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Abstract—An energy community equipped with Home Energy 

Management Systems (HEMSs) is considered in this paper.  

A local energy controller in the energy community makes it 

possible to transact energy between houses to support the 

different consumption patterns of each end-user. Price-based 

voluntary Demand Response (DR) programs are applied to each 

house to motivate end-users to alter their consumption patterns, 

allowing the necessary flexibility of the electrical grid. Also, the 

existence of Renewable Energy Sources (RES) micro-generation 

and an Energy Storage System (ESS) are taken into account.  

The results demonstrate that the proposed model based on 

Mixed-Integer Linear Programming (MILP) is fully capable of 

reducing daily electricity costs while considering end-users' 

comfort and respecting the different technical constraints. 

I. INTRODUCTION  

The combination of Renewable Energy Sources (RES), 
Energy Storage Systems (ESS), Electric Vehicles (EV), and 
the evolution in automated devices such as sensors, actuators, 
smart metering, and Internet of Things (IoT) concepts made 
possible the introduction of the concept of Smart Home (SH) 
[1].  Through these various systems, the residents can access 
information about the status of the house and the possibility 
to control its equipment. Although this improves customer 
comfort, security, and energy consumption optimization, it 
also requires complex modules, advanced decision-making 
algorithms, and usually big initial investments [2]. 

The development of an SH should also integrate Demand 
Response (DR) programs as a way of encouraging the 
consumer to change his energy utilization habits to consume 
in low-price hours and, this way, overcome peak demand 
periods and become a more active participant in the energy 
local market. Modern SH aims to minimize energy costs and 
customer discomfort using a Home Energy Management 
System (HEMS), Fig. 1, which is responsible for coordinating 
and predicting all the different technologies' outputs to reach 
the final goal of an SH [3]. Owners of houses with micro-
generation can be considered producers and consumers.  

This paper investigates HEMS and DR capabilities as well 
as the integration of RES, ESS, and EVs in SHs, to minimize 
clients’ electricity costs in an energy community equipped 
with a local energy controller. 
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Fig. 1. Architecture of a HEMS with DR signal (adapted from [4]). 

On account of an increase in home appliances’ power 
consumption and the different power variations during the 
day, new control strategies and HEMSs were intensively 
developed and optimized in the last few years. 

For instance, in [5] a HEMS is suggested to minimize the 
electricity costs of a home using DR programs as well as a 
MILP model. The cost decreased when employing these 
methods while ensuring battery and domestic appliances 
constraints. Authors in [6] utilize DR programs and a MILP 
framework-based modelling of HEMS. EVs were considered 
as a storage unit opportunity via Vehicle-to-Home (V2H) and 
Vehicle-to-Grid (V2G) options. A small-scale RES, an ESS, 
and a two-way energy exchange permitted by net metering 
were combined to reduce electricity costs and assure 
consumer comfort. 

In [7], a smart thermostat is combined with a MILP-based 
HEMS that executes day-ahead load scheduling, aiming to 
minimize costs. The results shown were promising, achieving 
a daily cost reduction under some DR programs. A MILP 
multi-objective problem can be seen in [8], where the goal is 
to minimize electricity costs. The proposed model was tested 
with various price-based DR programs. Simulation results 
show reductions in electricity costs. In reference [9], a pool 
trading model in a local energy community is considered. A 
price-based DR program was incorporated to augment 
consumers’ will to alter consumption habits. The results have 
shown that electricity cost reduction was higher in an 
integrated operation mode. 
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A MILP HEMS is often implemented due to its efficiency 
in terms of the objective function. On the other hand, this 
technique may require higher computational time.  

According to [10], two different methodological 
approaches have been studied: MILP and metaheuristic; the 
latter obtained results farther from the optimal but with a 
shorter computation time.  

Authors in [11] considered EV availability and small-
scale RES. A decrease in the electric bill was achieved by 
using a stochastic model.  

