl, the battery is discharged

so that the grid power demand is limited to DL.
2) Charge Mode: When the net load demand forecast is less

than or equal to DL i.e., P f
nld(t) ≤ Pdl, the battery is

charged.

B. Control Inputs

The control inputs are obtained using the net load power
forecasts. These inputs are DL, energy needed to charge the
battery, available net load feed-in energy to charge the battery,
available grid energy to charge the battery, coefficient of grid
energy to charge the battery, and FIL. The order of calculating
the inputs is given in Fig. 4. The determination of these inputs
is explained as follows:

1) Demand Limit: The DL is determined considering that
the energy to be discharged from battery must be equal to the
battery dischargable energy which is given as

Ebd = E∗
bd (5)

where E∗
bd is the chosen control variable which is determined

optimally.
During discharge mode, the battery is used to provide

required power i.e., (P f
nld(t) − Pdl) for limiting Pnv

g (t) to

Battery and 
SC powers

Net load 
power

Forecast error
Compensation

Net load 
forecast error SC power

Battery power

Hourly average 
forecast of 
net load power

Fig. 3. Overview of proposed control.

Start

Calculate the demand limit

Calculate the energy needed to charge the
battery over a day (Ebc )

 Calculate the available net load injected energy to charge the
tbattery over a day (Enlf c )

Enlfc < Ebc

 Calculate the available grid energy to charge the
battery over a day 

No

Calculate the feed-in limit
Yes

 Calculate the coefficient of grid energy to charge the battery 

End

Fig. 4. Order of calculating control inputs of peak shaving method.

Pdl. However, with the discharge power limit (P l
bd), the battery

discharge power is calculated as

Pbd(t) = (P f
nld(t)− Pdl)/ηd, (P

f
nld(t)− Pdl) ≤ P l

bd

= P l
bd, (P

f
nld(t)− Pdl) > P l

bd

(6)

Then Ebd is determined as

Ebd =

T∑
t=1

Pbd(t). (7)

From (5),
T∑

t=1

Pbd(t)− E∗
bd = 0. (8)

Equation (8) is in the form of f(Pdl) = 0. To solve for Pdl,
the regula falsi method is used [30].
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2) Energy Needed to Charge the Battery: The state of
charge (SoC) at the end of the day must be equal to the SoC
of starting of the day for flexible day-to-day management. For
that, Ebc should be the same as Ebd i.e.,

Ebc = Ebd = E∗
bd. (9)

3) Available Net Load Feed-in Energy to Charge the Bat-
tery: Battery has to be charged by Ebc using either net load
feed-in power or grid power. Firstly, available net load feed-
in energy to charge the battery (without sending to grid) is
calculated. During tc, P f

nlf is available to charge the battery.
By considering the charging power limit, available net load
feed-in power for charging the battery is given in (10),

Pnlfc(t) = P f
nlf (t), P

f
nlf (t) ≤ P

l
bc

= P l
bc, P

f
nlf (t) > P l

bc.
(10)

Then Enlfc is given as

Enlfc =
T∑

t=1

Pnlfc(t). (11)

4) Available Grid Energy to Charge the Battery: When
Enlfc < Ebc, the energy required to complete the battery
charging is supplied by grid. As the grid power should be
limited to Pdl, the available grid power to charge the battery
is calculated as

Pgc(t) = Pdl − P f
nld(t),∀t ∈ tc

= 0, otherwise.
(12)

Then Egc is determined using (13),

Egc =

T∑
t=1

Pgc(t). (13)

5) Coefficient of Grid Energy to Charge the Battery: When
Enlfc < Ebc, the grid power is used to charge the battery for
supplying remaining Ebc −Enlfc over a day. Considering Cg

as the fraction of the grid energy required to completely charge
the battery, it is determined as given in (14),

CgEgc = Ebc − Enlfc

Cg =
Ebc − Enlfc

Egc
.

