
N

H

B

C

D

E

F

G

I

J

K

L

A

M

Description of PL7 software

Detailed description of instructions and

functions

General

Configuration and programming

Debugging, Adjustment, Documentation and

Appendices

Common features of application-specific functions

Discrete I/O

Counting

Analog

PID control

Man-machine interface

Axis control

Stepper control

Reference
manual

Operating
modes

Application-
specific
functions

Volume 1/2

TLX DS 57 PL7 13E

TLX DM PL7 J13E

TLX DR PL7 13E

Application-
specific
functions

Volume 2/2

TLX DS 57 PL7 13E

Communication : see TLX DS COM PL713E manual

Reserved

Description of PL7 Contents
software Part A

A / 1

A

Section Page

1 General 1/1

1.1 Presentation of PL7 software 1/1
1.1-1 Presentation 1/1
1.1-2 Single task structure 1/3
1.1-3 Multitask structure 1/3
1.1-4 Symbolic programing 1/4
1.1-5 PL7 instructions 1/5

1.2 Addressable objects 1/6
1.2-1 Definition of main Boolean objects 1/6
1.2-2 Addressing TSX 37 I/O module objects 1/7
1.2-3 Addressing TSX 57 I/O module objects 1/9
1.2-4 Addressing words 1/11
1.2-5 Function block objects 1/15
1.2-6 Structured objects 1/16
1.2-7 Grafcet objects 1/18
1.2-8 Symbolization 1/19

1.3 User memory 1/20
1.3-1 General 1/20
1.3-2 Saving / retrieving internal words %MWi 1/22
1.3-3 Bit memory 1/23
1.3-4 Word memory 1/25
1.3-5 TSX 37-10 PLCs 1/26
1.3-6 TSX 37-21/22 PLCs 1/27
1.3-7 TSX 57-10 PLCs 1/28
1.3-8 TSX 57-20 PLCs 1/29

1.4 Operating modes 1/30
1.4-1 Processing on outage and power return 1/30
1.4-2 Warm restart processing 1/31
1.4-3 Cold restart processing 1/32

1.5 Single task software structure 1/32
1.5-1 Presentation of the master task 1/33
1.5-2 Cyclic execution 1/34
1.5-3 Periodic execution 1/35

A / 2

Description of PL7 Contents
software Part A

A

Section Page

1.5-4 Monitoring scan time 1/37

1.6 Multitask software structure 1/38
1.6-1 Description 1/38
1.6-2 Master task 1/39
1.6-3 Fast task 1/39
1.6-4 Assigning I/O channels to the master and fast tasks 1/40
1.6-5 Event-triggered tasks 1/41

2 Ladder language 2/1

2.1 Presentation of Ladder language 2/1
2.1-1 Principle 2/1
2.1-2 Graphic elements 2/2

2.2 Structure of a rung 2/4
2.2-1 General 2/4
2.2-2 Labels 2/5
2.2-3 Comments 2/5
2.2-4 Rungs 2/6
2.2-5 Rungs with function and operation blocks 2/9

2.3 Rules for executing rungs 2/11
2.3-1 Principle for executing a rung 2/11

3 Instruction list language 3/1

3.1 Presentation of Instruction list language 3/1
3.1-1 Principle 3/1
3.1-2 Instructions 3/2

3.2 Program structure 3/4
3.2-1 General 3/4
3.2-2 Comments 3/4
3.2-3 Labels 3/4
3.2-4 Using parentheses 3/5
3.2-5 MPS, MRD and MPP instructions 3/7
3.2-6 Principles for programming predefined function blocks 3/8

3.3 Rules for executing Instruction list programs 3/9

Description of PL7 Contents
software Part A

A / 3

A

4 Structured Text language 4/1

4.1 Presentation of Structured Text language 4/1
4.1-1 Principle 4/1
4.1-2 Instructions 4/2

4.2 Program structure 4/6
4.2-1 General 4/6
4.2-2 Comments 4/6
4.2-3 Labels 4/7
4.2-4 Instructions 4/7
4.2-5 Control structures 4/8

4.3 Rules for executing a Structured Text program 4/14

5 Grafcet language 5/1

5.1 Presentation of Grafcet language 5/1
5.1-1 Reminder of principles of Grafcet 5/1
5.1-2 Graphic symbols specific to Grafcet language 5/2
5.1-3 Objects specific to Grafcet 5/4
5.1-4 Grafcet chart representation 5/5
5.1-5 Actions associated with steps 5/11
5.1-6 Conditions associated with transitions 5/14

5.2 Organization of the master task 5/17
5.2-1 Description of the master task 5/17
5.2-2 Preprocessing 5/18
5.2-3 The use of system bits in preprocessing 5/19
5.2-4 Sequential processing 5/21
5.2-5 Post-processing 5/23

Section Page

A / 4

Description of PL7 Contents
software Part A

A

PL7 General 1

1/1

A

1.1 Presentation of PL7 software

1.1-1 Presentation

PL7 Junior software is the programming software for TSX 37 and TSX 57 PLCs
operating under Windows. PL7 Micro software can only be used to program TSX 37
PLCs.

PL7 software offers :

• A graphic language, Ladder language, for transcribing relay diagrams, which is
especially suitable for combinational processing and offers basic graphic elements,
that is, contacts and coils. Numeric calculations can be written within operation blocks.

• A Boolean language, Instruction list language, which is a "machine" language for
writing logical and numerical processing operations.

Section 1
1 General

1/2

A

• A Structured text language which is a "data processing" type language enabling the
structured writing of logical and numerical processing.

• A Grafcet language which is used to represent the operation of a sequential control
system in a graphic and structured way.

These languages include predefined function blocks (timers, counters, etc), which can
be supplemented by application-specific functions (analog, communication, counting,
etc) and specific functions (time management, character strings, etc).

The language objects can be symbolized.

PL7 software conforms to standard IEC 1131-3. The tables of conformity are provided
in the Appendix : part B section 6.

PL7 General 1

1/3

A

1.1-2 Single task structure

This is the default structure of the software. It comprises a single task, the master task.

Master task
This task can either be a periodic, said to be cyclic (the default choice), or periodic.
For cyclic operation, the tasks are linked one to the other, without pausing.
For periodic operation, tasks are linked at a period fixed by the user.

1.1-3 Multitask structure

The multitask structure of TSX 37 and TSX 57 PLCs enables better use which gives
high-performance real-time applications by associating a specific program with each
application. Each of these programs is controlled by a task.
These tasks are independent and executed in "parallel" by the main processor which
manages their priority as well as their execution.

The aim of this type of structure is to :
• Optimize use of processing power.
• Simplify design and debugging. Each task is written and debugged independently of

the others.
• Structure the application. Each task has a unique function.
• Optimize availability.

The multitask system offers a master task, a fast task and from 8 to 64 event-triggered
tasks depending on the processor.

Fast task
The fast task (optional), which is periodic, is used to perform short processing
operations with a higher priority than in the master task. When it is programmed, it is
automatically launched by the system during start-up. It can also be stopped and then
restarted by activating a system bit.

Event-triggered tasks
Unlike the tasks described above, these tasks are not linked to a period. They are
triggered by calls originating from certain modules. These tasks have the highest
priority. The processing they perform is deliberately short so that they do not interfere
with the execution of other tasks.

Fast
task

Priority

Master
task

Event-triggered
 tasks

+-

1/4

A

1.1-4 Symbolic programing

Using PL7 software, the user can choose to enter or display objects :

• either by their address (for example : %Q2.5),

• or by a character string (32 characters max) known as a symbol (for example
Fc_door).

Note
Addresses and symbols can be displayed simultaneously in Ladder language.

Symbols used can be entered beforehand or while editing the program.

This symbol database, which is managed by the software VARIABLES editor, is global
to the PLC station.

PL7 General 1

1/5

A

1.1-5 PL7 instructions

All PL7 languages use the same instruction set.

Part B of this document describes all the instructions in detail. For simplicity's sake,
these have been classified in 2 sets : basic instructions and advanced instructions.

Basic instructions
They include basic Boolean instructions, predefined function blocks and arithmetic and
logic instructions on integers.

Advanced instructions
These include instructions which meet the needs of advanced programming.

They are of 2 types :

• PL7 language : these increase language processing performance through specific
functions (manipulation of character strings, time management, etc),

• Applications : these offer functions which are specific to the application to be
processed. For example, functions for the communication application :
- PRINT to send a standard character string message to a terminal or printer.
- SEND to send a message to an application.
- PID : PID control function.

Function entry help
An entry help screen gives access to all the language functions. This screen is
accessible at all times, including during programming.

1 / 6

A

1.2 Addressable objects

1.2-1 Definition of main Boolean objects

Input/output bits

These bits are the "logical images" of the electrical state of the I/O. They are stored in
the data memory and are updated on each scan of the task in which they are configured.

Internal bits
Internal bits %Mi are used to store intermediate states during execution of the program.

Note : Unused I/O bits cannot be used as internal bits.

System bits
System bits %S0 to %S127 monitor correct operation of the PLC as well as progression
of the application program. The role and use of these bits are described in detail in
section 3.1 of part B.

Function block bits :
Function block bits correspond to the outputs of blocks. These outputs can be either
wired directly, or used as objects.

Word extract bits :
Using PL7 software it is possible to extract one of the 16 bits from a word object.

Grafcet step status bits
Grafcet step status bits %Xi are used to identify the status of Grafcet step i.

List of bit operands
The following table gives a list of all types of Boolean operands.

Type Address Max number (2) Access in See
(or value) TSX 37 TSX 57 write mode (1) Sctn. Part

Immediate value 0 or 1 (False or True) – – – 1.2-4 A

 Input bits %Ix.i or %IXx.i 328 1024 no 1.2-2 A
 Output bits %Qx.i or %QXx.i yes 1.2-3

 Internal bits %Mi or %MXi 256 4096 (3) yes –

 System bits %Si 128 128 depending on i 3.1 B

 Function block eg : %TMi.Q – – no 1.2-5 A
bits %DRi.F.....

Step bits %Xi 96 128 yes 5.1-3 A

 Word extract bits eg : %MW10:X5 – – depdg on word type 1.2-4 A

(1) Written via the program or in adjust mode via the terminal
(2) Depends on the processor being used.
(3) The maximum total of the bits (I/O + internal + system) is 4096.

PL7 General 1

1 / 7

A

Symbol Type of object
I = input
Q = output

Format
X = Boolean
W = word
D = double word

2 4

1 3

8

7 9

0
6

5

102 4

1 3

6 8

5 7

TSX 37-10 TSX 37-21/22

ExtensionBaseBase Extension

1.2-2 Addressing TSX 37 I/O module objects

Addressing of the main word and bit objects in I/O modules is defined by the following
characters :

% I or Q X, W or D x . i

• Type of object
I and Q : the physical inputs and outputs of modules exchange this information
implicitly on each scan of the task to which they are attached.
Note : Other types of data (status, command words, etc) can also be exchanged if
requested by the application (see application-specific functions : part F).

• Format (Size)
For objects in Boolean format, the X can be omitted. Other types of format such as
byte, word and double word are defined in section 1.2-4.

• Channel position and number
The base modularity of the TSX 37 is 1/2 format. The positions for each type of TSX
37 PLC (base and extension) are shown in the diagrams below.

Standard format modules are addressed as two superposed 1/2 format modules (see
table below).

For example, a 64 I/O module is viewed as two 1/2 format modules :
a 32 input 1/2 module located in position 5, and a 32 output 1/2 module located in
slot 6.

Position
x= Position
number in
the rack

Channel
No.
i= 0 to 127
or MOD

1 / 8

A

Module 1/2 format Standard format
4 Q 8 Q 12 I 28 I/O 32 I 32 Q 64 I/O

Channel number : i 0 to 3 0 to 7 0 to 11 0 to 15 0 to 15 0 to 15 0 to 31

0 to 11 0 to 15 0 to 15 0 to 31

Position and ch. no. x.0 x.0 x.0 x.0 x.0 x.0 x.0
(x = position) to to to to to to to

x.3 x.7 x.11 x.15 x.15 x.15 x.31

(x+1).0 (x+1).0 (x+1).0 (x+1).0
to to to to
(x+1).11 (x+1).15 (x+1).15 (x+1).31

Note :
The channel number can be replaced by "MOD" to access data which is general to the module.

• Suffix : an optional suffix can be added after the channel number. It is used to
distinguish different objects of the same type associated with the same channel (see
applications, part F).
ERR : indicates a module or channel fault.
Examples :%I4.MOD.ERR : information on fault in module 4
%I4.3.ERR : information on fault in channel 3 of module 4.

Note :
For an addressing operation across the network or remote I/O, the full access path to the station
is added to the position number in the rack.

Examples

%I1.5 input channel no. 5 of the module
located at position no. 1.

%I3.8 input channel no. 8 of the normal
format module located in position
no. 3 and 4.

%Q4.5 output channel no. 5 of the
standard format module located
in position no. 3 and 4.

%I5.MOD.ERR Information on module
fault, of the module located in
position no. 5.

%IW8.0 input channel no. 0 of the 1/2
format module located in position
no. 8.

2 4

1 3

6 8

5 7

Base Extension

%IW8.0
TSX 37-10

%Q4.5

%I5.MOD.ERR%I3.8%I1.5

PL7 General 1

1 / 9

A

1.2-3 Addressing TSX 57 I/O module objects

Addressing of the main word and bit objects in I/O modules is defined as follows :

• Type of object
I and Q : the physical inputs and outputs of modules exchange this information
implicitly on each scan of the task to which they are attached.
Note : Other types of data (status, command words, etc) can also be exchanged if
requested by the application (see application-specific functions : part F).

• Format (Size)
For objects in Boolean format, the X can be omitted. Other types of format such as
byte, word and double word are defined in section 1.2-4.

• Channel addressing
Channel addressing depends on the rack address, the physical location of the module
in the rack and the channel number.

PS 00 01 02 03 04 05 06 07 08 09 10

PS 00 01 02 03 04 05 06 07 08 09 10

00

01

% I or Q X, W or D y • i

Symbol Type of object
I = input
Q = output

Format
X = boolean
W = word
D = double word

Module
position
y = 00 to 10

Channel No.
i = 0 to 127
or MOD

x

Rack
address
x = 0 to 7

1 / 1 0

A

Rack addresses (x) and module positions (y)

TSX racks RKY 6 RKY 8 RKY 12 RKY 6E RKY 8E RKY 12E

Rack address : x 0 0 0 0 to 7 0 to 7 0 to 7

Module position : y 00 to 04 00 to 06 00 to 10 00 to 04 00 to 06 00 to 10

Note :
The address of the rack supporting the processor is always 0.

Channel number (i)

Modules TSX DEY/DSY 64 I/O 32 I/O 16 I/O 8 I/O

Channel number : i 0 to 63 0 to 31 0 to 15 0 to 7

Note :
The channel number can be replaced by "MOD" to access general module information.

• Suffix : an optional suffix can be added after the channel number. It is used to
distinguish between different objects of the same type which are associated with a
single channel (see application-specific functions, part F).

ERR : indicates a module or a channel fault.

Examples :
- %I104.MOD.ERR : information on fault in the module in position 4 in rack at

address 1.
- %I104.3.ERR : information on fault in channel 3 of the module in position 4 in rack

at address 1.

Note :
For an addressing operation across the network or addressing remote I/O, the full access path to
the station is added to the channel address.

Examples :

• %I102.5 : input channel 5 of the module located in position 2 in rack at
address 1.

• %Q307.2 : output channel 2 of the module located in position 7 in rack at
address 3.

• %I102.MOD.ERR : information on module fault, of the module located in position 2
in rack at address 1.

PL7 General 1

1 / 1 1

A

 0 1 1 1

15 14 13 12

 0 1 1 1

11 10 9 8

 0 0 1 1

 7 6 5 4

 0 1 0 0

 3 2 1 0

Poids fort Poids faible

Rang du bit

Format 16 bits

NumberFormat
B = byte
W = word
D = double word
F = floating point

Type of object
M = internal
K = constant
S = system

Symbol

1.2-4 Addressing words

Addressing I/O module words is defined in section 1.2-2 or 1.2-3. Other words used in
PL7 language (except network words and function block words) are addressed in the
following way :

% M, K or S B, W, D or F i

• Type of object

M internal words which store values during execution of the program. They are stored
in the data zone within a single memory zone.

K constant words which store constant values or alphanumeric messages. Their
content can only be written or modified by the terminal. They are stored in the same
place as the program. They can therefore use the FLASH EPROM memory as their
support.

S system words. These words perform several functions :
- some provide information on the status of the system by reading %SWi words

(system and application operating time, etc).
- others are used to perform operations on the application (operating mode, etc).