In [12], the HEMS considers SH parameters together with 
customer comfort and cost minimization. The model managed 
the load system within the constraints of the SH while 
maintaining comfort levels. 

According to [13], a HEMS architecture is proposed with 
RES and ESS. The results showed that this model was capable 
to decrease home energy costs. In [14], both HEMS and DR 
programs are considered to minimize energy costs. 

Table I illustrated the summary of related works. In this 
paper, as a new contribution to earlier studies, an energy 
community is targeted to minimize both electricity costs and 
user discomfort. A MILP approach is considered to obtain the 
global optimal solution, featuring ESS, RES, EV, and DR 
comprehensively. Load shifting capabilities and energy 
transactions between the grid and the houses are enabled by 
the local energy controller, aiming to reduce the final energy 
bill of the end-users.  

Fig. 2 illustrates the local energy community and 
interconnections between different agents, highlighting the 
importance of the local energy controller. 

 
Fig. 2. Energy community and interconnections among different agents 

enabled by a local energy controller (adapted from [9]). 

II. MATHEMATICAL FORMULATION 

The objective function (1) of the model developed is to 
minimize the prosumers daily electricity bills while 
considering a discomfort penalty in case the prosumer’s load 
is transferred to unwanted time slots. The objective function 
presents 4 different terms as a single objective optimization 
problem and it includes: a) first, expected cost of power 
transactions amid the distribution grid and the HEMS while 
considering a Time-Of-Use (TOU) pricing mechanism;  
b) second, start-up and shut-down costs of every appliance;  
c) third, the discomfort costs of load shifting, which is taken 
into account when a load is shifted to unwanted periods;  
d) Fourth and last, the cost of applying an Incentive-Based 
Regulation (IBR) tariff to the load demand over. 

TABLE I. SUMMARY TABLE OF RELATED WORKS. 

Reference Focus 
Objective  

function 

Optimization 

tool 

Devices  

studied 

Energy  

trading 
DR 

Type of  

load 

[5] One home Min. electr. costs 
Mixed-Integer 

Linear 
ESS No Yes Fixed 

[6] One home 
Min. electr. costs 

Min. user discomfort 
Mixed-Integer 

Linear 
ESS, RES, EV Yes Yes Fixed 

[7] One home Min. costs 
Mixed-Integer 

Linear 
ESS, EV No Yes Shiftable 

[8] One home 
Min. electr. costs 

Min. user discomfort 
Mixed-Integer 

Linear 
ESS No Yes Shiftable 

[9] 
Energy 

community 
Min. operation costs 

Mixed-Integer 
Linear 

ESS, PV, EV Yes Yes Fixed 

[10] One home Min. electr. costs 
Mixed-Integer 

Linear, 
Metaheuristic 

ESS, RES No Yes Shiftable 

[11] One home 
Min. electr. costs 

Min. user discomfort 
Stochastic ESS, RES, EV No Yes Shiftable 

[12] One home 
Min. electr. costs 

Min. user discomfort 
Stochastic ESS, RES, EV No Yes Shiftable 

[13] One home Energy selling 
PSO 

BPSO 
ESS, RES Yes No - 

[14] One home 
Min. electr. costs 

Min. monthly peak 
Mixed-Integer 

Non Linear 
RES No Yes Fixed 

This work 
Energy 

community 

Min. electr. costs 

Min. user discomfort 
MILP ESS, RES, EV Yes Yes Shiftable 
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In (1), � is the home appliances index, ? is the energy 
consumption in the IBR mechanism index, � is the time 
interval of the scheduling index, @ is the scenario index,  
NT is the scheduling period, NA is the set of home appliances, A is the set of scenarios, �� is the probability of each scenario, ����� is the hourly electricity price sold to the house, ��,���� is 
the power delivered from grid to home, ����� is the hourly 
electricity price sold to the grid, ��,���� is the power delivered 
from home to grid, "#$��,%,� is the start-up action binary 
variable, &%'� is the start-up cost of shiftable loads, ")*+�,%,� 
is the shut-down action binary variable, &%', is the shut-down 
cost of shiftable loads, / is the penalty factor for the 
discomfort index, *0�,%1  and  *0�,%2  are the discomfort indexes 
regarding the use of the appliance � after the scheduled time 