(14)

6) Feed-in Limit: If Enlfc ≥ Ebc, Pfil is determined such
that the battery is completely charged with Pnlfc(t) − Pfil

when Pnlfc(t) > Pfil. It means that the available net
load feed-in power to charge the battery is not used when
Pnlfc(t) ≤ Pfil i.e.,∑

(Pnlfc(t)− Pfil) = Ebc,∀t ∈ tc&&t1 (15)

where symbol ’&&’ is logical AND operator. Then,∑
(Pnlfc(t)− Pfil)− Ebc = 0,∀t ∈ tc&&t1. (16)

Equation (16) is in form of f(Pfil) = 0. It is solved using the
regula falsi method [30].

Now, the proposed rules for peak shaving method and de-
termination of optimal control inputs are discussed as follows.

≤

(t) > 
No

Yes

Pf
nld (t) ≤

Start

Discharge battery  

Charge battery 

Charge battery 

Charging of battery is not done as per Rule 4 

using Rule 1

using Rule 2

Yes

using Rule 3

Yes

No

No

Pdl

Enlfc E   bc

Pf
nlf Pfil

Fig. 5. Peak shaving algorithm.

C. Proposed Rules for Peak Shaving Method

The rules for peak shaving are formulated such that the
day-to-day management is flexible while limiting grid power
to DL and FIL.
Rule 1: Battery is discharged during td by Pbd(t) amount of
power.
Rule 2: During tc, if Enlfc ≤ Ebc both the net load feed-in
power and grid power are used for charging battery. The net
load feed-in power used for charging battery i.e., Pnlfc−b(t) =
Pnlfc(t) and grid power used for charging the battery i.e.,
Pgc−b(t) = CgPgc(t) as per (10) and (14). Then, charging
power of battery is Pbc(t) = Pnlfc−b(t) + Pgc−b(t)
Rule 3: During tc, if Enlfc > Ebc&&Pnlfc(t) > Pfil, the
grid power is not used to charge the battery. The net load
feed-in power is used for charging the battery according to
(10). It means that Pbc(t) = Pnlfc−b(t) = Pnlfc(t)− Pfil.
Rule 4: During tc, if Enlfc > Ebc&&Pnlfc(t) ≤ Pfil, both
the grid and net load feed-in power are not used for charging
the battery. Therefore Pbc(t) = 0.
Fig. 5 shows the procedure of determining battery schedules
with the help of the presented rules. Note that the coulomb-
counting method is used to determine the SoC of the battery
while implementing the proposed peak shaving method [33].

D. Optimal Control Inputs

The peak shaving method is optimized with optimal control
inputs which are calculated as discussed in this section. The
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fitness function and constraints of the chosen optimization
problem are given in (17)-(22),

minimize f = Pnv
g−peak. (17)

subjected to
1) Power balance constraint

Pnv
g (t) + Pb(t) = P f

nl(t). (18)

2) Battery SoC Constraints

SoCbl ≤ SoCb(t) ≤ SoCbu, SoCb−f = SoCb−i. (19)

3) Constraints of charge and discharge power of battery

Pbc(t) ≤ P l
bc, Pbd(t) ≤ P l

bd. (20)

4) Constraint of energy capacity of battery

E∗
bd ≤ Ebr. (21)

5) Available grid and PV energy constraint to charge
battery

Egc + Enlfc ≥ Ebc (22)

The battery power considering charge/discharge efficiency is
determined as

Pb(t) = Pbc(t)/ηc, during charging
= Pbd(t)× ηd, during discharging.

(23)

Note that there is no SC power in (18) because the SC and the
battery are independently controlled as per proposed method.
The E∗

bd is chosen as the decision variable, since the required
control inputs for peak shaving are the functions of E∗

bd. It is
chosen between 0 kWh and energy rating of the battery.

0 ≤ E∗
bd ≤ Ebr. (24)

The fitness function is non-linear. Since the genetic algorithm
(GA) is the widely used optimization technique for solving
non-linear problems, the GA solver used for solving the
optimization problem. The default values are chosen as per
GA solver of MATLAB for parameters of, etc. However, the
population size is tuned such that multiple runs provide almost
equal best fitness values. Because the population size is an
important parameter of GA on which the convergence and
operating time of GA depends on. Accordingly, a population
size of 20 is considered such that several runs converges to
values which are close to each other.