System words are described in section 3, part B.

• Format

Word objects can be addressed by PL7 software using four different formats :

B byte : this format is used exclusively for operations on character strings.
W single length : these 16-bit words can contain an algebraic value between -32 768

and 32 767.

Least SignificantMost Significant

Bit position

16-bit format

1 / 1 2

A

D double length : these 32-bit words can contain an algebraic value between
- 2 147 483 648 and 2 147 483 647. These words are stored in the memory on two
consecutive single length words.

F floating point : the floating point format used is that of IEEE Std 754-1985 (equivalent
to IEC 559). Words are 32 bits long, which corresponds to single length floating point
numbers.
Example of floating point values :
1285.28
12.8528E2

Overlay between objects :
Bytes, single, double length and floating
point words are stored within the data area
in the same memory zone.
Thus, there is overlay between :
• Double length word %MDi and single

length words %MWi and %MWi+1 (word
%MWi containing the least significant
bits and word %MWi+1 containing the
most significant bits of word %MDi).

• Single length word %MWi and bytes
%MBj and %MBj +1 (where j=2.i).

• Between the floating point %MFk and
single length words %MWk and
%MWk+1.

Examples :
%MD0 corresponds to %MW0 and %MW1.
%MW3 corresponds to %MB7 and %MB6.
%KD543 corresponds to %KW543 and
%KW544.
%MF10 corresponds to %MW10 and
%MW11.

 0 1 0 1

15 14 13 12

 0 0 1 1

11 10 9 8

 1 1 1 1

 7 6 5 4

 0 1 1 1

 3 2 1 0

Rang nFormat 32 bits

 0 0 1 1 0 1 1 0 0 1 0 1 0 0 1 0

Poids fort

Poids faible

Rang n+1

32-bit format

Least Significant

Position n

Position n+1

%MB1 %MB0

%MB3 %MB2

%MB5

%MB7

%MB4

%MB6

%MW0

%MW1

%MW2

%MW3

%MD0

%MD2

%MD1

%MD3

%MWi

%MWi+1
%MDi

%MWk

%MWk+1
%MFk

Most Significant

PL7 General 1

1 / 1 3

A

Type Syntax

:XWORD j

Position
j = 0 to 15
Bit number
in the word

Immediate values

These are algebraic values whose format is similar to that of single and double length
words (16 or 32 bits), which allow assignment of values to these words. They are stored
in the program memory and can take the following syntax :

Lower Upper
limit limit

Boolean 0 or 1 (FALSE or TRUE)
Base 10 integer single length 1506 -32768 +32767

double length 578963 -2 147 483 648 2 147 483 647
Base 2 integer single length 2#1000111011111011011 2#10...0 2#01...1
(binary) double length 2#1000111011111011011 2#10...0 2#01...1

1111111011111011111
Base 16 integer single length 16#AB20 16#0000 16#FFFF
(hexadecimal) double length 16#5AC10 16#000000000 16#FFFFFFFF
Floating point -1.32E12 -3.402824E+38 -1.175494E-38

1.175494E-38 3.402824E+38
Character string 'aAbBcC'

Addressing common words on the network

These are single length word objects (16 bits) common to all stations connected to the
communication network.

Addressing :
• on network n° 0 : %NW{j}k

where :
- j = 0 to 31 station n°
- k= 0 to 3 word n°

Word extract bits

PL7 software can be used to extract one of the 16 bits from single length words. The number
of the bit extracted is then added to the word address, following the syntax below :

Examples :
%MW10:X4 = bit n° 4 of internal word %MW10
%QW5.1:X10 = bit n° 10 of output word %QW5.1

1 / 1 4

A

Summary list of main word objects and associated bits

The notations used are R for read, and W for write.

Associated Type Addressing Limits Possibilities
words and bits

Internal words single length %MWi (1) R/W
double length %MDi (1) R/W
floating point %MFi (1) R/W
byte (2) %MBi (1) R/W

Constant words single length %KWi (1) R/W (3)
double length %KDi (1) R/W (3)
floating point %KFi (1) R/W (3)
byte (2) %KBi (1) R/W (3)

I/O module Input single length %IWxy.i 0≤i≤127 R
words Input double length %IDxy.i 0≤i≤126 R

Output single length %QWxy.i 0≤i≤127 R/W
Output double length %QDxy.i 0≤i≤126 R/W

Common words on network %NW{j}k 0≤j≤31 0≤k≤3 R/W

System words single length %SWi 0≤i≤127 R/W (4)
double length %SDi 0≤i≤126 R/W (4)

Word extract bit j of internal word %MWi:Xj 0≤j≤15 R/W
bits bit j of constant word %KWi:Xj 0≤j≤15 R/W (3)

bit j of input word %IWi:Xj 0≤j≤15 R
bit j of output word %QWi:Xj 0≤j≤15 R/W
bit j of system word %SWi:Xj 0≤j≤15 R/W (4)
bit j of network 0 %NW{j}k:Xm 0≤m≤15 R/W
common word

(1) The maximum limit depends on the memory size available and the number of words declared
during software configuration.

(2) This object only exists in the start address of a character string %MBi:L or %KBi:L (see section
2.8-1, part B).

(3) Write by terminal only.
(4) Write depending on i.

PL7 General 1

1 / 1 5

A

R

S

CU

CD F

D

E

%Ci

C.P : 9999

MODIF : Y

1.2-5 Function block objects

Function blocks use specific bit and word objects.

• Bit objects :
These correspond to the outputs of
blocks. These bits are accessible using
Boolean test instructions.

• Word objects :
These correspond :
- to the configuration parameters of the

block. The program may (eg : preset
parameter) or may not (eg : time base)
be used to access these parameters,

- to the current values (eg : %Ci.V current
counter value).

List of function block bit and word objects accessible by program

 Predefined Associated words and bits Address Access in See
 function blocks write mode Part B
 Timer Word Current value %TMi.V no sn1.3-2
 %TMi (i=0 to 63) Preset value %TMi.P yes
 (1) Bit Timer output %TMi.Q no

 Up/down Word Current value %Ci.V no sn1.3-3
 counter Preset value %Ci.P yes
 %Ci (i=0 to 31) Bit Underflow output (empty) %Ci.E no

Preset reached output %Ci.D no
Overflow output (full) %Ci.F no

 Monostable Word Current value %MNi.V no sn2.2-1
 %MNi (i=0 to 7) Preset value %MNi.P yes

Bit Current monostable output %MNi.R no

 Register Word Register input %Ri.I yes sn2.2-2
 %Ri (i= 0 to 3) Register output %Ri.O yes

Bit Register full output %Ri.F no
Register empty output %Ri.E no

 Drum Word Current step number %DRi.S yes sn2.2-3
 controller Status of step j %DRi.Wj no
 %DRi (i=0 to 7) Active time of the step %DRi.V no

Bit Last current step defined %DRi.F no

 Series 7 Word Current value %Ti.V no sn2.2-4
 timer Preset value %Ti.P yes
 %T (i=0 to 63) (1) Bit Timer running output %Ti.R no

Timer done output %Ti.D no

(1) The total number of timers %TMi and %Ti is limited to 64 for a TSX 37, 255 for a TSX 57.
(2) The maximum number is given for a TSX 37, for a TSX 57 i = 0 to 254 for all function blocks.

Up/down counter block

1 / 1 6

A

%M10 %M11 %M12 %M13 %M14 %M15

16 bits%KW10

%KW14

8 bits%MB10

%MB14

1.2-6 Structured objects

Bit tables

Bit tables are sequences of adjacent bit objects of the same type and of a defined
length, L.

Example of bit tables : %M10:6 nc by

Type Address Maximum size Access in write mode

Discrete input bits %Ix.i:L 1 ≤ L ≤ m (1) No

Discrete output bits %Qx.i:L 1 ≤ L ≤m (1) Yes

Internal bits %Mi:L i+L ≤ n (2) Yes

Step bits %Xi:L i+L ≤ n (2) No

(1) m = modularity of the module (eg : 8 for an 8 input or 8 output module),
(2) n varies according to the size defined during configuration.

Word tables

Word tables are sequences of adjacent
words of the same type and of a defined
length, L.

Example of word tables : %KW10:5

 Type Format Address Maximum Access in
size write mode

Internal words Single length %MWi:L i+L ≤ Nmax (2) Yes
Double length %MDi:L i+L ≤ Nmax-1 (2) Yes
Floating point %MFi:L i+L ≤ Nmax-1 (2) Yes

Constant words Single length %KWi:L i+L ≤ Nmax (2) No
Double length %KDi:L i+L ≤ Nmax-1 (2) No
Floating point %KFi:L i+L ≤ Nmax-1 (2) No

System words Single length %SW50:4 (3) Yes

Character strings

Character strings are sequences of
adjacent bytes of the same type and of a
defined length, L.

Example of character string : %MB10:5

Type Address Maximum size Access inwrite mode

Internal words %MBi:L (5) 1≤i+L≤ Nmax (4) Yes

Constant words %KBi:L (5) 1≤i+L≤ Nmax (4) Yes

(3) Only words %SW50 to %SW53 can be addressed in table form.
(4) Nmax = maximum number defined during software configuration.
(5) i must be even.

PL7 General 1

1 / 1 7

A

Indexed objects

• Direct addressing

Addressing of objects is said to be direct when the address of these objects is fixed and
defined when the program is written.

Example : %MW26 (internal word at address 26)

• Indexed addressing

In indexed addressing, an index is added to the direct address of the object : the content
of the index is added to the address of the object. The index is defined by an internal
word %MWi. The number of "index words" is unlimited.

Example : %MW108[%MW2] : direct address word 108 + content of word %MW2.
If the content of word %MW2 is the value 12, writing %MW108[%MW2]
is therefore equivalent to writing %MW120.

Type Format Address Maximum Access in
size write

Input bit Boolean %Ii[%MWj] 0≤i+%MWj≤m (1) No

Output bit Boolean %Qi[%MWj] 0≤i+%MWj≤m (1) Yes

Internal bit Boolean %Mi[%MWj] 0≤i+%MWj≤Nmax (2) Yes

Internal words Single length %MWi[%MWj] 0≤i+%MWj≤Nmax (2) Yes
Double length %MDi[%MWj] 0≤i+%MWj≤Nmax-1 (2) Yes
Floating point %MFi[%MWj] 0≤i+%MWj≤Nmax-1 (2) Yes

Constant words Single length %KWi[%MWj] 0≤i+%MWj≤Nmax (2) No
Double length %KDi[%MWj] 0≤i+%MWj≤Nmax-1 (2) No
Floating point %KFi[%MWj] 0≤i+%MWj≤Nmax-1 (2) No

Word table <Object> [%MWj]:L %MWi[%MWj]:L 0≤i+%MWj+L≤Nmax (2) Yes

(1) m = modularity of the I/O module (eg : 8 for an 8 input or 8 output module). Indexation is only
possible for discrete I/O modules.

(2) Nmax = maximum number defined during software configuration.
This type of addressing is used to run through a series of objects of the same type (internal words,
constant words etc) in succession. The content of the index is added to the object address.

Note :
Indexing double words (or floating points).
Example : %MD6[%MW100] direct address double word 6 + 2 times the content of word %MW100.
If %MW100=10, the word addressed will be 6 + 2 x 10 -->%MD26.

1 / 1 8

A

• Index overrun, system bit %S20

Index overrun occurs as soon as the address of an indexed object exceeds the limits
of the zone including this same type of object, that is, when :
• object address + index content is lower than the value zero.
• object address + index content is higher than the maximum limit configured (see table

on the previous page).

In the event of index overrun, the system sets system bit %S20 to 1 and the object is
assigned an index value of 0.

Monitoring of overrun is the responsibility of the user : bit %S20 must be read by the user
program for any processing. Resetting it is the responsibility of the user.

%S20 (initial state = 0) :
• on index overrun : set to 1 by the system,
• overrun acknowledgment : set to 0 by the user after modification of the index.

1.2-7 Grafcet objects

Bit objects

The user has bit objects %Xi associated with the steps which enable him to identify the
status of Grafcet step i. This bit is set to 1 when the step is active, and 0 when it is inactive.

Word objects

One word is associated with each step : %Xi.T. It indicates the activity time of Grafcet
step i. It is incremented every 100ms and takes a value between 0 and 9999.

PL7 General 1

1 / 1 9

A

1.2-8 Symbolization

Symbols

A symbol is a string of up to 32 alphanumeric characters, of which the first character is
alphabetical. A symbol starts with a capital letter, followed by letters in lower case (for
example : the symbol Burner_1). When it is entered, the symbol can be written in upper
or lower case (for example : BURNER_1). The software automatically puts the symbol
into its correct format.

The following characters can therefore be used :
• upper case alphabetical :

"A to Z" and accented letters "ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏDÑÒÓÓÕÖØÙÚÛÜYp"
or lower case alphabetical :
" a to z", and accented letters : àáâãäåæçèéêëìíîï∂ñòóôõöØùúûüypßÿ

• numerical : digits 0 to 9 (they cannot be placed at the start of the symbol).
• the character "_" (this cannot be placed either at the beginning or end of the symbol).

A number of words are reserved by the language and cannot be used as symbols. See
full list in section 5 part B.

The symbols are defined and associated with language objects by the variables editor
(see section 5, part D). A comment of 508 characters can be associated with each
symbol. The symbols and their comments are saved to the terminal disk and not in the
PLC.

Objects which can be symbolized

All PL7 objects can be symbolized except table type structured objects and indexed
objects, but if the base object or the index is symbolized, the symbol is used in the
structured object.

Examples :
• if word %MW0 has "Temperature" as its symbol, the word table %MW0:12 is

symbolized by "Temperature:12"
• if word %MW10 has "Oven_1" as its symbol, the indexed word %MW0[%MW10] is

symbolized by "Temperature[oven_1]".

Word extract bit objects and function block bits or words can be symbolized, but if they
are not symbolized, they can take on the symbol of the base object.
Examples :
• if word %MW0 has " Pump_status" as its symbol and if the word extract bit %MW0:X1

is not symbolized, it takes on the symbol of the word. %MW0:X1 has as its symbol,
"Pump_status:X1".

• if function block %TM0 has "Oven1_timer" as its symbol and if output %TM0.D is not
symbolized, it takes on a symbol of the block. %TM0.D has as its symbol,
"Oven_timer.D".

1 / 2 0

A

1.3 User memory

1.3-1 General

The memory space of TSX 37 PLCs , which is accessible to the user, is divided into two
distinct units :

• Bit memory :
RAM integrated in the processor module containing the image of 1280 bit objects.

• Word memory :
16-bit words (program, data and constants) supported by a RAM memory in the
processor module. This memory can be extended by a 32 or 64 K word RAM or FLASH
EPROM user memory card (on TSX 37-21/22).
A 16 K word FLASH EPROM memory integrated in the processor module can be used
to back up the application program (15 Kwords) and 1000 internal words (1 Kword)
(see paragraph 1.3-2).

A 32 K word FLASH EPROM backup card can also be used to update an application
in the internal RAM of the processor. This card contains the program part and the
constants but not the data.

The word memory can be organized in 2 different ways depending on whether or not
a memory card (PCMCIA) is used :

Data : application and system dynamic data.
Program : descriptors and executable code of tasks.
Constants : constant words, initial values and I/O configuration.

Note

RAM memories can be protected by Cadmium-nickel batteries, supported by the
processor module for the bit and internal RAM memory.

(1) The application is transferred automatically from the FLASH EPROM memory to the RAM
memory if the application in the RAM is lost (backup fault or absence of battery). A manual
transfer can also be requested, via a programming terminal.

TSX 37-10 or
TSX 37-21/22 (without PCMCIA card)

▲

▲
▼

▼

Internal
RAM

Internal
Flash
EPROM (1)

Data

Program

Constants

▲
▼

▼

Internal
RAM

RAM or
external
Flash
EPROM
memory
card

TSX 37-21/22 (with PCMCIA card)
▲

Unusable
zone

%MW
backup

▲

▼

Internal
Flash
EPROM

▲

Data

Program

Constants

Program
and constants

backup

%MW
backup

PL7 General 1

1 / 2 1

A

The memory space of TSX 57 PLCs only has one single unit. The bit memory, which
is separate on the TSX 37, is integrated into the word memory (in the data zone). It is
limited to 4096 bits.

• Word memory :
16-bit words (program, data and constants) supported by a RAM memory in the
processor module. This memory can be extended by a 32 or 64 K word (on TSX 57-10)
and by a 32, 64 or 128 K word (on TSX 57-20) RAM or FLASH EPROM user memory
card.