or before the scheduled time, respectively, 0345�67%88 is the 
stepwise tariff for the IBR mechanism, and the 9��:;<�,5�%=7  is 
the quantity of energy for each tier in the IBR mechanism. 

A.  HEMS Scheduling Constraints 

The HEMS scheduling constraints are related to the 
technical and economic restrictions imposed by the algorithm. 
In (2) it is shown that the total shiftable load at every time slot, *�,�'B%8� , is related to the nominal power of the asset, �% , and its 
operation is defined by a binary variable "�,%,�. 

*�,�'ℎ%8� = 
 "�,%,��%
�(
%��  

 
(2) 

The time authorized to utilize devices is larger than the 
time required to use them. This is useful when operating with 
load-shifting capabilities. Hence, the operation standing of 
shiftable appliances ("�,%,�) is equal to "0" before and after the 
time intervals where the use of the assets is authorised by the 
prosumer and is equal to "1" within these time slots. The 
binary variable limitations are given by (3) and (4). 

"�,%,�  ≤   D   0   1   0                   � < H3%,I   H3%,I ≤ � ≤ $3%,I                  � > $3%,I
      "�,%,� ∈ {0,1} (3) 


 "�,%,�
��
��� = #%     ∀� = 1,2, . . . , +P (4) 

where H3%,I and $3%,I are the lower and upper bands, 
respectively, of allowable operation time slots, and #%  
represents the total time intervals. 

On the right side of (5) is represented the period in which 
the service of the device is authorized by the owner. Similar 
constraints can be used to calculate the costs of the base case, 
as shown in (6).  

3�,%,� =  D   010
          � < H3%,Q   H3%,Q ≤ � ≤ $3%,Q                  � > $3%,Q

3�,%,� ∈ {0,1} (5) 


 3�,%,�
��
��� = #%∀� = 1,2, . . . , +P (6) 

where 3�,%,� is the end-users desired handling status of the 
appliance, H3%,Q and $3%,Q  are the lower and upper bands, 
respectively, of the baseline operation time slot.  

The main difference between the two constraints is the 
fact that the binary variable is not used in the authorized time, 
instead, it is equal to "1" over the operating time of the 
appliance and "0" during the rest of the time. 

A penalty is imposed to avoid superfluous start-up and 
shut-down of the assets. This is, only one start-up and one 
shut-down are allowed and any other beyond this will be 
penalized. It is important to mention that this schedule is not 
for appliances such as washing machines and spin dryers.  
Start-up and shut-down variables are defined as shown  
in (7). 

"#$��,%,� − ")*+�,%,� = "�,%,� − "�,%,�2�∀� > 1 (7) 

In (8), for a certain controllable asset, the discomfort index 
deals with the time intervals for shifted operations.  

It is important to note that *0%2 and *0%1 are positive 
variables; this way, there are no conflicts when the right-hand 
side of the equation is less than zero. 

*0�,%2 ≥ 1#% S
 � × 3�,%,�
��
��� − 
 � × "�,%,�

��
��� U (8) 

*0�,%1 ≥ 1#% S
 � × "�,%,�
��
��� − 
 � × 3�,%,�

��
��� U (9) 

To summarize, the optimal scheduling of home appliances 
requires to be controlled by the HEMS operator following the 
TOU tariff and the prosumer needs.  

The operator is capable of modifying the way controllable 
loads are managed and costs are minimized accordingly to 
consumer preferences. 

B.  Energy Storage System Constraints 

The following sub-section aims to explain energy 
transition limitations between the prosumer and the grid and 
ESS constraints.  