IV. PROPOSED NET LOAD FORECAST ERROR
COMPENSATION METHOD USING SC

The SC is used to compensate the forecast error while
considering its SoC and rated power constraints. The SoC
and energy of SC are determined as given in (25) and (26),
respectively [34].

SoCsc =
Vsc
Vscr

(25)

Esc =
1

2
CV 2

sc (26)

From (25) and (26), the Esc is

Esc =
1

2
C(SoCscVscr)

2. (27)

The (27) shows that the energy stored in SC is proportional
to the square of its SoC. It means that there will be lower
and upper limits of Esc corresponding to the lower and upper
limits of SoC. Therefore, the energy stored in capacitor must
be within its limits in order to satisfy SoC constraints. Further,
the SC power must be within its rated power limit. Considering
these constraints the SC power is determined. The proposed
SC control is shown as flowchart in Fig. 6 and explained as
follows.

A. SC Power During Discharging

The SC is discharged when net load forecast error is greater
than zero. Firstly an initial estimate of SC power is determined
considering energy storage and rated power constraints as
given in (28),

P i
sc(t) = 0, Esc(t− 1) = Escl

= Pscr, Esc(t− 1) 6= Escl&&Pnlfe(t) > Pscr

= Pnlfe, Esc(t− 1) 6= Escl&&Pnlfe(t) ≤ Pscr.
(28)

It means that if the available energy in SC is at its lower limit,
the SC is not discharged. Otherwise, it is discharged either by
Pscr if Pnlfe(t) > Pscr or by Pnlfe(t) if Pnlfe(t) ≤ Pscr.
Then, initial estimate of SC energy (Ei

sc(t)) corresponding to
P i
sc(t) is calculated as given in (29),

Ei
sc(t) = Esc(t− 1)− P i

sc(t)

Tr
. (29)

Now, SC power is considered equal to P i
sc(t) if Ei

sc(t) ≤ Escl,
otherwise it is considered such that Esc(t) becomes equal to
Escl as given in (30),

Psc(t) = P i
sc(t), E

i
sc(t) ≤ Escl

= (Esc(t− 1)− Escl)× Tr, Ei
sc(t) > Escl.

(30)

B. SC Power During Charging

The SC is charged when net load forecast error is less
than or equal to zero. Firstly an initial estimate of SC power
is determined considering energy storage and rated power
constraints as given in (31),

P i
sc(t) = 0, Esc(t− 1) = Escu

= −Pscr, Esc(t− 1) 6= Escu&&− Pnlfe(t) > Pscr

= Pnlfe, Esc(t− 1) 6= Escu&&− Pnlfe(t) ≤ Pscr.
(31)

It means that if the available energy in SC is at its upper limit,
the SC is not charged. Otherwise, it is charged either by Pscr if
−Pnlfe(t) > Pscr or by Pnlfe(t) if −Pnlfe(t) ≤ Pscr. Now,
Ei

sc(t) is calculated using (29). Then SC power is considered
equal to P i

sc(t) if Ei
sc(t) ≤ Escl, otherwise it is considered
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Fig. 6. Proposed control of SC for net load forecast error compensation.

such that Esc(t) becomes equal to Escu as given in (32),

Psc(t) = P i
sc(t), E

i
sc(t) ≤ Escu

= (Esc(t− 1)− Escu)× Tr, Ei
sc(t) > Escu.

(32)

V. SIMULATION RESULTS AND DISCUSSION

The proposed method is tested for two different cases i.e.,
when there is more net load power over a day and less net
load power over a day using MATLAB on a 64-bit operating
system PC with a processor of Intel(R) Core(TM) i5-6500
CPU @ 3.2 GHz. The simulation parameters are shown in
Table III. The forecast errors in the load and PV power pro-
files are considered to be following normal distribution. The
mean values are taken as nominal forecast values. Standard
deviations are taken as one-third of maximum forecast ranges.
The forecast error ranges of load power and PV power are
±10% and ±25% of nominal values, respectively [33].

A. Case 1: High Peak Load and High Peak PV Power

In this case peak load power forecast is considered as 100
kW and peak PV power forecast is considered to be equal
to 100 kW which are the rated load and PV source installed
powers respectively. Fig. 7 shows the day-ahead and real time
net load powers with forecast errors.