A 32 K word FLASH EPROM backup card can also be used for updating an application
in the internal RAM of the processor. This card contains the program part and the
constants but not the data.

The memory can be organized in 2 different ways depending on whether or not a
memory card (PCMCIA) is present and how it is used :

Data : dynamic application data and system data (the system reseves a RAM
zone of 5 Kwords minimum : see part B, section 8).

Program : descriptors and executable code of tasks.
Constants : constant words, initial values and I/O configuration.

There is no possibility either of data overflow on the memory card or of having a program
on the internal RAM and on the cartridge at the same time.

Note

RAM memories can be protected by nickel-cadmium batteries.

internal
RAM

RAM or
FLASH
EPROM
memory
card

Data

Program

Constants

internal
RAM

Data

Constants

Program

TSX 57-10 or
TSX 57-20 (no memory card)

TSX 57-10 or
TSX 57-20 (with card)

1 / 2 2

A

1.3-2 Saving / retrieving internal words %MWi

Saving internal words %MWi
In order to save adjustment data in the event of a power outage, when the processor
battery is faulty or missing, TSX 37 PLCs can copy 1000 internal words (%MW)
maximum to the internal Flash EPROM memory. This backup zone can be used at all
times, even if the PLC is fitted with a PCMCIA memory card (TSX 37-21/22).
To save internal words to the Flash EPROM, the application must be stopped . It is
triggered according to the choice made during configuration :

• by setting the discrete input %I1.9 to 1,
• from an adjustment panel, by setting bit 0 of %SW96 to 1.

The value of system word %SW97 defines the number of %MWi to be saved (1000
maximum).

At the end of the backup, the display block displays OK or NOK depending on the result
of the operation.

The internal words %MWi are always saved when the application program is
saved .
If system word %SW97 is initialized to 0, only the application program contained in the
internal RAM is transferred to the Flash EPROM (equivalent to a Backup program).
Warning : any saved %MWi are still erased.

Retrieving internal words %MWi
Saved %MWi are transferred from the internal Flash EPROM memory to the RAM
memory on a cold restart caused by :
• loss of the internal RAM contents. In this case, if the application program backup is

valid, this is also transferred to the internal RAM (TSX 37-10 or TSX 37-20 without
PCMCIA application cartridge),

• pressing the RESET button, on the front panel of the PLC,
• setting bit %S0 to 1, in adjust mode,
• clicking on the "Cold restart" button of the PL7 processor debug screen,
• transferring a program to the PLC (via terminal port, FIPWAY, etc),
• plugging in a PCMCIA application cartridge.

For the saved %MW to be retrieved to the internal RAM, the "Reset %MWi on cold
restart" check box must not be checked in the processor configuration screen.
For further information, refer to part A of the TSX Micro installation manual.

PL7 General 1

1 / 2 3

A

1.3-3 Bit memory

Composition

This memory contains 1280 bit objects, for all types of TSX 37 PLC. For the TSX 57, this
bit memory does not exist and its contents are found in the word memory in the
application data zone.

TSX 37-10 TSX 37-21/22 TSX 57-10 TSX 57-20

System bits %SI 128 128 128 128

I/O bits %I/Qx 408 (1) 472 (1) 512 1024

Internal bits %Mi 256 256 4096 (2) 4096 (2)

Step bits %Xi 96 128 128 128

(1) With AS-i bus
(2) The number of internal bits can be set in the configuration. The default value (256 to 2048)

varies depending on the processor being used and on the presence of a memory cartridge. The
rest of the memory is available for application-specific functions. The total number of bits
(system bits + I/O bits + internal bits) must not exceed 4096.

Structure

Each bit object contained in the bit memory is stored using 3 bits assigned in the following
way :

When the bit memory is updated, the system performs the following :

• the transfer of the image of the current state to the previous state,
• the updating of the current state via the program, the system or the terminal (when a

bit is forced).

Rising or falling edge

This structure of the bit memory is used to test for a rising or falling edge on :

• I/O bits,

• internal bits.

Recommendations for the use of rising or falling edges

The rising or falling edge contact instructions only operate correctly in the following
conditions :

• in all cases, for a single object :

- input bit : process the edge contact in the task to which the input module has been assigned,
- output or internal bit : process reading and writing of it within the same task .

F P C

Current state (only bit accessible by

the application program)

Previous state

Forcing state

1 / 2 4

A

• Write the coil of an object once only when an edge contact of this object is used in
a program.

• Do not perform a SET or RESET on an object where the edge is tested, because even
if the result of the equation conditioning the SET/RESET equals 0, the SET/RESET
action is not performed, but the object log is updated (loss of the edge).

• Do not test the edge of an I/O used in a event-triggered task, in a master or fast task.
• For internal bits : the detection of an edge is separate from the task scan. An edge on

internal bit %Mi is detected when it changes state between 2 read operations. This
front remains detected as long as this internal bit has not been scanned in the
action zone.

Thus, in the example opposite, if bit %M0
is forced to 1 in an animation table, the
edge is permanently on.

In order that the edge is only detected once, an intermediate internal bit must be used.

In this case the %M1 log is updated,
therefore the edge only occurs once.

Forcing states

When there is a forcing request via the terminal :

• forcing state F is set to 1
• current state C is set to :

- 1 if forcing to 1 is requested
- 0 if forcing to 0 is requested.

These states remain unchanged until :

• forcing is deactivated and the bit in question updated,
• inverse forcing is requested, in which case only the current state is modified.

INC%MW0P

%M0

INC%MW0P

%M1

%M1%M0

PL7 General 1

1 / 2 5

A

1.3-4 Word memory

This 16-bit word memory is structured into 3 logical areas :

• Data

• Program

• Constants

of which the size is defined by configuration.

Application data memory

The data memory contains the following zones :

• System words : fixed number

• Function blocks : correspond to the words and I/O of these blocks (current,
adjustment values, etc).
The number of each type of function block is fixed during configuration.

• Internal words : size defined by the number declared during configuration.

• I/O : correspond to the words associated with each module. Their number depends
on the modules configured.

• Network common words : 4 common words per PLC station (only available if
communication module present and configured for exchange of common words).

In the case of the TSX 57, the data memory also includes the information bits detailed
in the preceding paragraph.

Application program memory

This zone contains the executable program code, graphic data (Ladder language rungs)
and program comments.

Application constant memory

This zone contains the parameters of the function blocks and I/O modules defined during
configuration, and constant words %KW.

Note :
The symbols and comments associated with objects are not recorded in the PLC memory but stored
in the local application (hard disk on the terminal).

Application program

Application constants

Application data

1 / 2 6

A

(1) Of which 15K words are available for the program and the application constants and 1 Kword
 is reserved for the %MWi backup.

(2) Default size can be extended. However, this will affect the size of the application program.
(3) Sizes are given in Kinstructions for applications which are 100% Boolean, 90% Boolean, 65%

Boolean respectively.

Note : the PLC/Memory Usage command in PL7 software provides the memory
mapping of the application in the PLC memory.

▲

▲

▼

▼

▲

Internal
RAM

14 Kwords

Internal
Flash
EPROM (1)

16 Kwords

▲

1.3-5 TSX 37-10 PLCs

Structure of the bit memory

Bit memory Size

Size available on processor 1280

Type system bits %Si 128

of objects I/O bits %I/Qx.i 408 (with AS-i)

internal bits %Mi 256

step bits %Xi 96

Structure of the word memory

 Word memory Size

 Total size available on processor 14 Kwords

 Data (%MWi) 0.5 Kwords (2)

 Program (3)

 • Ladder language 4.0/3.0/2.1 Kinstructions

 • Instruction list language 5.1/3.7/2.4 Kinstructions

 • Structured text language 3.4/2.8/2.4 Kinstructions

 Constants 128 words (2)

Data

Program

Constants

Program
and constants

backup

%MW
backup

PL7 General 1

1 / 2 7

A

1.3-6 TSX 37-21/22 PLCs

Structure of the bit memory

Bit memory Size

Size available on processor 1280

Type system bits %Si 128

of objects I/O bits %I/Qx.i 472 (with AS-i)

internal bits %Mi 256

step bits %Xi 128

Structure of the word memory

No memory card With memory card

(1) Can be used if the Program/Constants together are less than 15 K words

 Word memory No card With 32 K card With 64 K card

 Total size available 20 Kwords 52 Kwords 84 Kwords

 Data (%MWi) 0.5 Kwords 17.5 Kwords 17.5 Kwords

 Program (3)
• Ladder language 6.6/5.3/3.9 Kinst. 13.5/11.6/8.8 Kinstr. 28.1/24.3/18.6 Kinstr.

• List language 8.5/6.5/4.4 Kinstr. 17.2/14.1/10.0 Kinstr. 35.9/29.6/21.0 Kinstr.

 • Structured text language 5.6/5.0/4.4 Kinstr. 11.5/10.9/10.0 Kinstr. 23.9/23.0/21.0 Kinstr.

Constants 128 words (2) 256 words (2) 512 words (2)

(1) Of which 15K words are available for the program and the application constants and 1 Kword
is reserved for the %MWi backup.

(2) Default size can be extended. However, this will affect the size of the application program.
(3) Sizes are given in Kinstructions for applications which are 100% Boolean, 90% Boolean, 65%

Boolean respectively.

Note : the PLC/Memory Usage command in PL7 software provides the memory
mapping of the application in the PLC memory.

Unusable
zone

%MW
backup

Internal
Flash EPROM

16 Kwords
of which
1 Kword
usable

Internal
RAM

20 Kwords

RAM or Flash
EPROM
memory card

32 Kwords
or
64 Kwords

Data

Program

Constants

Program
and constants

backup

%MW
backup

▲

▲
▼

▼

▲
▲

Internal
RAM

20 Kwords

Internal
Flash
EPROM (1)

16 Kwords

Data

Program

Constants

▲

▲
▼

▼

▲

1 / 2 8

A

1.3-7 TSX 57-10 PLCs

Structure of the word memory

No memory card With memory card

Bit memory Size

System bits %Si 128

I/O bits %I/Qx.i 512

Internal bits %Mi 4096

Step bits %Xi 128

The number of internal bits can be set in the configuration. The values indicated are
maximum values and they depend on the presence of a memory card.

 Word memory No card With 32 K card With 64 K card

 Total size available 32 Kwords 64 Kwords 96 Kwords

Data (%MWi) 0.5 Kwords (1) 26 Kwords 26 Kwords

Program (2)
• Ladder language 8.5/5.0/3.4 Kinst. 11.9/8.3/6.4 Kinstr. 26.6/21.0/16.4 Kinstr.

• List language 10.9/5.9/3.5 Kinstr. 15.1/9.9/6.5 Kinstr. 33.9/25.2/16.8 Kinstr.

• Structured text language 7.2/4.8/4.0 Kinstr. 10.1/7.9/7.6 Kinstr. 22.6/20.1/19.4 Kinstr.

Constants (1) 128 words 256 words 512 words

(1) Default size can be extended. However, this will affect the size of the application program.
(2) Sizes are given in Kinstructions for applications which are 100% Boolean, 90% Boolean, 65%

Boolean respectively.

Note : the PLC/Memory usage command in PL7 software provides the memory
mapping of the application in the PLC memory.

Internal
RAM

RAM or
FLASH
EPROM
memory
card

Data

Program

Constants

Internal
RAM

Data

Constants

Program

32 Kwords
or 64 Kwords

32 Kwords32 Kwords

PL7 General 1

1 / 2 9

A

1.3-8 TSX 57-20 PLCs

Structure of the word memory

No memory card With memory card

Bit memory Size

System bits %Si 128

I/O bits %I/Qx.i 1024

Internal bits %Mi 4096

Step bits %Xi 128

The number of internal bits can be set in the configuration. The values indicated are
maximum values and depend on the presence of a memory card.

Word memory No card With 32 K card With 64 K card With 128 K card

Total size available 48 Kwords 80 Kwords 112 Kwords 176 Kwords

Data (%MWi) 1 Kword (1) 30.5 Kwords 30.5 Kwords 30.5 Kwords

Program (2)
• Ladder language 14.1/10.0/7.2 K 11.0/7.6/5.8 K 25.4/20.1/15.6 K 55.2/45.8/35.8 K

• List language 18.0/11.9/7.4 K 14.0/9.0/6.0 K 32.3/24.0/16.0 K 70.3/54.7/36.6 K

• Structured text language 12.0/9.6/8.6 K 9.3/7.2/6.9 K 21.5/19.2/18.5 K 46.9/43.9/42.4 K

Constants (1) 256 words 256 words 1024 words 1024 words

(1) Default size can be extended. However, this will affect the size of the application program.
(2) Sizes are given in Kinstructions for applications which are 100% Boolean, 90% Boolean, 65%

Boolean respectively.

Note : the PLC/Memory Usage command in PL7 software provides the memory
mapping of the application in the PLC memory.

Internal
RAM

RAM or
FLASH
EPROM
memory
card

Data

Program

Constants

Internal
RAM

Data

Constants

Program

32 Kwords
or 64 Kwords
or 128 Kwords

48 Kwords48 Kwords

1 / 3 0

A

Yes

No

Await power

∆

Yes

No
No

Yes

1.4 Operating modes

1.4-1 Processing on outage and power return

When power outage occurs, the system saves the application context and time of the
outage and then sets all outputs to fallback state (state defined by configuration).
On power return, the context saved is compared to the current one. This defines the type
of restart to be performed :
• If the application context has changed (loss of the system context or new application),

the PLC initializes the application, that is, performs a cold restart.
• If the application context is identical, the PLC performs a restart without data

initialization, that is, a warm restart.
If the period of the outage is shorter than the supply filter time (approximately 10 ms for
an AC power supply or 1 ms for DC power supply), it is not seen by the program, which
proceeds normally.

RUN
Application

Power failure

Power return

Outage Context
detected save OK

Memory card
identical

Normal program Warm Cold
execution restart restart

Note :
A cold restart can be activated :
• On power return with loss of context (example : processor backup battery not operating).
• During the first execution of an application.
• By pressing the RESET button on the processor.
• By the program setting system bit %S0 to 1.
• Through initialization from PL7 by the terminal.
• Then the PCMCIA memory card is inserted in its slot (or when the handle is manipulated).

A warm restart can be activated :
• On power return without loss of context.
• By the program setting system bit %S1 to 1,
• From PL7 by the terminal.

PL7 General 1

1 / 3 1

A

1.4-2 Warm restart processing

Restart program execution
Program execution restarts from the element at which power outage took place, without
updating outputs. The system then performs a restart cycle in which it takes into account
again all the input modules, relaunches the master task with bit %S1 set to 1 during one
scan of the task, and updates the outputs.
The system deactivates the fast and event-triggered tasks until the end of the first scan
of the master task.

Warm restart processing
In the event of warm restarts users who require a particular processing operation in
relation to the application must write the corresponding program by testing for %S1 at
1 at the beginning of the program of the master task.

Change in outputs
• As soon as power outage is detected, the outputs are set to fallback state : either set

to fallback value or retain their current value, depending on the choice made during
configuration.

• On power return, the outputs remain at zero until they are updated by the task.

Program execution
TOP

BOT

Read
inputs

If%S1 = 1,
warm restart

processing possible

Power outage
> micro-break

Set bit
%S1 to 0

Update
outputs

Stop processor
Save application

context

Power return

Configuration
self-tests

Yes

No
Set bit

%S1 to 1

1 / 3 2

A

1.4-3 Cold restart processing

Initialization of the data and the system, which corresponds to :
• Resetting the bits, the image of the I/O and the internal words (if the option to reset

internal words on a cold restart is selected in the PLC Configuration screen, see
section 1.3, part D). If the Reset option for %MW is not active and the %MWi are saved
in the Flash EPROM internal memory (TSX37), they are retrieved on a cold restart.

• Initialization of system bits and words.
• Initialization of function blocks based on configuration data.
• The tasks, other than the master task, are deactivated until the end of the first scan

of the master task.
• Positioning of the Grafcet on the initial steps.

Cold restart processing
In the event of a cold restart, if the user requires a particular processing operation in
relation to the application, bit %S0 can be tested (if %S0 = 1, then cold restart processing
occurs). On a cold restart, the PLC either does or does not continue execution ,
depending on the choice of the user defined during configuration (RUN AUTO parameter).

Change in outputs
• As soon as a power outage is detected, the outputs are set to fallback state. They are

either set to fallback value, or the current value is maintained, depending on the choice
made during configuration.

• On power return, the outputs remain at zero until they are updated by the task.