First, in (10), the role of ESS and in-house micro-
generation is reflected. The model shown balances the power 
for each time interval. 

��,���� + ��,�VW − ��,����
= *�,�X%Y + *�,�'ℎ%8� + Z
 ��,[,�\ℎ.�'

[�� − 
 ��,[,�,%I]ℎ.�'
[�� ^ 

(10) 
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where ��,�VW is the power generated by the photovoltaic system, *�,�X%Y  is the hourly fixed demand, *�,�'B%8�  is the demand for the 

shiftable load by the hour, ��,[,�\B.  is the charging power of ESS, 

and ��,[,�,%I]B. is the discharging power of ESS. It should be 

noted that ��,�VW, *�,�X%Y  and *�,�'B%8�  are predetermined values, 
while the rest are variables of the stochastic self-scheduling 
problem. 

In (11)-(12), binary variables are used as a representation 
of the charging and discharging status of the ESS, 0�,[,�\B.  and 0�,[,�,%I]B., respectively. Thus, to restrict the ESS to be either in 
charging or discharging mode at one specific time is 
mathematically formulated in (11), while (12)-(16) are 
associated with the limitations of the ESS daily operations. 

0 ≤ 0�,[,�\ℎ. + 0�,[,�,%I]ℎ. ≤ 1 (11) 

Equation (12) restricts the power of charging in the ESS. 
Hence, when the ESS is in charging mode, 0�,[,�\B.  value is "1" 
and the power of charging has to be less or equal to the 
maximum charging power of ESS �[\B.,_6Y. Also, (13) assures 

that when the ESS is in discharging mode, 0�,[,�,%I]B. value is "1" 
and the power of discharging is less or equal to the maximum 
discharging power of ESS, �[,%I]B.,_6Y. 

��,[,�\ℎ. ≤ 0�,[,�\ℎ. �[\ℎ.,_6Y (12) 

��,[,�,%I]ℎ. ≤ 0�,[,�,%I]ℎ.�[,%I]ℎ.,_6Y  (13) 

According to a normalized operation of an ESS, the 
energy stored in it at a certain time is a function of the energy 
stored in the previous period, plus the results of all of the 
charging and discharging that happened. This constraint is 
shown in (14), as well as the efficiency factor of charging and 
discharging the ESS. 

9�,[,� = 9�,[,�2� + `[\ℎ.��,[,�\ℎ. �� − 1
`[,%I]ℎ. ��,[,�,%I]ℎ.�� (14) 

where 9�,[,� is the energy stored in the ESS, `[\B. is the 

charging efficiency of the ESS, and `[,%I]B. is the discharging 
efficiency of the ESS. 

The model presented considers that the initial value of 
energy stored in the ESS (9�,[,�) should be secured and equal 
to the final energy stored in the ESS (9�,[,�), as shown in (15). 

9�,[,� = 9�,[,� (15) 

Equation (16) limits the quantity of energy stored in the 
ESS, which implies that the system is constrained by a 
minimum and a maximum limit of energy stored at the ESS 
denoted as 9[_%a  and 9[_6Y, respectively. 

9[_%a ≤ 9�,[,� ≤ 9[_6Y (16) 

The ESS main role is to make use of the micro-generation 
system and the electricity of the grid in the most efficient way. 
Accordingly, it is possible to reduce electricity costs due to 
the capability of storing energy from the grid or RES when 
the prices are low, providing it to the home load at peak hours. 