TABLE III
SIMULATION PARAMETERS [33], [34]

Parameter Value Parameter Value
ηbc 0.95 SoCbl/SoCbu 0.2/0.9
ηbd 0.95 SoCb−i 0.5
Ebr 400 kWh P l

bc 100 kW
Vbr 120 V P l

bd 100 kW
Escr 3 kWh SoCscl/SoCscu 0.49/0.98
Vscr 150 V SoCsc−i 0.5
Csc 960 F Pscr 35 kW
Pl−r 100 kW Ppv−in 100 kW

1) Battery Power: For these day-ahead load and PV power
profiles, the rule-based peak shaving method is applied and
optimal DL is determined using GA. The best fitness values
plot for different runs of GA is shown in Fig. 8 which indicates
that the optimal DL is equal to 65.99 kW. The control inputs
corresponding to this optimal DL i.e., Eo

bc, Eo
nlfc, Eo

gc and
Co

g are calculated as 159.84 kWh, 126.95 kWh, 981.62 kWh
and 0.03, respectively. The optimal battery powers which are
obtained using proposed rules over a day are shown in Fig.
9(a). It indicates that their powers are limited to the battery
power limits of 100 kW.

2) SC Power: The SC powers are obtained using proposed
net load forecast error compensation method and shown in
Fig. 9(b). This profile indicates that their powers are limited
to the rated power of 35 kW.
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Fig. 8. Best fitness values for Case 1.

3) SoC of Battery and SC: The battery SoC is indicated in
Fig. 9(c). It indicates that the battery SoC is within its limits
of 0.2 and 0.9. At the end of the day SoC is equal to the initial
SoC of 0.5 which ensures flexible day to day management of
battery. Further, SoC of SC is indicated in Fig. 9(d) which
shows that SoC is within its limits of 0.49 and 0.98.

4) Grid Power: The resulting grid power is determined
using (33),

Pg(t) + Pb(t) + Psc = Pnl(t). (33)

This grid power with and without SC is shown in Fig.
9(e). Without forecast errors, the peak grid demand should
be limited to P o

dl of 65.99 kW and there should not be
any grid feed-in power as per the optimal rule-based peak
shaving algorithm. However, due to forecast errors the grid
peak demand and feed-in powers are 73.96 kW and 7.65
kW, respectively without SC. Further, the peak grid demand
and feed-in powers with SC are 71.03 kW and 1.27 kW,
respectively. Note that this peak grid demand is not same as
that of the peak grid demand when there are no forecast errors
i.e., 65.99 kW. Moreover, there is peak feed-in power of 1.27
kW whereas there is no feed-in power in case of no forecast
errors. It means that the SC is unable to compensate forecast
errors fully due to its SoC and rated power constraints.

B. Case 2: Low Peak Load and High Peak PV Power

In this case peak load power forecast is considered as 100
kW and peak PV power forecast is considered to be equal
to 50 kW which are the rated load and half of the PV source
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Fig. 9. Case 1. (a) Battery power. (b) SC power. (c) Battery SoC. (d) SC
SoC. (e) Grid power.

installed powers respectively. Fig. 10 shows the day-ahead and
real time net load powers with forecast errors.

1) Battery Power: For these day-ahead load and PV power
profiles, the rule-based peak shaving method is applied and
optimal DL is determined as 65.99 kW. The control inputs
corresponding to this optimal DL i.e., i.e., P o

dl, E
o
bc, Eo

nlfc, and
P o
fil are 21.58 kW, 151.52 kWh, 303.48 kWh, and 19.74 kW,

respectively. The available grid energy and coefficient of grid
energy to charge the battery (Eo

gc and Co
g ) are not applicable as

Eo
pvc > Eo

bc. The optimal battery powers which are obtained
using proposed rules over a day are shown in Fig. 11(a). It
indicates that their powers are limited to the battery power
limits of 100 kW.

2) SC Powers: The SC powers are obtained using proposed
SC control as shown in Fig. 11(b). It shows that SC powers
are limited to its rated power.