Program execution
TOP

BOT

Read
inputs

If %S0 = 1,
process cold

restart

Power outage
> micro-break

Set bit %S0
to 0

Update
outputs

Stop processor
Save application

context

Power return

Configuration
self-tests

Yes

No
Initialization of
the application

Set bit %S0
to 1

PL7 General 1

1 / 3 3

A

1.5 Single task software structure

1.5-1 Presentation of the master task

The program of a single task application is associated with a single user task : the
master task, MAST.
The program associated with the master task is structured into several program
modules. Depending on whether or not Grafcet is used, there are two alternatives :

No Grafcet:

• main processing (MAIN)

• subroutine SRi (i=0 to 253)
The subroutine modules are pro-
grammed as separate entities, calls to
subroutines being performed during main
processing or from other subroutines (8
levels of subroutines are possible).

Either cyclic or periodic execution of the master task can be chosen (during configuration).

With Grafcet :
• preprocessing (PRL). This is executed

before the Grafcet chart,
• Grafcet (CHART) : transition conditions

associated with the transitions and ac-
tions associated with the steps are
programmed in the Grafcet pages,

• post-processing (POST). This is
executed after the Grafcet chart,

• subroutine SRi (i = 0 to 253). The sub-
routine modules are programmed
separately, calls to subroutines being
made during preprocessing or post-
processing, in the actions associated
with the steps or from other subroutines
(8 levels maximum).

Either cyclic or periodic execution of the master task can be selected (during
configuration).

Subroutine

SRi

Subroutine

SR1

Main

processing

MAIN

Subroutine

SR0

Pre-
processing
PRL

Subroutine
SRi

Grafcet page
CHART
(8 pages)

Transition conditions

Actions

Post-
processing
POST

Subroutine
SRi

Subroutine
SRi

1 / 3 4

A

Internal processing

Read inputs

Program processing

Update outputs

RUN STOP

(1)

1.5-2 Cyclic execution

This type of operation corresponds to normal execution of the PLC scan (default option).
It consists of consecutively linking the cycles of the master task (MAST). After updating
the outputs, the system performs its specific processing operations and then links to
another task scan.

I.P. Internal processing : the system implicitly monitors the PLC (management of
system bits and words, updating current values of the real-time clock, updating
status indicator lamps, detection of RUN/STOP changes, etc) and processes
requests from the terminal (modifications and animation),

%I Read inputs : writes to memory the status of the information on the inputs of
discrete and application-specific modules associated with the task,

Program processing : execution of the application program, written by the user.

%Q Update outputs : writes output bits or words associated with discrete and
application-specific modules associated with the task depending on the status
defined by the application program.

Operating scan cycle/cycle monitoring

PLC in RUN : the processor performs, in
order, internal processing, reads the inputs,
processes the application program and
updates the outputs.

PLC in STOP : the processor performs
• internal processing,
• reads the inputs,
• and depending on the configuration

chosen :
- fallback mode : the outputs are set to
"fallback" position,
- maintain mode : the outputs maintain
their current values.

Cycle monitoring : the cycle is monitored
by a watchdog. See section 1.5-4.

(1) In the case of the TSX 57, internal processing is carried out in parallel with I/O processing.

I.P. I.P.

%I %I%Q %Q

Programm
processing

Program
processing

Scan n + 1Scan n

(1) (1)

PL7 General 1

1 / 3 5

A

1.5-3 Periodic execution

In this operating mode, reading inputs, application program processing and updating
output is performed periodically according to a period of time defined during configura-
tion (from 1 to 255 ms).

At the start of the PLC scan, a timer, whose current value is initialized to the period
defined during configuration, starts to count down. The PLC scan must finish before
expiry of this timer, which then launches a new scan.

I.P. Internal processing : the system implicitly monitors the PLC (management of
system bits and words, updating current values of the real-time clock, updating
status indicator lamps, detection of RUN/STOP changes, etc) and processes
requests from the terminal (modifications and animation).

%I Read inputs : writes to memory the status of the information on the inputs of
discrete and application modules associated with the task.

Program processing : execution of the application program, written by the user.

%Q Update outputs : writes output bits or words associated with discrete and
application-specific modules, according to the status defined by the application
program.

(1) In the case of the TSX 57, internal processing is carried out in parallel with I/O processing.

%I %Q

Program
processing

I.P. I.P.

%I %Q

Program
processing

Period Period

I.P. I.P.
(1) (1) (1) (1)

1 / 3 6

A

Operating scan cycle/monitoring

PLC in RUN : the processor performs, in
order, internal processing, reads inputs,
processes the application program and
updates outputs.
If the period is not yet over, the processor
completes its operating cycle until the end
of the period, via internal processing.

If the operating time becomes longer than
that assigned to the period, the PLC
indicates a period overrun by setting system
bit %S19 of the task to 1, processing
continues and is fully executed (it must
not, however, exceed the time limit of the
watchdog). The following scan cycle is
linked, after implicit writing of the outputs in
the current cycle.

PLC in STOP : the processor performs
• internal processing,
• reads inputs,
• and depending on the configuration

chosen :
- fallback mode : the outputs are set to
"fallback" position,
- maintain mode : the outputs maintain
their current values.

Cycle monitoring :
2 controls are performed :
• period overrun,
• via the watchdog,

(see section 1.5-4).

(1) In the case of the TSX 57, internal processing is carried out in parallel with I/O processing.

Internal processing

Read inputs

Program processing

Update outputs

RUN STOP

Start of
period

End of period

Internal processing

(1)

(1)

PL7 General 1

1 / 3 7

A

1.5-4 Monitoring scan time

Software watchdog (periodic or cyclic operation)

The execution time of the master task, whether in cyclic or periodic operation, is
controlled by the PLC (watchdog) and should not exceed the value Tmax defined during
configuration (250 ms default, 500 ms maximum).

In the event of overrun, the application is declared faulty, which stops the PLC
immediately (on the TSX 37 the alarm output %Q2.0 is set to 0 if it has been configured,
on the TSX 57, the alarm relay on the supply is set to 0).

Bit %S11 is used to monitor execution of this task.

 It indicates a watchdog overrun. It is set to 1 by the system when the scan time becomes
longer than the watchdog.

On the TSX 57, the watchdog value must be longer than the period.

In periodic operation, an additional control is used to detect period overrun :

• %S19 : indicates a period overrun. It is set to 1 by the system when the scan time
becomes longer than the task period.

• %SW0 : this word contains the value of the period (in ms). It is initialized at a cold
restart by the value defined during configuration. It can be modified by the user.

Using the execution time of the master task

The following system words provide data on the scan time :

• %SW30 contains the execution time of the last scan.

• %SW31 contains the execution time of the longest scan.

• %SW32 contains the execution time of the shortest scan.

Note :
This data can also be accessed from the configuration editor if requested.

1 / 3 8

A

Priority

 Event-triggered
 tasks

 Master
 task

+-

 Fast
 task

1.6 Multitask software structure

1.6-1 Description

The structure in tasks of such an application is as follows :

• The master task, MAST, which is always present and can be cyclic or periodic.
• The fast task, FAST, which is optional and always periodic.
• Event-triggered processing operations EVTi, called up by the system when an event

appears on an I/O module. This processing is optional and is used by applications
requiring short response times to perform operations on I/O.

Management of tasks :

The master task is active by default. The fast task is active by default if it is programmed.
The event-triggered task is activated on appearance of the event with which it has been
associated.

If an event occurs, or at the start of the fast task cycle, the task stops current execution
of lower priority tasks in order to execute its own processing. The interrupted task takes
over when processing of the priority task is completed.
The execution of fast and event-triggered tasks can be controlled by the program using
system bits :
• %S30 is used to activate or deactivate the master task, MAST.
• %S31 is used to activate or deactivate the fast task, FAST.
• %S38 is used to activate or deactivate event-triggered tasks EVTi.

Example of multitask processing
• cyclic master task
• fast task with 20 ms period
• event-triggered task.

20 ms 20 ms 20 ms

I PO I PO I PO I PO

IOPPIOPPI P

I PO

ET S

fast

Master

System

Event

20 ms

PL7 General 1

1 / 3 9

A

1.6-2 Master task

This task, which has the lowest priority, manages the majority of the application program.

The MAST task is organized according to the model described in the previous section :
implicit reading of inputs, execution of the application program and implicit writing of
outputs.

Whether the operating mode is periodic or cyclic, the task is monitored by a watchdog
which is used to detect an abnormal duration of the application program. In the event of
an overrun, system bit %S11 is set to 1 and the application is declared as faulty, which
stops the PLC.

The system bit %S30 enables or inhibits the master task.

1.6-3 Fast task

This task, which is higher priority than the master task MAST, is periodic in order to leave
time for execution of the lower priority task.

In addition, the processing operations which are associated with it should therefore be
short, to avoid adversely affecting the master task. Like the master task, the associated
program consists of a main module and subroutines.

The period of the fast task, FAST, is set during configuration, from 1 to 255 ms. This can
be defined as longer than that of the master task, MAST, in order to adapt it to periodic
processing operations which are slow but have higher priority. The program executed
should however remain short to avoid overrun of lower priority tasks.

The fast task is monitored by a watchdog which is used to detect an abnormal duration
of the application program. In the event of an overrun, system bit %S11 is set to 1 and
the application is declared as faulty, which stops the PLC.

Control of the fast task

System word %SW1 contains the value of the period. It is initialized at a cold restart by
the value defined during configuration and can be modified by the user via the program
or the terminal.

System bits and words are used to monitor execution of this task :

• %S19 : indicates a period overrun. It is set to 1 by the system when the scan time
becomes longer than the task period.

• %S31 : is used to enable or inhibit the fast task. It is set to 0 by the system at a cold
restart of the application, at the end of the first scan of the master task. It is set to 1
or 0 to enable or inhibit the fast task.

Display of the fast task execution times

The following system words provide data on scan times :
• %SW33 contains the execution time of the last scan.
• %SW34 contains the execution time of the longest scan.
• %SW35 contains the execution time of the shortest scan.

1 / 4 0

A

1.6-4 Assigning I/O channels to the master and fast tasks

In addition to the application program, the MAST and FAST tasks execute system
functions linked to the management of implicit I/O which are associated with them.

Associating a channel or a group of channels with a task is defined in the configuration
screen for the corresponding module. The default associated task is the MAST task.

Since the modularity of discrete modules is 8 consecutive channels (channels 0 to 7,
channels 8 to 15, etc), I/O can be assigned in groups of 8 channels, either to the MAST
or FAST task. For example, it is possible to assign the channels of a 28 I/O module in
the following way :

• Inputs 0 to 7 assigned to the MAST task.

• Inputs 8 to 15 assigned to the FAST task.

• Outputs 0 to 7 assigned to the MAST task.

• Outputs 8 to 11 assigned to the FAST task.

Each channel of a counter module can be assigned either to the MAST or FAST task.
For example, for a 2 channel counter module, it is possible to assign :

• channel 0 to the MAST task and,

• channel 1 to the FAST task.

The channels of TSX 37 analog input modules must be assigned to the MAST task.
However, it is possible to assign analog output channels to either the MAST or FAST
task, with 2 channel modularity. For example, for a module with 4 analog outputs, it is
possible to assign :

• channels 0 and 1 to the MAST task and,

• channels 2 and 3 to the FAST task.

The channels of TSX 57 analog I/O modules can be assigned to the MAST or FAST task.
Each channel of the isolated analog I/O modules (4 isolated channels) is assigned on
an individual basis. A 4-channel modularity is used for other modules.

PL7 General 1

1 / 4 1

A

1.6-5 Event-triggered tasks

Event-triggered processing is used to reduce the response time of the software on
command events.

Command events

These are external events associated with applications. The appearance of such an
event diverts the application program to the processing operation associated with the
I/O channel which caused the event. The inputs (%I, %IW, %ID) associated with the I/O
channel which triggered the event are updated by the system before calling up event
processing. It is possible to configure :

• 8 events in a TSX 37-10 PLC (EVT0 to EVT7).
• 16 events in a TSX 37-21/22 PLC (EVT0 to EVT15).
• 32 events in a TSX 57-10 PLC (EVT0 to EVT31).
• 64 events in a TSX 57-20 PLC (EVT0 to EVT63).

The association between a channel and an event number is created in the channel
configuration screen.

On the TSX 37, event processing can be triggered by :

• Inputs 0 to 3 of module in position 1, on a rising or falling edge.
• The counter channel(s) of counter modules.
• The counter channels of module 1 (if this is configured as a counter).
• Reception of a telegram in a TSX 37-21/22 fitted with a TSX FPP20 module.

On the TSX 57, event processing can be triggered by :

• The 16 inputs of DEY 16 FK modules.
• The counter channels.
• The channels of CAY axis control modules.
• The channels of CFY stepper axis control modules.
• Communication channels "FPP20".

Management of event-triggered tasks

Event-triggered processing can be globally enabled or inhibited by the application
program, using system bit %S38. If one or more events occur while they are inhibited,
the associated processing operations are lost.

Two PL7 language instructions MASKEVT() and UNMASKEVT(), used in the application
program, also allow masking or unmasking of event-triggered processing. If one or more
events occur while they are masked, they are saved by the system and the associated
processing will only be carried out after unmasking.

The 8 possible command events with a TSX 37-10 PLC all have the same level of priority.
Thus, one event processing operation cannot be interrupted by another. In a TSX 37-21/22
or a TSX 57 PLC, there are 2 levels of priority for command events : event 0 (EVT0) is higher
priority than the other events.

1 / 4 2

A

I/O exchanges in event-triggered tasks

With each event-triggered task it is possible to use I/O channels other than those relating
to the event. Exchanges are then performed implicitly by the system before (%I) and
after (%Q) application processing. These exchanges can relate to a single channel
(example of counter module) or to a group of channels (discrete module). In the second
case, if the processing modifies, for example, outputs 2 and 3 of a discrete module, it
is the image of outputs 0 to 7 which will be transferred to the module.

Summary of exchanges and processing operations

The appearance of such an event diverts
the application program towards the
processing operation which is associated
with the I/O channel which caused the
event :

• All the inputs associated with the channel
which caused the event are read
automatically.

• All the inputs declared by the user in task
EVTi are read.

• Processing should be as short as
possible.

• All the outputs used by the user in task
EVTi are updated. The outputs
associated with the channel which
caused the event should also be declared
so they can be updated.

Event
processing
(EVTi task)

Implicit

reading of inputs

 associated with

the channel, origin

of the event

Implicit

reading of the

inputs declared

in task

EVTi

Event

processing

Implicit

update of the

outputs used

in task

EVTi

IT

r

PL7 General 1

1 / 4 3

A

Notes
On the TSX 37, analog input modules, which can only be used in the MAST task,
should not be exchanged in event processing.

The exchange of I/O, associated with the EVTi task and used by the program, is
performed channel by channel (for counter modules) or in groups of channels (for
discrete modules). For this reason, if processing modifies, for example, outputs 2
and 3 of a discrete module, it is the image of outputs 0 to 7 which will be transferred
to the module.

On the TSX 37, for each event-triggered processing operation, it is possible to
declare a maximum of exchanges for 2 input modules (before processing of the
event) and 2 output modules (after processing of the event).

The inputs exchanged (and the group of associated channels) during
event-triggered processing are updated (loss of log values and, consequently,
edges). Thus, edges should not be tested on these inputs in the master (MAST) or
fast (FAST) tasks.

On the TSX 57, depending on the processor used, the number of exchanges used is
limited :

No. of exchanges which can be P57-10 (32 EVTs) P57-20 (64 EVTs)
used in EVTs by processor

Max. no. of discrete exchanges 32 exchanges 128 exchanges

Max. no. of analog exchanges 8 exchanges 16 exchanges

Max. no. of other application- 4 exchanges 16 exchanges
specific exchanges

For discrete I/O, an exchange involves a group of 8 channels. It is generated when the
inputs of a group of 8 channels are used (other than the group of channels which
generate the event) and when writing the outputs of a group of 8 channels.

For analog or other application-specific I/O, an exchange is generated when the inputs
of a channel are used (other than the channel which generates the event) and when
writing the outputs of a channel.

Display of the number of events processed

Word %SW48 shows the number of events processed. This word is initialized to 0 at a
cold restart, then incremented by the system when an event is launched. This word can
be modified by the user.

%S39 indicates loss of event.

Note :
A summary of the operations to be performed to program events is given in part F,
section 5.2.

Ladder language 2

2/1

A
Section 2

2 Ladder language

2.1 Presentation of Ladder language

2.1-1 Principle

Programs written in Ladder language consist of a series of rungs which are executed
sequentially by the PLC.