Next, (17) and (18) refer to the energy acquired from the 
grid in each scenario. To calculate the cost of the energy 
purchased, a stepwise approach is considered according to an 
IBR tariff. Normally the electricity bill is computed for one 
month, but it is possible to estimate a value for a day by 
adapting the tariff in proportion to the quantity of energy 
during the day. Equation (17) represents the total energy over 
the scheduled time. Each energy tier is equivalent to 9��:;<�,5�%=7  and the sum of each of them is equal to the total 
energy in the total time scheduled. The number of energy tiers 
acquired from the grid is mathematically formulated in (18), 
it should be taken into account that these tiers do not need to 
be identical. Bear in mind also that the energy price is 
exponentially given while the energy tiers are chosen from the 
cheapest to the most expensive one. 9��:;<�,5�%=7  should 
always be less than the maximum energy consumption of each 
tier, 95�%=7,_6Y, which is modelled by the binary variable 0�,5�%=7 , 
relating to the status of the activated tier in the IBR 
mechanism. 


 ��,��������
��� = 
 9��:;<�,5�%=7�>

5�� ∀@ ∈ A (17) 

9��:;<�,5�%=7 ≤ 95�%=7,_6Y0�,5 �%=7    0�,5 �%=7 ∈ {0,1} (18) 

To summarize, within the constraints mentioned it is 
possible to reduce the energy bill of the prosumer by reducing 
the HEMS reliance on the grid, shifting the load to off-peak 
hours, and the adaptation of consumption patterns. Moreover, 
the capability to sell the extra energy produced by RES to the 
community grid creates some profit for the house owner, 
reducing, even more, the electricity bill. 

III. NUMERICAL STUDIES AND RESULTS 

In this section, the use case is presented, which describes 
all the system data considered to test the mathematical 
formulation demonstrated in the previous section. Also, a 
discussion regarding the numerical results of the operational 
model is presented.  

A.  Use Case 

The proposed model is assessed in this section to exhibit 
the effective behaviour of a HEMS in ten different scenarios, 
exhibiting that load-shifting capabilities and energy 
transactions between the grid and the houses can reduce the 
final energy bill of the end-users. This use case includes ten 
houses with different consumption patterns integrated into a 
local energy community where it is possible to inject power 
into the grid when there is a surplus of energy. 

This model considers that the installed capacity of PV 
technology on the rooftop of each house is 3 kW. Fig. 3 
reveals the PV power generation for ten different scenarios 
over the day. This model studies forty-eight different time 
slots given that the data is evaluated daily in thirty-minute 
periods. The ten different scenarios are generated using 
historical data and day-ahead meteorological forecasts [15]. It 
was also considered in this model that every house was 
equipped with an ESS with a maximum capacity of 4 kW and 
minimum energy of 200 Wh, as shown in Table II. 
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Fig. 3. Solar power generation scenarios considering a 30 min time slot. 

TABLE II. ESS TECHNICAL PARAMETERS. 

9_6Y 
(kWh) 

9_%a 
(kWh) 

�\ℎ.,_6Y 
(kW) 

�,%I]ℎ.,_6Y 
(kW) 

`\ℎ. 
% 

`,%I]ℎ. 
% 

9� = 9� 
(kWh) 

4.00 0.20 0.50 0.50 0.90 0.85 0.20 

 
The ESS has a charging efficiency of 90% and a 

discharging efficiency of 85%. The maximum charging and 
discharging power limits are both equal to 500 W.  

Fig. 4 shows the IBR tariff used to the different energy 
consumption tiers. This mechanism is used to restrict the 
quantity of high energy usage during off-peak periods, to 
assist in maintaining the grid stable. The tariff is applied to 
the daily energy injected from the grid to the house. 

The DR programs considered in this model are TOU and 
real-time pricing. Both of them are categorized as price-based 
voluntary DR programs, meaning that the end-user has the 
choice of participating in these programs or not. It is 
important to notice that both programs impact the electricity 
bill by captivating the consumer to change his normal energy 
consumption habits. 

In this study, it is considered that each prosumer has a 
predefined load pattern that follows the consumer’s 
preferences. Each house has a different load pattern and an 
average shiftable load power demand of 30.70 kW. 

 

 
Fig. 4. IBR tariff proportionate to energy consumption. 