3) SoC of Battery and SC: The battery SoC is indicated
in Fig. 11(c). It shows that the SoC is maintained within its
limits of 0.2 and 0.9. Moreover, at the end of the day SoC
is equal to the initial SoC of 0.5 which ensures the flexible
day to day management. Further, SoC of SC is shown in Fig.
11(d). It indicates that the SoC is maintained within the limits
of 0.49 and 0.98.

4) Grid Powers: The grid power is indicated in Fig. 11(e).
Without forecast errors, the peak grid demand should be
limited to P o

dl of 21.58 kW and P o
fil of 19.74 kW respec-

tively which are obtained through optimal rule-based peak
shaving algorithm. However, due to forecast errors the grid
peak demand and feed-in powers are 25.59 kW and 28.50
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kW, respectively without SC. Further, the peak grid demand
and feed-in powers with SC are 21.58 kW and 23.36 kW,
respectively. Note that even though this peak grid demand
is same as that of the peak grid demand when there are no
forecast errors, the peak feed-in power is not equal to the peak
feed-in power when there are no forecast errors i.e., 19.74 kW.
This is due to the SC SoC and rated power constraints.

C. Performance Comparison

The performance of the proposed forecast error compen-
sation is presented by considering the peak grid demand
and feed-in power as performance indicators. The Pgd−p and
Pgf−p are determined as follows.

Pgd−p =maximum(Pgd(t))

Pgf−p =minimum(Pgf (t)).
(34)

In (34), the Pgd(t) and Pgf (t) are determined using (35) and
(36), respectively.

Pgd(t) = Pg(t), Pg(t) > 0

= 0, otherwise.
(35)

Pgf (t) = Pg(t), Pg(t) < 0

= 0, otherwise.
(36)

The Pgd−p and Pgd−p must be less for better peak shaving
operation. he performance of proposed method is compared
with respect to the case when there is no forecast error
compensation i.e. when the SC is not used. Eventhough the
result analysis is discussed for two cases considering the
forecast error ranges of load and PV power profiles as ±10%
and ±25% of nominal values, respectively, the performance
comparison is presented for other values of forecast error
ranges as well as discussed follows and given in Table IV.

1) For Rlfe=10%, Rpvfe=25%: For these forecast error
ranges, the results analysis is discussed and it is observed
that the grid peak demand and feed-in powers are reduced by
3.96% and 83.37%, respectively with SC as compared to the
case of without SC in Case 1. Similarly, the peak demand
and feed-in powers are reduced by 15.67% and 18.04%,
respectively with SC as compared to the case of without SC
in Case 2.

2) For Rlfe=5%, Rpvfe=12.5%: For these forecast error
ranges, it is found that the grid peak demand and feed-in
powers in Case 1 without SC are 69.45 kW and 6.36 kW
respectively. The grid peak demand and feed-in powers in Case
1 with SC are 65.9 kW and 0 kW, respectively. It indicates that
the peak demand and feed-in powers are reduced by 5.11%
and 100%, respectively with SC as compared to the case of
without SC in Case 1.

Further, the grid peak demand and feed-in powers in Case
2 without SC are 22.98 kW and 24.55 kW respectively. The
grid peak demand and feed-in powers in Case 2 with SC are
21.58 kW and 19.25 kW, respectively. It indicates that the peak
demand and feed-in powers are reduced by 6.09% and 21.59%,
respectively with SC as compared to the case of without SC
in Case 2.

0 4 8 12 16 20 24
−100

−50

0

50

100

time (h)

N
e

t 
lo

a
d

 p
o

w
e

r 
(k

W
)

Predicted Real-time
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Fig. 11. Case 2. (a) Battery power. (b) SC power. (c) Battery SoC. (d) SC
SoC. (e) Grid power.

D. Scalability and Challenges

Even though a smaller system is considered in this article
to test the performance of proposed method, both generating
source and energy storage device are present at the PCC
of the system. In modern power systems without any loss
of generality any node or point of common coupling (PCC)
can be represented as a point where a generating source
(e.g. renewable energy source) and energy storage system is
connected. It means the proposed method can be extended to
apply in the large power systems where there is a presence
of generating source and energy storage at any point in the
power systems.