A rung consists of a set of graphic elements bounded on the left and right by power rails.
They represent :

• The PLC I/O (pushbuttons, sensors, relays, indicator lamps, etc).

• Standard control system functions (timers, counters, etc).

• Arithmetic, logic and specific operations.

• The internal variables of the PLC.

The graphic elements are interconnected by horizontal and vertical links.

Each rung consists of a
maximum of 7 lines and 11
columns, which are divided
into 2 zones :

• The test zone which
contains the conditions
necessary to execute the
actions.

• The action zone which
contains the actions to
be executed according to
the results of the test
zone.

MAIN

Formulaire programmation
schéma à contacts

EVT

SR

FAST

PRE

MAST

POST

AUX

CHART

% L

%I1.0

A T T E N T E D U S E C H A G E

%M12 %Q2.5%I3.7

%TM4.Q %M17

%MW4<50

%MW15 : = %MW18+500
%TM0%I3.10 %Q4.3

IN

TYP : TP
TB : 100ms

TM.P : 200
MODIF : Y

Q

SR1

C

%I1.2 %I1.4

%M27 %M25 %MW0:X5

2 / 2

A

2.1-2 Graphic elements

Basic elements
They all occupy a single cell (1 line high, 1 column wide).

Designation Symbol Function

Test • Normally Contact closed when the bit object which
elements open contact controls it is at 1.

• Normally Contact closed when the bit object which
closed contact controls it is at 0.

• Edge Rising edge : contact closed when the bit
detection object which controls it changes from 0 to 1.
contacts

Falling edge : contact closed when the bit
object which controls it changes from 1 to 0.

Link • Horizontal Used to link test and action graphic elements
elements links between the two power rails in series.

• Vertical Used to link test and action graphic elements
links in parallel.

Action • Direct Sets the associated bit object to the value of
elements coil the result of the test zone.

• Negated Sets the associated bit object to the inverse
coil value of the result of the test zone.

• Latch Sets the associated bit object to 1 when the
coil result of the test zone is at 1.

• Unlatch Resets the associated bit object to 0 when the
coil result of the test zone is at 1.

• Conditional Allows connection to a labelled rung, either
JUMP to upstream or downstream.
another rung Jumps are only effective within the same

programing entity (main program, subroutine,
etc).

If a jump is activated :

• Scanning of the current rung is interrupted.

• The requested labelled rung is executed.

• The part of the program between the jump
action and the designated rung is not
executed.

• Transition Offered in Grafcet language, used when
condition programming conditions associated with
coil transitions, to move to the next

step.

P

N

R

S

->> %Li

#

Ladder language 2

2 / 3

A

Designation Symbol Function

Action • Subroutine Allows connection at the beginning of
elements call coil subroutines when the result of the test zone
(continued) (CALL) is at 1.

If a subroutine is called :

• Scanning of the current rung is interrupted.

• The subroutine is executed.

• Scanning of the interrupted rung is
 resumed.

• Subroutine Reserved for subroutines SR, allows return
return to the calling module when the result of the

test zone is at 1.

• Stop Stops execution of the program when the
program result of the test zone is at 1.

Function blocks

Designation Symbol Function

Test • Blocks : Each of the standard function blocks uses
elements Timer I/O which allow them to be linked to other

Counter graphic elements.
Monostable The functions of each block are described in
Register part B.
Drum controller Size : see section 2.2-5.

Operation blocks

Designation Symbol Function

Test • Vertical Allows comparison of 2 operands. Depending
elements comparison on the result, the corresponding output changes

block to 1.
Size : 2 columns/4 lines.

• Horizontal Allows comparison of 2 operands. The output
comparison changes to 1 when the result is checked.
block (A block can contain up to 4096 characters).

Size : 2 columns/1 line.

Action • Operation Performs arithmetic, logic operations etc and
elements block uses Structured text language syntax.

(A block can contain up to 4096 characters).
Size : 4 columns/1 line.

C

<RETURN>

<HALT>

2 / 4

A

MAIN

Formulaire programmation
schéma à contacts

EVT

SR

FAST

PRE

MAST

POST

AUX

CHART

% L

2.2 Structure of a rung

2.2-1 General

A rung is located between two power rails and consists of a set of graphic elements which
are interconnected by horizontal or vertical links.

A rung contains up to 7 lines and 11 columns divided into two zones, the test zone and
the action zone.

Each rung can be identified by a label and headed by a comment.

1 2 3 4 5 6 7 8 9 10 11

Lines

1

2

3

4

5

6

7

∇
∇

∇

Test zone

Action zone

∇ ∇

∇

Columns

Power
 rails

Ladder diagram
 programming sheet

Ladder language 2

2 / 5

A

%L245%M20

% L2 4 5

%M3 %Q2.1%I1.6 %MW1:X2

%TM4.D

% L

%Q2.3 %Q4.7%I1.4 %MW2:X9

%M16

%I1.3

SR4
C

%M12 %TM3.Q

%C8.E

%Q2.0 %M155%MW3:X0 %M3 %I5.2

S
%I1.3 %I3.1 %M13 %Q4.7

Comment zone

2.2-2 Labels
Labels are used to identify a rung within a program entity (main program, subroutine,
etc), but are not compulsory.

Labels take the syntax %Li (i being 0 to 999) and are located at the top left before the
power rail.

Each label can only be
assigned to one rung within
the same program entity.

However, a rung must be
labelled to allow connection
after a program jump.

The system scans the rungs in the order in which they were entered, irrespective of the
order of the label numbers.

2.2-3 Comments

The comment is integrated into the rung and contains up to 222 alphanumeric
characters, framed at either end by the characters (* and *). It facilitates interpretation
of the rung to which it is assigned, but is not compulsory.

Comments are displayed in
the reserved zone in the
upper part of the rung.

If a rung is deleted, the
comment associated with it
is also deleted.

Comments are stored in the PLC and can be accessed at all times by the user. They
therefore use program memory.

2 / 6

A

2.2-4 Rungs

The representation of a rung is similar to that of a relay diagram.

Simple test and action graphic elements each occupy a single line and column within a
rung.

All lines of contacts start on
the left power rail and must
finish on the right power
rail.

Tests are always located
on columns 1 to 10.
Actions are always located
on column 11.

The direction of current is
the following :

• for horizontal links, from
left to right ,

• for vertical links, in both
directions.

Test zone
This zone contains :

• contacts, to which all the
bit objects defined above
can be assigned,

• function blocks,
• comparison blocks.

Rising and falling edges can
only be associated with I/O
bit objects and internal bits.

% L

%Q2.3 %Q4.7%I1.4 %MW2:X9

%M16

%I1.3

SR4
C

%M12 %TM3.Q

%C8.E

%Q2.0 %M155%MW3:X0 %M3 %I5.2

S
%I1.3 %I3.1 %M13 %Q4.7

% L

%M16 %T3.D

%I5.4

%C13.E

%Q2.6 %M85

%S6

% L

%I6.8
S

TB : 100ms

MN.P : 80

%C2.D

%MW8:X4

%MN0%M9
R

Ladder language 2

2 / 7

A

Action zone
This zone contains :

• direct, negated, latch and
unlatch coils, which can
be assigned to any bit
object which can be writ-
ten by the user.

• operation blocks.
• the other "coils" :

Call, Jump, Halt, Return.

Simple rungs
Control of a coil conditioned
by the state of a contact.

Use of up to 10 contacts in
series on one line.

A maximum of 7 contacts
can be tested in parallel on
one column, and 7 coils
placed in parallel.

% L

%M52

%MW2 := %MW0+1

%MW8:X10%MW8:X1
/

%Q6.5%M8
S

%M12
R

%I1.3 %Q4.12

%M1 %Q6.3%I3.2 %MW18:X4%Q4.2 %M15 %TM2.Q %I3.4 %MW1:X5 %M5 %C0.D

/

% L

%M5 %Q6.2

%M25

%MW8:X0

SR9

%L20

%M12

%Q2.6
S

R

C

/

%I6.9

%MW15:X5

%C6.E

%Q5.2

%I3.7

%S4

2 / 8

A

Rung using several lines of contacts

A rung can be divided into
several independent lines
of contacts controlling
independent coils.

7 independent lines of
contacts.

Rungs using the various
principles which have been
described.

Symbols at logic state 1 are
circled. The current can
pass from symbols A and C
to coil F. It cannot pass
from symbol C to symbols
D and E. Coil G is therefore
not activated.

% L

%I3.2 %L12

SRØ

%Q3.2

%Q3.3

%MW3:X6

%M27

%M68
S

/

%C2.E

%S4

%I6.5

%M53

%MW8:X4

%M12

%MW6:X10 %M88

P

C

% L

FA C

G

B D

E

Ladder language 2

2 / 9

A

%TM10

%C4

2.2-5 Rungs with function and operation blocks

• Function blocks are located in the test zone and are inserted in a rung.
Four sizes of graphic are used to represent all the other function blocks of the PL7 Micro
language.

Up/down counter 2 columns
"Vertical" comparison block 4 lines

Timers 2 columns
Monostable 3 lines
Register
Drum controller

"Horizontal" comparison block 2 columns
1 line

• Operation blocks are always located in the action zone. They are 1 line deep and 4
columns wide, are written in Structured text language and are always directly linked
to the right power rail.

COMPARE

%MW22 : = %MW1+%MW9
%MW10:X5

2 / 1 0

A

Function blocks can be "cascaded"
Like the contact type graphic elements, it is possible to combine function blocks.

Connecting function blocks in series :

Function blocks and operation blocks can be mixed

Others possible uses of function blocks
Irrespective of the type of function block used, its input must be linked to the left power
rail, either directly or via other graphic elements.

• Outputs left open : it is not necessary to link the outputs of function blocks to other
graphic elements.

• Testable outputs : the outputs of function blocks are accessible to the user in the form
of bit objects :

Internal variables of blocks and graphic outputs can be used remotely from another part
of the program.

% L

%MW1>100
%TM10

IN
TYP : TP
TB : 1s
TM.P : 50
MODIF : Y

Q
%I1.5 %M28

%MW2>500
%I1.2

%TM2.P := 3450

%TM12.Q %Q4.12%C5.E

% L

%MN1
S

TB : 100ms

MN.P : 80

R
%TM12

IN
TYP : TP
TB : 100ms
TM.P : 200
MODIF : Y

Q
%I3.6 %Q6.3

Ladder language 2

2 / 1 1

A

2.3 Rules for executing rungs

2.3-1 Principle for executing a rung

Rungs are executed rung by rung, and each rung is executed from left to right.

A rung contains graphic elements which are interconnected by horizontal and vertical
links (apart from the power rail), but are independent from other graphic elements in the
rung (no vertical links to the top or bottom edges of the rung).

The rung in the top left-hand corner is the first rung to be evaluated.

A rung is evaluated following the direction of the equation : evaluation of the rung from
top to bottom, line by line, and in each line from left to right.
In cases where a vertical convergence link is found, the sub-rung associated with it is
evaluated (following the same logic) before continuing evaluation of the rung in which
it is included.

Following this order of execution, the system :

• Evaluates the logic state of each contact, according to the current value of the internal
objects of the application or of the state of the inputs of the I/O modules read at the
beginning of the scan.

• Executes the processing operations associated with the functions, function blocks
and subroutines.

• Updates the bit objects associated with coils, (outputs of I/O modules are updated at
the end of the scan).

• Goes to another labelled rung in the same program module (jumps to another rung
->>%Li), returns to the calling module <RETURN>, or stops the program <HALT>.

Note :
A rung must not contain nested rungs.

%Q2.5%M0 %M8

%I2.5 %TM1
IN Q

%MØINIT

%Q2.6%MØ

Rung 1

Rung 3

Rung 2

2 / 1 2

A

Elements in this rung are executed in the following order :

• evaluation of the rung
until the 1st vertical
convergence link is
found, contacts A, B and
C,

• evaluation of the 1st

sub-rung, contact D,
• continued evaluation of

the rung until the 2nd ver-
tical convergence link is
found, contact E,

• evaluation of the 2nd

sub-rung, contacts F and
G,

• evaluation of coil H.

Example of a "Boolean"
rung
Order of evaluation :

• coil 1 : INIT, %M5, %M7,
%Q2.1,

• coil 2 : %M4,
%MW2:X1,AUTO, UP_1,

• coil 3 : INIT, DOWN_1.

Example of rung
containing blocks
Order of evaluation :
• coil 1 : %M0, %M8, %M2,

%T1, %Q2.9,
• coil 2 : %T1.R, %T2,

%M9,
• operation block.

% L

A HB C E

D

F G

% L

INIT %Q2.1%M7

UP_1

DOWN_1

%M5 %M4

%MW2:X1

AUTO

INIT

% L

%Q2.9%MØ %M8

%M9

%M2 %T1
E

C

D

R

%T2
D

R

%T1.D
E

C %MW10 := %MW1+50

Instruction list language 3

3/1

A

3.1 Presentation of Instruction list language

3.1-1 Principle

A program written in Instruction list language is composed of a series of instructions
executed sequentially by the PLC.

Example of an instruction : LD %I1.0

 Instruction code Operand

Each instruction is composed of an instruction code and an operand.

These instructions act on :

• The I/O of the PLC (pushbuttons, detectors, relays, indicator lights etc).

• Standard control system functions (timers, counters etc).

• Arithmetic and logic operations and transfer operations.

• The internal variables of the PLC.

There are two types of instruction :

• Test instructions which contain the conditions necessary to execute an action,
eg : LD, AND, OR etc.

• Action instructions which validate the result following a test sequence,
eg : ST, STN, R, etc.

Section 3
3 Instruction list language

3 / 2

A

3.1-2 Instructions

Basic instructions
(For further information on each instruction, see part B).

Designation Instructions Equivalent functions

Test • LD, LDN, LDR, LDF
instructions

• AND, ANDN,
ANDR, ANDF

• OR, ORN, ORR, ORF

• AND(, OR(
(8 levels of parentheses)

• XOR, XORN, XORR, XORF exclusive OR

• MPS
MRD
MPP

• N Negation

Action • ST, STN, S, R
instructions

• JMP, JMPC, JMPCN Used to jump (unconditional, conditional
on a Boolean result at 1 or conditional on a Boolean
result at 0) to a labelled instruction, either
upstream or downstream.

• SRn Used to jump to the beginning of a subroutine.
RET, RETC, RETCN Subroutine return (unconditional,

conditional on a Boolean result at 1 or conditional
on a Boolean result at 0).

• END, ENDC, ENDCN End of program (unconditional, conditional on
a Boolean result at 1 or conditional on a Boolean
result at 0).

HALT Execution of the program is stopped.

P N

P N

P N

S R

Instruction list language 3

3 / 3

A

Instructions on function blocks (see part B, section 1.3)

Designation Instructions Functions
Test • Blocks : There are instructions for controlling each of the
elements Timer standard function blocks. A structured form is

Counter used to directly "wire" the I/O of the function blocks.
Monostable
Register
Drum controller

Numeric instructions (see part B)

Designation Instructions Functions

Test • LD[.....] Used to compare two operands (see part B,
elements AND[.....] section 1.4-2). The output changes to 1 when

OR[.....] the result is checked.

Example :
LD[%MW10<1000] Result at 1 when %MW10<1000.

Action • [.......] Perform arithmetic, logic operations etc.
elements Use Structured text language syntax (see part B).

Example :
[%MW10:=%MW0+100] The result of the operation %MW0+100 is placed

in internal word %MW10.

3 / 4

A

3.2 Program structure

3.2-1 General

Like Ladder language, instructions are organized into sequences of instructions
(equivalent to a rung), called a sequence. Each sequence is composed of one or more
test instructions. The result of these instructions is applied to one or more action
instructions.

An instruction occupies up to one line.
Each sequence starts with an exclamation mark (generated automatically). It can
include a comment and be identified by a label.

! (*Waiting for drying*)
%L2:
LD %I0.1
AND %M10
ST %Q2.5

3.2-2 Comments

Comments can be integrated at the beginning of a sequence and can occupy up to 3
lines (ie. 222 alphanumeric characters), framed at either end by the characters (* and *).
They facilitate interpretation of the sequence to which they are assigned but are not
compulsory.

Comments are displayed only from the first line of the sequence.

If a sequence is deleted, its associated comment is also deleted.

Comments are stored in the PLC and can be accessed at all times by the user. They
therefore use program memory.

3.2-3 Labels

Labels are used to identify a sequence in a program entity (main program, subroutine,
etc) but are not compulsory.

Labels take the syntax %Li (where i is 0 to 999) and are located at the beginning of a
sequence.

A label can only be assigned to a single sequence within the same program entity.

However, a sequence must be labelled to achieve a connection following a program
jump.