In the houses considered in this model, the non-shiftable 
load demand (e.g. lights and refrigerator) must be supplied 
exactly at a specified time. This means that certain appliances 
cannot be shiftable and have to work exactly at the time that 
the end-user wants. The average non-shiftable power demand 
of the ten different houses is 14.371 kW. Fig. 5 shows the  
non-shiftable loads of “House A”, as an example. As can be 
seen, the refrigerator works the whole day due to the need to 
maintain a constant low temperature inside this appliance. 

B.  Discussion and Results 

The HEMS studied is a MILP model and the simulation 
results were achieved by a CPLEX solver through General 
Algebraic Modelling System (GAMS). 

Fig. 6. represents the energy stored in the ESS installed on 
each house. It is easily noted that this figure has two different 
constraints, one being the maximum value of energy stored  
(4 kWh) and the minimum value (0.2 kWh), which can be 
seen at the beginning and the end of the day. For most of the 
ten houses, the ESS starts charging in the first hours of the 
day and reaches its highest value when the PV generation is 
at its maximum performance.  

Fig. 7 shows loads shifted for “House A”, as an example, 
as well as the load power of each appliance. In this house, the 
EV was charged between times 42 and 47. Hence, the EV was 
not charged at peak demand periods, which normally occur 
around time slots 36 to 38. The results were simulated using 
a penalty factor for the discomfort index equal to 0.002. If this 
value was higher, there would be less load-shifting capability 
and, thus, costs wouldn’t be as low; however, in this case, the 
assets would function in the end-users' preferred time slots. 

 

 
Fig. 5. Non-shiftable loads of house A. 

 
Fig. 6. Energy stored in the ESS. 
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Fig. 7. Loads shifted in House A. 

According to the results obtained, it can be confirmed that 
no assets suffered redundant start-ups and shut-downs while 
being able to shift loads effectively according to the TOU 
tariff. This expresses the excellent capability of the model 
regarding HEMS scheduling constraints and the capability of 
satisfying end-users' needs. 

Next, the energy transactions with the grid of all ten 
houses are evaluated. Fig. 8 shows the energy injection from 
the grid to the house in the different time slots. Generally 
speaking, all ten houses follow a similar behaviour regarding 
the Grid-to-Home (G2H) injection. The results show that, 
more often than not, the G2H energy injection is larger at the 
beginning and at the end of the day. Energy transactions at 
peak demand time slots like 12 to 19 and 40 to 44 are 
noticeable, representing 6:00h to 9:30h and 20:00h to 22:00h.  

Fig. 9 presents the results of energy transactions from 
House-to-Grid (H2G).  The ten curves show that H2G energy 
injection occurs on the contrary time slots of the G2H 
transaction, which respects the fact that the end-user cannot 
buy and sell energy at the same time. The period of H2G 
injection is generally from time slot 16 to 37, representing 
8:00h to 18:30h, that is, the hours with sunlight. The 
simulation results confirm that the H2G injection is related to 
solar power generation.  

Keep in mind that the model studies ten different houses 
integrated into an energy community equipped with a local 
energy controller. This makes it possible to transact energy 
between houses to support the different consumption patterns 
of each end-user. Overall, the model was capable to minimize 
the daily electricity bill in all cases, proving its proficiency. 

 

 
Fig. 8. Grid-to-Home energy transaction. 

 

Fig. 9. Home-to-Grid energy transaction. 

IV. CONCLUSIONS 

A HEMS with load-shifting capabilities was modeled in 
this paper, where the main objective was the daily energy bill 
minimization while considering end-users' comfort. The case 
study included a community of ten houses with different load 
demands integrated with a local energy controller. It was 
considered that all ten houses were equipped with solar power 
and ESS, having different shiftable and fixed loads. Load-
shifting results with price-based DR programs showed that, 
with our HEMS model, it was possible to skillfully manage 
appliance demand to more economically friendly time slots.  
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