Further, the proposed net load forecast error compensation
method is implemented through SC which does not need any
optimization problem to be solved. The SC schedules are
determined using the net load power inputs at each time.
Therefore it is easy to apply this method for implementing
the energy management applications in real-time to reduce
the impact of forecast errors. However, the main challenges
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TABLE IV
PERFORMANCE COMPARISON

Case Pgd−p (kW) Pgf−p (kW) Pgd−p (kW) Pgf−p (kW)
Rlfe=10%, Rpvfe=25% Rlfe=10%, Rpvfe=25% Rlfe=5%, Rpvfe=12.5% Rlfe=5%, Rpvfe=12.5%
without Proposed without Proposed without Proposed without Proposed
SC [31] method SC [31] method SC [31] method SC [31] method

Case 1 73.96 71.03 7.65 1.27 69.45 65.9 6.36 0
Case 2 25.59 21.58 28.50 23.36 22.98 21.58 24.55 19.25

of implementing the proposed method in real time are associ-
ated with the measurement and communication requirements.
Because, the real time data is required to be sent to the energy
management system to provide the battery and SC power refer-
ences as per the proposed methods to the respective converters.
If the communication failure or measurement device damage
occurs, the desired performance of the proposed methods may
not achieved. Further, the design of SC for optimal net load
forecast error compensation is another challenge which is
considered as the future scope of this work.

VI. CONCLUSIONS

The proposed net load forecast error compensation is tested
in MATLAB for different cases. During high peak load and
high peak PV power, the grid peak demand and feed-in power
reductions in the range of 3.96% to 5.11% and 83.37%-100%
are achieved, respectively with SC as compared to the case
of without SC. During low peak load and high peak PV
power, the grid peak demand and feed-in power reductions
in the range of 6.09% to 15.67% and 18.04% to 21.59% are
achieved, respectively with SC as compared to the case of
without SC. The reduced peak demand provides less energy
costs when time of use energy price is applied to the energy
consumption cost. Moreover, reduced peak demand and feed-
in powers mitigate the voltage drop and voltage rise issues,
respectively when connected in the low voltage distribution
systems. Further, since the forecast errors are compensated by
SC, the battery life time will be improved.
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Técnico (IST), Lisbon, Portugal, in 2003, and the
Ph.D. degree and Habilitation for Full Professor
(quot;Agregaçãoquot;) from the University of Beira
Interior (UBI), Covilha, Portugal, in 2007 and 2013,
respectively. Currently, he is a Professor at the
Faculty of Engineering of the University of Porto
(FEUP), Porto, Portugal. He was the Primary Coor-
dinator of the EU-funded FP7 project SiNGULAR, a
5.2-million-euro project involving 11 industry part-

ners. He has authored or coauthored more than 500 journal publications and
400 conference proceedings papers, with an h-index of 89 and more than
30,000 citations (according to Google Scholar), having supervised more than
120 post-docs, Ph.D. and M.Sc. students, and other students with project
grants. He was the General Chair and General Co-Chair of SEST 2019 and
SEST 2020, respectively, after being the inaugural Technical Chair and co-
founder of SEST 2018. He is a Senior Editor of the IEEE TRANSACTIONS
ON NEURAL NETWORKS AND LEARNING SYSTEMS. Furthermore, he
is an Associate Editor of nine other IEEE TRANSACTIONS/JOURNALS. He
was an IEEE Computational Intelligence Society (CIS) Fellows Committee
Member in 2022 and 2023. He was recognized as one of the Outstanding As-
sociate Editors 2020 of the IEEE TRANSACTIONS ON SMART GRID, and
one of the Outstanding Associate Editors 2021 of the IEEE TRANSACTIONS
ON POWER SYSTEMS. He has multiple Highly Cited Papers in Web of
Science. He has won 5 Best Paper Awards at IEEE Conferences. Furthermore,
he was the recipient of the 2017-2022 (for the sixth consecutive year) FEUP
Scientific Recognition Diplomas. His research interests include power system
operations and planning, power system economics and electricity markets,
distributed renewable generation, demand response, smart grid, and multi-
energy carriers.

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2023.3317309

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on October 12,2023 at 13:58:08 UTC from IEEE Xplore.  Restrictions apply. 