The system scans the sequences in the order in which they were entered, irrespective
of the order of the label numbers.

Instruction list language 3

3 / 5

A

3.2-4 Using parentheses

It is possible to use parentheses with the instructions AND and OR. These parentheses
are used for simple creation of Ladder diagrams. An opening parenthesis is associated
with the instruction AND or OR. A closing parenthesis represents an instruction and is
compulsory for each opening parenthesis.

Example : AND(

LD %I1.0
AND %I1.1
OR %I1.2
ST %Q2.0

LD %l1.0
AND(%I1.1
OR %l1.2
)
ST %Q2.0

Example : OR(

LD %I1.0
AND %I1.1
OR(N %I1.2
AND %I1.3
)
ST %Q2.0

The following modifiers can be associated with parentheses :

• N negation, eg : AND(N or OR(N

• F Falling edge, eg : AND(F or OR(F

• R Rising edge, eg : AND (R or OR (R

• [comparison

LD %I1.0
AND %I1.1
OR([%MW0>100]
AND %I1.3
)
ST %Q2.0

%Q2.0

%I1.1

%I1.2

%Q2.0

%I1.1%I1.0

%I1.0

%I1.2

%Q2.0%I1.1%I1.0

%I1.3%I1.2

%Q2.0%I1.1%I1.0

%I1.3
%MW0>100

3 / 6

A

Nesting parentheses
Up to eight levels of parentheses can be nested.

Example

LD %I1.0
AND(%I1.1
OR(N %I1.2
AND %M3
)
)
ST %Q2.0

Example

LD %I1.1
AND(%I1.2
AND %I1.3
OR(N %I1.5
AND %I1.6
)
AND %I1.4
OR(N %I1.7
AND %I1.8
)
)
ST %Q2.0

Note :
• Each opening parenthesis must be followed by a closing parenthesis.
• The labels %Li: must not be placed in expressions between parentheses. This also applies to jump
instructions, JMP, and call subroutine instructions, SRi.
• Assignment instructions, ST, STN, S and R must not be programmed between parentheses.

%Q2.0%I1.21%I1.1

%I1.6%I1.5

%I1.8%I1.7

%I1.4%I1.3

%Q2.0%I1.1%I1.0

%M3%I1.2

Instruction list language 3

3 / 7

A

3.2-5 MPS, MRD and MPP instructions

These three types of instruction are used to process the routing to the coils.
They use a buffer known as a stack which is capable of storing up to 3 Boolean data bits.

The instruction MPS (Memory PuSh) stores the result of the last test instruction at the
top of the stack and shifts the other values towards the bottom of the stack.

The instruction MRD (Memory ReaD) reads the top of the stack.

The instruction MPP (Memory PoP) reads and retrieves the top of the stack, and shifts
the other values towards the top of the stack.

Examples :

LD %I1.0
AND %M0
MPS
AND %I1.1
ST %Q2.0
MRD
AND %I1.2
ST %Q2.1
MRD
AND %I1.3
ST %Q2.2
MPP
AND %I1.4
ST %Q2.3

LD %I1.0
MPS
AND %I1.1
MPS
AND(%I1.3
OR %M0
)
ST %Q2.0
MPP
AND %M1
ST %Q2.1
MRD
AND %I1.4
ST %Q2.2
MPP
AND %M10
ST %Q2.3

Note :
These instructions cannot be used in an expression between parentheses.

%I1.2MPS

MRD

MPP

%I1.1 %Q2.0

%I1.3

%Q2.1

%Q2.2

%I1.4 %Q2.3

%M0%I1.0

%M0

%I1.3 %Q2.0

%I1.4

%Q2.1

%Q2.2

%M1

%M10 %Q2.3

%I1.1%I1.0

∇
∇

∇

∇

∇
∇

∇

∇
∇

3 / 8

A

3.2-6 Principles for programming predefined function blocks

Control system function blocks can be
programmed in two different ways :
• with instructions specific to each function

block (eg : CU %Ci). This is the simplest
and most direct way.

• with block structure instructions
BLK,OUT_BLK and END_BLK.

Principle of direct programming

LD %I1.1
R %C8
LDN %I1.2
ANDN %M0
CU %C8
LD %C8.D
ST %Q2.0

The instructions control the inputs of the blocks (eg : CU).
The outputs can be accessed in the form of bits (eg : %C8.D).

Principle of structured programming
This type of programming uses a sequence of instructions framed by the following
instructions :

• BLK indicates the start of the block.
• OUT_BLK is used to directly wire the outputs of the block.
• END_BLK indicates the end of the block.

BLK %C8
LD %I1.1
R
LDN %I1.2
ANDN %M0
CU
OUT_BLK
LD D
ST %Q2.0
END_BLK

Structured programming requires the additional instructions BLK, OUT_BLK and
END_BLK, and therefore needs more memory compared with direct programming.
It should, however, be used if similarity with reversible programs for TSX 07 nano PLCs
is required.

%Q2.0

%I1.1

%I1.2

R

S

CU

CD F

D

E

%C8

C.P : 9999

MODIF : Y

%M0

R

S

CU

CD F

D

E

%CI

C.P : 9999

MODIF : Y

Up/down counter block

Input
processing%Q2.0

%I1.1

%I1.2

R

S

CU

CD F

D

E

%C8

C.P : 9999

MODIF : Y

%M0

Output
processing

Instruction list language 3

3 / 9

A

3.3 Rules for executing Instruction list programs

Instruction list programs are executed sequentially instruction by instruction.

The first instruction in a series of instructions must always be either an LD instruction or
an unconditional instruction (eg : JMP).

All instructions (except LD and the unconditional instructions) use the Boolean result of
the preceding instruction.

Example :
LD %I1.1 Boolean result = state of bit %I1.1.
AND %M0 Boolean result = AND of the preceding Boolean result and the state of

bit %M0.
OR %M10 Boolean result = OR of the preceding Boolean result and the state of

bit %M10.
ST %Q2.0 %Q2.0 takes the state of the preceding Boolean result.

Parentheses can be used to modify the order in which Boolean results are taken into account :

Example :
LD %I1.1 Boolean result = state of bit %I1.1.
AND %M0 Boolean result = AND of the preceding Boolean result and the state of bit

%M0.
OR(%M10 Boolean result = state of bit %M10.
AND %I1.2 Boolean result = AND of the preceding Boolean result and the state of bit

%I1.2.
) Boolean result = OR of the preceding Boolean result and of the

Boolean result of the instruction located before the instruction with
parentheses.

ST %Q2.0 %Q2.0 takes the state of the preceding Boolean result.

Sequencing of instructions can be modified by the jump (JMP) and call subroutine
instructions.

Example :
! LD %M0

JMPC %L10
! LD %I1.1

AND %M10 Jump to label %L10 if %M0=1
ST %Q2.0

! %L10 :
LD %I1.3
AND %M20
.........

3 / 1 0

A

Structured Text language 4

4/1

A

4.1 Presentation of Structured Text language

4.1-1 Principle

Structured Text language is used to create programs by writing programming lines made
up of alphanumeric characters. This language can only be used by PL7 Junior software
on TSX 57 PLCs.

The ST statement constitutes the basic unit of Structured Text language, and a series
of statements is used to define a program.

The main instructions in Structured Text language are as follows :

• bit instructions,
• arithmetic and logic instructions on words and double words,
• arithmetic instructions on floating points,
• numerical comparisons on words, double words and floating points,
• numerical conversions,
• instructions on bit, word, double word and floating point tables,
• character string instructions,
• alphanumerical comparisons,
• time management instructions,
• program instructions,
• control instructions,
• standard function block instructions,
• explicit exchange instructions,
• application-specific instructions (communication, PID control, etc).

Example :

Section 4
4 Structured Text language

4/2

A

4.1-2 Instructions

Bit instructions

Description Function

:= Bit assignment
OR Boolean OR

AND Boolean AND
XOR Exclusive Boolean OR
NOT Inversion
RE Rising edge
FE Falling edge

SET Set to 1
RESET Reset to 0

Numerical comparisons on words, double words and floating points

Description Function

< Strictly less than
> Strictly greater than

<= Less than or equal to
>= Greater than or equal to
= Equal to

<> Different from

Bit tables

Description Function

Table := Table Assignment between two tables
Table := Word Assignment of a word to a table
Word := Table Assignment of a table to a word

Table := Double word Assignment of a double word to a table
Double word := Table Assignment of a table to a double word

COPY_BIT Copy a bit table to a bit table
AND_ARX AND between two tables
OR_ARX OR between two tables

XOR_ARX Exclusive OR between two tables
NOT_ARX Negation on a table

BIT_W Copy a bit table to a word table
BIT_D Copy a bit table to a double word table
W_BIT Copy a word table to a bit table
D_BIT Copy a double word table to a bit table

Structured Text language 4

4/3

A

Integer arithmetic on words and double words

Description Function

+ Addition
- Subtraction
* Multiplication
/ Integer division

REM Remainder of the integer division
SQRT Integer square root
ABS Absolute value
INC Incrementation
DEC Decrementation

Arithmetic on floating points

Description Function

+ Addition
- Subtraction
* Multiplication
/ Division

SQRT Square root
ABS Absolute value

Logic instructions on words and double words

Description Function

AND Logic AND
OR Logic OR

XOR Exclusive logic OR
NOT Logic complement
SHL Logic shift to left
SHR Logic shift to right
ROL Logic rotate to left
ROR Logic rotate to right

Numerical conversion instructions

Description Function

BCD_TO_INT BCD → Binary conversion
INT_TO_BCD Binary → BCD conversion

GRAY_TO_INT Gray → Binary conversion
INT_TO_REAL

DINT_TO_REAL
REAL_TO_INT

REAL_TO_DINT
DBCD_TO_DINT Conversion of 32-bit BCD number into 32-bit integer
DINT_TO_DBCD Conversion of 32-bit integer into 32-bit BCD number
DBCD_TO_INT Conversion of 32-bit BCD number into 16-bit integer
INT_TO_DBCD Conversion of 16-bit integer into 32-bit BCD number

Floating point → Integer conversion

Integer → Floating point conversion

}
}

4/4

A

Instructions on word and double word tables

Description Function

Table := Table Assignment between two tables
Table := Word Initialize a table
+, -, *, /, REM Arithmetic operations between tables
+, -, *, /, REM Arithmetic operations between expressions and tables

SUM Sum of the elements of a table
EQUAL Comparison of two tables

NOT Logic complement of a table
AND, OR, XOR Logic operations between two tables
AND, OR, XOR Logic operations between expressions and tables

FIND_EQW, FIND_EQD Find first element equal to a value
FIND_GTW, FIND_GTD Find first element greater than a value
FIND_LTW, FIND_LTD Find first element less than a value
MAX_ARW, MAX_ARD Find maximum value in a table
MIN_ARW, MIN_ARD Find minimum value in a table

OCCUR_ARW, OCCUR_ARD Number of occurrences of a value in a table
SORT_ARW, SORT_ARD Sort a table in ascending or descending order

ROL_ARW, ROL_ARD Rotate a table to the left
ROR_ARW, ROR_ARD Rotate a table to the right

Instructions on floating point tables

Description Function

Table := Table Assignment between two tables
Table := Floating point Initialize a table

Instruction on character string

Description Function

STRING_TO_INT
STRING_TO_DINT
INT_TO_STRING

DINT_TO_STRING
STRING_TO_REAL ASCII → Floating point conversion
REAL_TO_STRING Floating point → ASCII conversion
<, >, <=, >=, =, <> Alphanumeric comparison

FIND Position of a substring
EQUAL_STR Position of first different character

LEN Length of a character string
MID Extract a substring

INSERT Insert a substring
DELETE Delete a substring
CONCAT Concatenate two strings
REPLACE Replace a string

LEFT Start of string
RIGHT End of string

ASCII → Binary conversion}
Binary → ASCII conversion}

Structured Text language 4

4/5

A

Time management instructions

Description Function

RRTC Read system date
WRTC Update system date
PTC Read date and stop code

ADD_TOD Add a time period to a time of day
ADD_DT Add a time period to a date and time

DELTA_TOD Measure deviation between times of day
DELTA_D Measure deviation between dates (without time)

DELTA_DT Measure deviation between dates (with time)
SUB_TOD Subtract a time period from a time of day
SUB_DT Subtract a time period from a date and time

DAY_OF_WEEK Read current day of week
TRANS_TIME Convert duration to date

DATE_TO_STRING Convert date to character string
TOD_TO_STRING Convert time to character string
DT_TO_STRING Convert complete date to character string

TIME_TO_STRING Convert duration to character string

"Orphee" instructions

Description Function

WSHL_RBIT, DSHL_RBIT Shift word to left, with retrieval of shifted bits
WSHR_RBIT, DSHR_RBIT Shift word to right with sign extension and retrieval of

shifted bits
WSHRZ_C, DSHRZ_C Shift word to right, replacing with 0, with retrieval of shifted

bits
SCOUNT Up/down counting with indication of under/overflow

Program instructions

Description Function

HALT Stop program execution
JUMP Jump to a label

SRi Call subroutine
RETURN Return from subroutine

MASKEVT Mask events in the PLC
UNMASKEVT Unmask events in the PLC

All these functions and instructions are described in part B of this reference manual, as
well as instructions relating to standard function blocks.

Instructions and functions relating to explicit exchanges and the various applications are
described in the "Application-specific functions installation manual".

The control structures are described in section 4.2.-5 of this part.

4/6

A

4.2 Program structure

4.2-1 General

A Structured Text program is organized into statements. Each ST statement consists of
the following elements :

• label,

• comments,

• instructions.

Each of these elements is optional, ie. it is possible to have an empty statement, a
statement consisting only of comments or consisting only of a label. Each statement
begins with an exclamation mark (which is generated automatically).

Example :

! %L2 : (* Here is a statement with a label, comments *)
SET %M0; %MW4 := %MW2 + %MW9;
(* and several instructions *)
%MF12 := SQRT (%MF14);

4.2-2 Comment

A comment is enclosed at either end by the characters (* and *), it can be placed at any
point in a statement and there is no restriction on the number of comments per
statement. Its role is to facilitate the interpretation of the statement to which it is assigned,
but it is not compulsory.

• Any characters can be used in a comment.

• The number of characters is restricted to 256 per comment.

• Nested comments are not permitted.

• A comment may be several lines in length.

Comments are stored in the PLC and can be accessed at any moment by the user.
Because of this, they consume program memory .

Structured Text language 4

4/7

A

4.2-3 Label

A label is used to reference a statement in a program entity (main program, subroutine,
etc) but is not compulsory.

This label has the following syntax : %Li where i is between 0 and 999 and is located at
the beginning of the statement. A label reference can only be assigned to a single
statement within the same program entity (SR, Main, Program module).

On the other hand, a statement must be refenced in order to allow connection after a
program jump.

The label references can be in any order; it is the order in which the statements are
entered which is taken into account by the system during the scan.

4.2-4 Instructions

The program is made up of instructions. An ST statement can contain several
instructions. Each instruction must end with the character ';'.

4/8

A

4.2-5 Control structures

There are four control structures :

• the conditional action IF,

• the conditional iterative actions WHILE and REPEAT,

• the repetitive action FOR.

Each control structure is enclosed between key words, and it begins and ends in the
same statement. It is possible to nest control structures one inside the other, regardless
of their type. Control structures can be preceded or followed by any other language
instruction.

The conditional action IF ... END_IF;

Simple form (the instruction performs an action if a condition is true).

Example :

Syntax Operation

IF condition THEN

actions ;

END_IF;

CONDITION

ACTIONS

start of IF

end of IF

checked

not checked

Structured Text language 4

4/9

A

General form

Example :

• Conditions can be multiple.

• Each action represents a list of instructions.

• Several "IF" control structures can be nested.

• There is no restriction on the number of ELSIF instructions.

• There is a maximum of one ELSE part.

Syntax Operation

IF condition 1 THEN

action1;

ELSIF condition 2 THEN

action2;

ELSE

action3;

END_IF;

CONDITION 2

CONDITION 1

ACTION 3

start of IF

end of IF

not checked

not checked

checked

checked

ACTION 2

ACTION 1

4/10

A

The conditional iterative action WHILE ... END_WHILE;

The instruction performs a repetitive action as long as a condition is checked.

Example :

Syntax Mode of operation

WHILE condition DO

action;

END_WHILE;

CONDITION

ACTION

end of WHILE

start of WHILE

checked

not checked

• The condition can be multiple.

• The action represents a list of instructions.

• The condition is tested before executing the action. If, when the condition is first
evaluated, its value is false, the action is not executed.

• Several WHILE control structures can be nested.

Structured Text language 4

4/11

A

The conditional iterative action REPEAT ... END_REPEAT;

The instruction performs a repetitive action until a condition is checked.

Example :

• The condition can be multiple.

• The action represents a list of instructions.

• The condition is tested once the action has been executed. If, when the condition is
first evaluated, its value is false, the action is executed once again.

• Several REPEAT control structures can be nested.

Syntax Mode of operation

REPEAT

action;

UNTIL condition END_REPEAT;

CONDITION

ACTION

end of REPEAT

start of REPEAT

checked
not checked

4/12

A

The repetitive action FOR ... END_FOR;

The instruction performs a processing operation a certain number of times, incrementing
an index by 1 on each loop.

Example :

• When the index is strictly greater than the final value, execution is continued at the
instruction following the END_FOR key word.

• The index is incremented automatically and is therefore not the responsibility of the
user.

• The action represents a list of instructions.

• The initial value and the final value must be word-type numerical expressions.

• The index must be a word-type object which is accessible in read mode.

• Several FOR control structures can be nested.

Syntax Operation

FOR index := initial value TO final value DO

action;

END_FOR;
INDEX >

FINAL VALUE

ACTION

INDEX + 1 → INDEX

INITIAL VALUE → INDEX

end
of FOR

start of FOR

true

false

continue

Structured Text language 4

4/13

A

Loop exit instruction EXIT

• The EXIT key word is used to stop execution of the loop and continue at the instruction
following the key word at the end of the loop.

• It can be used only in the actions of one of the three WHILE, REPEAT or FOR loops.

• It is assigned to the closest enclosing loop, ie. it does not stop the execution of all the
loops which surround it.

Example :

In this example, the EXIT key word is used to stop the REPEAT loop but not the WHILE
loop.

4 / 1 4

A

4.3 Rules for executing a Structured Text program

A Structured Text program is executed sequentially, instruction by instruction, while
respecting the control structures.

In the case of arithmetic or Boolean expressions consisting of several operators, rules
of priority have been defined between the various operators.

Operator priority rules

The table below gives the priority for evaluating a higher or lower priority expression.

Operator Symbol Priority

Parentheses (expression) Highest

Logic complement NOT
Inversion NOT
- on an operand -
+ on an operand +

Multiplication *
Division /
Modulo REM

Addition +
Subtraction -

Comparisons <, >, <=, >=

Comparison of equality =
Comparison of inequality <>

Logic AND AND
Boolean AND AND

Logic exclusive OR XOR
Boolean exclusive OR XOR

Logic OR OR Lowest
Boolean OR OR

Example :

NOT %MW3 * 25 AND %MW10 + %MW12

In this example, the NOT is performed on %MW3, then the result is multiplied by 25. The
sum of %MW10 and %MW12 is calculated, then a logic AND is performed between the
result of the multiplication and the addition.

Structured Text language 4

4 / 1 5

A

When there is conflict between two operators of the same priority, the first operator will
take precedence (evaluation is performed from left to right).

Example :

%MW34 * 2 REM 6

In this example, %MW34 is first multiplied by 2, then the result is used to
perform the modulo.

Use of parentheses

Parentheses are used to modify the order in which operators are evaluated, for example
to give an addition higher priority than a multiplication.

Example :

(%MW10 + %MW11) * %MW12

In this example, the addition will be performed before the multiplication.

Parentheses can be nested; there is no limit to the levels of nesting.

Parentheses can also be used to avoid incorrect interpretation of the program.

Example :

NOT %MW2 <> %MW4 + %MW6

By using operator priority rules, the following interpretation is obtained :

((NOT %MW2) <> (%MW4 + %MW6))

The user might well try to perform the following operation :

NOT (%MW2 <> (%MW4 + %MW6))

This example shows that parentheses can be used to clarify the program.

4 / 1 6

A

Implicit conversions

Implicit conversions relate to words and double words. The operators which are used
in arithmetic expressions and comparisons and the assignment operator perform these
implicit conversions (which are therefore not the responsibility of the user).

For an instruction of the form : <operand 1> <operator> <operand 2>, the possible
conversions are as follows :

Operand 1 Operand 2 Conversion Conversion Operation
of type : of type : Operand 1 Operand 2 of type :

Word Word No No Word
Word Double word Double word No Double word

Double word Word No Double word Double word
Double word Double word No No Double word

For an assignment of the form <left operand> := <right operand> , the left operand
imposes the type of operand which is expected in order to perform the operation, which
means that the right operand must be converted if necessary, according to the table :

Left operand Right operand Right operand
type type conversion

Word Word No
Word Double word Word

Double word Word Double word
Double word Double word No

Note :
Any operation between two immediately adjacent values is performed in double length.

Grafcet language 5

5 / 1

A

5.1 Presentation of Grafcet language

5.1-1 Reminder of principles of Grafcet

Grafcet language complies with "Sequential Function Chart" (SFC) language found in
IEC 1131-3 standard.
Grafcet is used to represent the operation of a sequential control system in a graphic and
structured way.
This graphic description of the sequential operation of the control system, and the
various situations which occur, is performed using simple graphic symbols :

Initial step : defines the initial situation
of the PLC.

Transition : the associated transition
conditions indicate the logic conditions
necessary for clearing this transition.

Simultaneous activation of steps 3
and 7 (AND divergence) . The step
sequences 3, 4, 5, 6 and 7, 8, 9
constitute two sequences known as
simultaneous.

Sequence selection (OR
divergence) from step 3 to step 4 or
step 5.

End of sequence selection (OR
convergence) from step 4 or step 5 to
step 6.

End of sequence step : enables
synchronization of the simultaneous
sequences.

Simultaneous deactivation of steps
6 and 9 (AND convergence) .

Step : the associated actions are only
executed while this step is active.

Section 5
5 Grafcet language

1

2

3

4

6

10 Actions

Actions Actions

Actions 7 Actions

85

9

5 / 2

A

Transitions and directed links represent in symbolic form the possible progressions
of active steps .
Actions associated with steps indicate in general terms "what is to be done" when they
are active. In particular they describe orders which are to be sent to the operative part
(process to be automated) or other automated systems. The set of active steps at any
given time defines the situation of the Grafcet chart.

5.1-2 Graphic symbols specific to Grafcet language

Designation Symbol Functions

Initial steps Indicate the initial steps active at the start of
a cycle after an initialization or a cold restart.

Single steps Indicate that the control system is in a stable
state.
The maximum number of steps can be
configured :
- from 1 to 96 for a TSX 37-10,
- from 1 to 128 for a TSX 37-20 or TSX 57.
The maximum number of simultaneously
active steps can be configured.

Transitions Used to change from one step to another. A
transition condition associated with this tran-
sition is used to define the logic conditions
required to clear this transition.
The maximum number of transitions can be
configured :
- from 1 to 96 for a TSX 37-10,
- from 1 to 128 for a TSX 37-20 or TSX 57.
The maximum number of simultaneously
validated transitions can be configured.

AND divergences Transition from one step to several steps.
Used to activate a maximum of 11 steps
simultaneously.

AND convergences Transition from several steps to one step.
Used to deactivate a maximum of 11 steps
simultaneously.

OR divergences Transition from one step to several steps.
Used to perform a sequence selection to a
maximum of 11 steps.

OR convergences Transition from several steps to one step.
Used to end a sequence selection from a
maximum of 11 steps.

i ou ior

i ou ior

Grafcet language 5

5 / 3

A

Designation Symbol Functions

Source connector 'n' is the number of the step from which
control has come (source step).

Destination connector 'n' is the number of the step to which control
is going (destination step).

Directed links : These links are used for sequence selection,
to jump over one or more steps, to repeat
steps (sequence).

n

n

• upwards

• downwards

• to the right or left

5 / 4

A

5.1-3 Objects specific to Grafcet

The user has available to him object bits associated with steps, system bits specific to
Grafcet language, word objects indicating the activity time of steps and system words
specific to Grafcet language.

Designation Address Description

Step bits %Xi State of step i of the main Grafcet chart
(i from 0 to n) (n depends on the processor)

%S21 Initializes the Grafcet chart

%S22 Resets all Grafcet charts to zero

%S23 Freezes the Grafcet chart

%S26 Set to 1 on :
- table overflow (steps/transition),
- execution of an incorrect chart (destination

connector on a step which does not belong to
the chart).

Step words %Xi.T Active time of step i of main Grafcet chart

Grafcet system %SW20 Word indicating, for the current cycle,
words the number of active steps, to be activated and

deactivated.

%SW21 Word indicating, for the current cycle, the
number of validated transitions, to be validated
or devalidated.

(1) Details of system bit usage can be found in section 5.2-3.

Step bits %Xi

• These are at 1 when the steps are active.
• These bits can be tested in all tasks, but can only be written in preprocessing of the

master task (presetting of charts). These tests and actions are programmed in Ladder
language, Instruction list language, or Structured text language.

• These bits cannot be indexed.

Step active time words %Xi.T

• These are incremented every 100 ms and have a value from 0 to 9999.
• Word incrementation : during the activity of the associated step.
• On deactivation of the step, the contents are frozen.
• On activation of the step, the contents are reset then incremented.
• The number of active time words cannot be configured, one word is reserved for each

step.
• These words cannot be indexed.

Grafcet system bits (1)

Grafcet language 5

5/1

A

5.1-4 Grafcet chart representation

The main chart can be programmed on 8 pages (pages 0 to 7). Each Grafcet page has
14 lines and 11 columns defining 154 cells. One graphic element can be entered in each
cell.

Write rules

• The first line is used to enter source connectors.
• The last line is used to enter destination connectors.
• The even lines (from 2 to 12) are step lines (for steps and destination connectors).
• The odd lines (from 3 to 13) are transition lines (for transitions and source connectors).
• Each step is numbered (from 0 to 127) in any order.
• Several charts can be represented on a single page.

5/2

A

Sequence selection and end of sequence selection

• The number of transitions upstream of an end of sequence selection (OR convergence)
or downstream of a sequence selection (OR divergence) must not exceed 11.

• A sequence selection can be directed to the left or right.
• A sequence selection must, in general, conclude with an end of sequence selection.
• To avoid clearing several transitions simultaneously, the associated transition conditions

must be exclusive.

Simultaneous step activation and deactivation

• The number of steps downstream of a simultaneous activation (AND divergence) or
upstream of a simultaneous deactivation (AND convergence) must not exceed 11.

• A simultaneous activation of steps must, in general, conclude with a simultaneous
deactivation of steps.

• Simultaneous activation is always represented from left to right.
• Simultaneous deactivation is always represented from right to left.

Grafcet language 5

5/3

A

The use of connectors

The purpose of connectors is to ensure the continuity of a Grafcet chart when the
directed link, either on one page or between two consecutive pages, cannot be drawn.
This continuity is provided by a destination connector which always has a corresponding
source connector.

• A chart can be looped-back using connectors (for example, looping from step 18 to
step 0).

• A sequence can be restarted using connectors (for example, step 10 to step 1 or step
8 to step 2).

• Connectors are used when a chart branch is longer than the page (for example, step
9 to step 10).

5/4

A

Connectors for sequence selection and end of sequence selection

• For a sequence selection, the transitions
and the destination connectors must be
entered in the same page.

• For an end of sequence selection, the
source connectors must be entered in
the same page as the destination step.

• For an end of sequence selection
followed by a destination connector, there
must be the same number of source
connectors as steps before the end of
sequence selection.

Page 1

Page 2

Page 1

Page 2

Grafcet language 5

5/5

A

Connectors for simultaneous activation and deactivation of steps

• For simultaneous activation of steps,
the destination connectors must be on
the same page as the step and the
divergence transition.

• For simultaneous deactivation, the steps
and convergence transition must be on
the same page as the destination
connector.

When several steps converge on a single
transition, the source connector has the
number of the upstream step furthest
left.

Directed links

• Directed links connect a step to a
transition or a transition to a step.
They can be vertical or horizontal.

• Directed links can :
- cross ➀, being different kinds,
- meet ➁, being the same kind.

• A link cannot be crossed by a
simultaneous step activation or
deactivation.

Page 2

Page 3

Page 4

Page 5

➀ ➁

5/6

A

Comments

• In a Grafcet page, it is possible to
enter a comment in any cell. The
text of the comment is enclosed
by (* to the left and *) to the right.
Its maximum size is 64 characters.

• A comment occupies two adjacent
cells on a maximum of two lines. If
the display zone is too small, the
comment is shortened to fit the
display, but when printing the
document, the comment is shown
in full.

• The comment entered in a Grafcet
page is stored in the graphic data
loaded in the PLC.

Grafcet language 5

5/7

A

5.1-5 Actions associated with steps

Each step has associated actions which can be programmed in Ladder, Instruction list,
or Structured text language. These actions are only scanned if the step with which they
are associated is active. PL7 software authorizes three types of action :

• actions on activation : actions executed once the step with which they are
associated is activated.

• actions on deactivation : actions executed once the step with which they are
associated is deactivated.

• continuous actions : actions executed continuously as long as the step with which
they are associated is active.

These three types of action can be used for each step.

A single action can contain several programming elements (sequences, statements or
rungs).

Referencing actions

These actions are referenced as follows :

MAST - CHART - PAGE n %Xi x

where : x = P1 Activation
= N1 Continuous
= P0 Deactivation

n = Page number
i = Step number

Example : MAST - CHART - PAGE 0 %X1 P1
Action on activation of step 1 of page 0

Rules of use

• All the actions are considered as stored actions, consequently :
- an action which is governed by the duration of a step Xn must be reset on the

deactivation of step Xn or the activation of step Xn+1,
- an action affecting several steps is set to 1 on activation of step Xn and reset on

deactivation of step Xn+m.
• All the actions can be controlled by logic conditions, i.e. be conditional.
• The actions which are governed by safety interlocks must be programmed in post-

processing (processing performed with each scan, see section 5.2 "Organization of
the master task").

5/8

A

Actions on activation or deactivation

These actions are pulsed and are executed on a single scan. They are used to call a
subroutine, increment a counter, etc.

Examples :

• Calling a subroutine :

• Incrementation of word %MW10, and resetting of %MW0 and %MW25 :

Continuous actions

• Conditional action

Example :

Bit %M10 is governed by input %I2.5 or internal bit %M9 and to input %I1.2.

As long as step 2 is active and these conditions are present, %M10 is set to 1. The
last state read on deactivation is stored in the memory because the associated actions
are no longer scanned.

It is therefore necessary to reset bit %M10 to 0, in the action on deactivation of the step
for example.

Grafcet language 5

5/9

A

• Timed conditional action

This is a special case, in which the time is a logic condition. This link can be performed
simply by testing the active time associated with the step.

Example :

Bit %M12 is controlled as long as the active time of step 3 is less than 10 seconds (time
base : 100 ms).

• These actions can also be unconditional.

Order of execution of the actions

In the example below, on one scan, the order of execution of the actions is as follows :

When step 51 is activated, the actions are executed in the following order :

1. actions on deactivation of step 50,
2. actions on activation of step 51,
3. continuous actions of step 51.

When step 51 is deactivated, the associated continuous actions are no longer scanned.

50 Activation %X50

51

Continue %X50 Deactivation %X50

Activation %X51 Continue %X51 Deactivation %X51

5/10

A

5.1-6 Conditions associated with transitions

• Each transition has an associated condition which can be programmed in Ladder,
Instruction list or Structured text language.

• A transition condition is only scanned when the transition with which it is associated
is validated.

• A transition condition corresponds to a rung, a list of instructions or a Structured text
statement, comprising a series of tests on bits and/or words.

• A transition condition which is not programmed is always a false transition
condition .

Referencing the transition conditions

The transition conditions are referenced as follows :

MAST - CHART - PAGE n %X(i) → % X(j)

where : n = Page number
i = Upstream step number
j = Downstream step number

Example : MAST - CHART - PAGE 0 %X(0) → %X(1)
Transition condition associated with step 0 and step 1 of page 0 of the chart.

During simultaneous step activation or deactivation, the address indicated is that in the
column furthest to the left.

Rules for programming in Ladder language

The condition associated with the transition is programmed in the form of a rung
comprising a test zone and an action zone.

The structure of the rung is the same as that of a rung programmed in a program module.

Only the following elements can be used :

• graphic test elements : contacts (%Mi, %I, %Q, %TMi.D, etc), comparison blocks,
• graphic action elements : transition condition coil only (the other coils are not

significant in this case).

Grafcet language 5

5/11

A

Rules for programming in Instruction list language

The transition condition is programmed in the form of a list of instructions containing only
test instructions.

The list of instructions for writing a transition condition differs from a standard list of
instructions as follows :

• general structure :

- no label (%L).

• list of instructions :

- no action instructions (bit objects, words or function blocks),
- no jumping, calling subroutines.

Rules for programming in Structured text language

The transition condition is programmed in the form of a Boolean expression or an
arithmetic expression or a combination of the two.

The expression for writing a transition condition differs from a Structured text language
programming line in :

• general structure :

- no label (%L),
- no action statement, conditional statement or iterative statement.

• list of instructions :

- no action on bit object,
- no jumping, calling subroutines,
- no transfer, no action instruction on blocks.

5/12

A

Transition condition using the active time of a step

In certain applications, actions are controlled with no monitoring of feedback data (end
of travel, detector, etc). The duration of the step is conditioned by a time : PL7 language
enables the active time associated with each step to be used.

Example :

If the user wishes to remain in step 3 for 15 seconds, the condition for transition between
step 3 and step 4 will be (for example in structured text language) :

Grafcet language 5

5/13

A

Période

Acquisition
des entrées

Mise à jour
des sorties

Traitement Préliminaire

Traitement Séquentiel

Traitement Postérieur

Langage littéral
ou

Langage à contacts

Grafcet

Langage littéral
ou

Langage à contacts

5.2 Organization of the master task

5.2-1 Description of the master task

A program written in Grafcet language has three consecutive processing sections :
preprocessing, sequential processing and post-processing.

They are scanned in accordance with the basic scan cycle below :

Period (in periodic scanning) :

Time between two tasks scans, defined by
configuration.

In cyclical scanning, inputs are read after
updating outputs.

Reading inputs :

Reading the physical states of the PLC
input modules (values frozen during pro-
cessing).

Preprocessing :

Used to process :

• initializations on power failure or return,
• the presetting of the Grafcet chart,
• the input logic.

Sequential processing :

Used to process the sequential structure
of the application and provides access to
the processing of transition conditions and
actions directly associated with steps.

Post-processing :

Used to process :

• the output logic,
• the monitoring and safety interlocks spe-

cific to outputs.

Updating of outputs :

Updating the physical state of the PLC
output modules (values frozen during
processing).

Effect of multi-task processing :

This structure remains the same, whether processing is multi-task or single task.

Preprocessing

Ladder, Instruction
list or Structured text

language

Post-processing

Ladder, Instruction
list or Structured text

language

(1) in cyclical scanning

(1)

Period

Read

inputs

Update

outputs

Sequential processing

Grafset

5/14

A

5.2-2 Preprocessing

Entered in Ladder language, Instruction list language or Structured text language,
preprocessing is scanned in its entirety from top to bottom.

Executed before the sequential and post-processing sections, it is used to process all
events which influence these :

• management of power returns and reinitializations,
• resetting or presetting of Grafcet charts.

It is, therefore, only in preprocessing that the bits associated with the steps will be used
(setting to 0 or 1 of step bits %Xi by Set and Reset instructions).

Presetting the Grafcet chart

It may be necessary to preset a Grafcet chart when changing from normal operation to
a specific mode of operation or on the occurrence of an incident (example : fault causing
degraded operation).

This operation affects the normal operation of the application scan, and should therefore
be used with caution. Presetting can be applied to all or part of sequential processing :

• by using the SET, RESET instructions,
• by a general reset (%S22) then, in the next scan, setting the steps to 1.

Note :

When resetting a step to zero, actions on deactivation of this step are not executed.

Grafcet language 5

5/15

A

5.2-3 The use of system bits in preprocessing

As the system bits associated with the Grafcet chart are numbered in order of priority
(%S21 to %S23), when several of them are simultaneously set to 1 in preprocessing,
they are processed one by one in ascending order (only one is effective per scan cycle).
These bits are effective at the start of sequential processing.

Initializing the Grafcet chart : %S21

Normally at 0, setting %S21 to 1 causes :

• the deactivation of the active steps,
• the activation of the initial steps.

Set to 1 Reset to 0

• By setting %S0 to 1 • By the system at the start of
• By the user program sequential processing
• By the terminal (1) • By the user program

• By the terminal

• Use
When managed by the user program, %S21 must be set to 0 or 1 in preprocessing .

Resetting the Grafcet chart to zero : %S22

Normally at 0, setting %S22 to 1 causes the deactivation of the active steps of all
sequential processing.

Set to 1 Reset to 0

• By the user program • By the system at the end of
• By the terminal (1) post-processing

• Use
- this bit must be set to 1 in preprocessing ,
- resetting %S22 to 0 is managed by the system; it need not, therefore, be reset to

0 by the program or the terminal.

To restart sequential processing in a given situation, the application must contain an
initialization or Grafcet chart preset procedure.

(1) In the CPU debug screen (Grafcet part) or in the animation table

5/16

A

Freezing the Grafcet chart : %S23

Normally at 0, setting %S23 to 1 maintains the state of the Grafcet charts. Irrespective
of the value of the transition conditions downstream of the active steps, the Grafcet
charts do not change. This frozen state is maintained as long as bit %S23 is at 1.

Set to 1 Set to 0

• By the user program • By the user program

• By the terminal (1) • By the terminal (1)

(1) In the CPU debug screen (Grafcet part) or in the animation table.

• Use
- managed by the user program, this bit is set to 1 or 0 in preprocessing ,
- bit %S23 associated with bits %S21 and %S22 is used to freeze sequential

processing at initial state or state 0. Similarly, the Grafcet chart can be preset then
frozen by %S23.

On starting a new application or on losing the system context, the system performs a cold
start. Bit %S21 is set to 1 by the system before preprocessing is called and the Grafcet
chart set on the initial steps. If the user wants the application to be processed in a
particular way in the event of cold start, he can test %S0 which remains at 1 during the
first scan of the master task (MAST).

After a power outage without changing application, the system performs a warm restart,
restarting in the state preceding the power outage. If the user wants the application to
be processed in a particular way in the event of a warm restart, he can test %S1 in
preprocessing, and call the corresponding program.

Grafcet language 5

5/17

A

5.2-4 Sequential processing

This processing section is used to program the sequential structure of the application.
Sequential processing consists of :

• the main chart organized into 8 pages.

In the main chart, several unconnected Grafcet charts can be programmed and run
simultaneously.

Principle of evolution

The evolution of the Grafcet chart is managed as follows :

Phase 1 :

1. Evaluation of the condition of validated transitions.

2. Request to deactivate associated upstream steps.

3. Request to activate relevant downstream steps.

Phase 2 :

Evolution of the state of the Grafcet chart as a function of the cleared transitions :

1. Deactivation of the steps upstream of the cleared transitions.

2. Activation of the steps downstream of the cleared transitions.

3. Devalidation of the cleared transitions.

4. Validation of the transitions downstream of the new activated steps.

The system updates two tables dedicated respectively to step activity and transition
validity :

• the step activity table stores, for the current scan, the active steps, the steps to be
activated and the steps to be deactivated,

• the transition validity table stores, for the current scan, the transitions located
downstream of the steps concerned with the preceding table.

Phase 3 :

The actions associated with the active steps are executed in the following order :

1. Actions on deactivation of the steps to be deactivated.

2. Actions on activation of the steps to be activated.

3. Continuous actions of the active steps.

5/18

A

Exceeding the possibilities

The number of elements in the step activity table and the transition validity table can be
configured. Exceeding the capacity of either table causes :

• the PLC to stop (execution of the application stops),
• system bit %S26 to change to 1 (capacity of one of the two tables exceeded),
• the ERR indicator lamp on the PLC to flash.

The system provides the user with two system words :

• %SW20 : word indicating, for the current scan, the number of steps active, to be
activated or deactivated.

• %SW21 : word indicating, for the current scan, the number of transitions validated,
to be validated or devalidated.

In the event of a PLC blocking fault, system words %SW125 to %SW127 are used to
determine the nature of the fault.

• %SW125 = ERR7 (hex) Table overflow (steps/transitions).
• %SW125 = ERRE (hex) Execution of the incorrect Grafcet chart.

(problem of transition with unresolved destination
connector).

%SW125 %SW126 %SW127

ERR7 ≠ 0 = 0 Step table overflow

ERR7 = 0 ≠ 0 Transition table overflow

ERRE Step n° 64 Incorrect execution of Gafcet

Grafcet language 5

5/19

A

5.2-5 Post-processing

Entered in Ladder language, Instruction list language or Structured text language, post-
processing is scanned from top to bottom. This processing is the last executed before
activation of the outputs and is used to program the output logic.

Actions associated with the Grafcet chart

Post-processing is used to perform the actions generated in sequential processing by
integrating the operating and stop modes as well the safety interlocks specific to the
action into the equation of an output. It is also used to process an output activated several
times in sequential processing.

As a rule, it is advisable to program actions which directly affect the process in
post-processing.

Example :

• %I2.4 : safety interlock for controlling output %Q4.1.

• %M26 : internal bit resulting from the input logic controlling the operating and stop
modes.

• %I1.0 : push-button.

Output %Q4.1 is activated by steps 5, 8 and 59 of sequential processing.

5 / 2 4

A

Actions independent of the Grafcet chart

Post-processing is also used to program the outputs which are independent of
sequential processing.

Monitoring the execution of the Grafcet chart

In certain circumstances, it may be necessary to monitor the operation of the Grafcet
chart by testing the active time of certain steps.

This time is tested by comparing with either a minimum value or a maximum value
defined by the user. The use made of the fault indication is at the user's discretion
(indication, special operating procedure, transmission of a message).

Example : ! IF (%X2.T > 100 AND %X2) THEN
SET %Q4.0 ;

END_IF ;

Detailed description of instructions Contents
and functions Part B

B / 1

B

1 Description of basic instructions 1/1

1.1 Presentation of basic instructions 1/1
1.1-1 General 1/1

1.2 Boolean instructions 1/2
1.2-1 Presentation of Boolean instructions 1/2
1.2-2 Instruction format 1/3
1.2-3 Load instructions 1/4
1.2-4 Assignment instructions 1/5
1.2-5 Logic AND instructions 1/6
1.2-6 Logic OR instructions 1/7
1.2-7 Exclusive OR instructions 1/8

1.3 Predefined function blocks 1/9
1.3-1 Programming principles for predefined function blocks 1/9
1.3-2 Timer function block %TMi 1/10
1.3-3 Up/down counter function block %Ci 1/14

1.4 Numerical processing on integers 1/17
1.4-1 General 1/17
1.4-2 Comparison instructions 1/19
1.4-3 Assignment instructions 1/20
1.4-4 Arithmetic instructions on integers 1/23
1.4-5 Logic instructions 1/25
1.4-6 Numerical expressions 1/27

1.5 Program instructions 1/28
1.5-1 Subroutine call 1/28
1.5-2 Subroutine return 1/29
1.5-3 Program jumps 1/30
1.5-4 Program end instructions 1/32
1.5-5 Stop program 1/33
1.5-6 Event masking/unmasking instructions 1/34
1.5-7 NOP Instruction 1/34

Section Page

Detailed description of instructions Contents
and functions Part B

B / 2

B

Section Page

2 Description of advanced instructions 2/1

2.1 Presentation of advanced instructions 2/1
2.1-1 General 2/1

2.2 Advanced predefined function blocks 2/2
2.2-1 Monostable function block %MNi 2/2
2.2-2 Register function block %Ri 2/5
2.2-3 Drum controller function block %DRi 2/9
2.2-4 Timer function block %Ti (Series 7) 2/13

2.3 Vertical comparison blocks 2/17

2.4 Shift instructions 2/19

2.5 Floating point instructions 2/20
2.5-1 General 2/20
2.5-2 Floating point comparison instructions 2/21
2.5-3 Floating point assignment instructions 2/22
2.5-4 Floating point arithmetic instructions 2/22

2.6 Numeric conversion instructions 2/24
2.6-1 BCD <--> Binary conversion instructions 2/24
2.6-2 Integer <--> Floating point conversion instructions 2/26
2.6-3 Gray --> Integer conversion instructions 2/28

2.7 Word table instructions 2/29
2.7-1 General 2/29
2.7-2 Word table assignment 2/30
2.7-3 Arithmetic instructions on tables 2/32
2.7-4 Logic instructions on tables 2/33
2.7-5 Summing function on tables 2/34
2.7-6 Table comparison function 2/35
2.7-7 Find functions on tables 2/36
2.7-8 Find maximum and minimum values function on tables 2/38
2.7-9 Number of occurrences of a value in a table 2/39
2.7-10 Rotate shift function on tables 2/40
2.7-11 Sort function on tables 2/41

Detailed description of instructions Contents
and functions Part B

B / 3

B

Section Page

2.8 Character string instructions 2/42
2.8-1 Format of a string or table of characters 2/42
2.8-2 Character string assignment 2/43
2.8-3 Alphanumeric comparisons 2/44
2.8-4 Numeric <---> ASCII conversion functions 2/45
2.8-5 Binary --->ASCII conversion 2/45
2.8-6 ASCII ---> Binary conversion 2/47
2.8-7 Floating point ---> ASCII conversion 2/48
2.8-8 ASCII --> Floating point conversion 2/49
2.8-9 Concatenation of two strings 2/50
2.8-10 Deletion of a character substring 2/51
2.8-11 Insertion of a character substring 2/52
2.8-12 Replacement of a character substring 2/54
2.8-13 Extraction of a character substring 2/56
2.8-14 Extraction of characters 2/58
2.8-15 Comparison of two character strings 2/60
2.8-16 Search for a character substring 2/61
2.8-17 Length of a character string 2/62

2.9 Time management instructions : Date, Time of day, Duration 2/63
2.9-1 Parameter format 2/63
2.9-2 Use of system bits and words - General 2/65
2.9-3 Read system date 2/66
2.9-4 Update system date 2/66
2.9-5 Read date and stop code 2/67
2.9-6 Read day of the week 2/68
2.9-7 Add / Remove a duration at a date 2/69
2.9-8 Add / Remove a duration at a time of day 2/70
2.9-9 Difference between two dates (no time) 2/72
2.9-10 Difference between two dates (with time) 2/73
2.9-11 Difference between two times 2/74
2.9-12 Convert a Date to a character string 2/75
2.9-13 Convert a complete Date to a character string 2/76
2.9-14 Convert a Duration to a character string 2/77
2.9-15 Convert a Time of day to a character string 2/78
2.9-16 Convert a Duration to HHHH:MM:SS 2/80

Detailed description of instructions Contents
and functions Part B

B / 4

B

2.10 Bit table instructions 2/81
2.10-1 Copy one bit table to another bit table 2/81
2.10-2 Bit table logic instructions 2/82
2.10-3 Copy from a bit table to a word table 2/83
2.10-4 Copy from a word table to a bit table 2/85

2.11 "Orphee" functions : shift, counter 2/87
2.11-1 Shifts on words with retrieval of shifted bits 2/87
2.11-2 Up/down counting with indication of over/underflow 2/90

3 System bits and words 3/1

3.1 System bits 3/1
3.1-1 List of system bits 3/1
3.1-2 Detailed description of system bits 3/3

3.2 System words 3/8
3.2-1 List of system words 3/8
3.2-2 Detailed description of system words 3/9

4 Differences between PL7-2/3 and PL7-Micro/Junior 4/1

4.1 Differences between PL7-2/3 and PL7-Micro/Junior 4/1

5 List of reserved words 5/1

5.1 Reserved words 5/1

Section Page

Detailed description of instructions Contents
and functions Part B

B / 5

B

Section Page

6 Conformity to the IEC standard 1131-3 6/1

6.1 Conformity to the IEC 1131-3 standard 6/1
6.1-1 Conformity tables 6/1

7 Quick reference guide 7/1

7.1 Quick reference guide 7/1

8 Performance 8/1

8.1 General 8/1

8.2 TSX 37 performance 8/3
8.2-1 Boolean instructions 8/3
8.2-2 Function blocks 8/4
8.2-3 Integer and floating point arithmetic 8/6
8.2-4 Program instructions 8/8
8.2-5 Command structure 8/8
8.2-6 Numeric conversions 8/9
8.2-7 Bit string 8/9
8.2-8 Word, double word and floating point tables 8/11
8.2-9 Time management 8/14
8.2-10 Character strings 8/15
8.2-11 Application-specific functions and Orphee function 8/16
8.2-12 Explicit I/O 8/17

Detailed description of instructions Contents
and functions Part B

B / 6

B

Section Page

8.3 TSX 57 performance 8/18
8.3-1 Boolean instructions 8/18
8.3-2 Function blocks 8/19
8.3-3 Integer and floating point arithmetic 8/21
8.3-4 Program instructions 8/23
8.3-5 Command structure 8/23
8.3-6 Numeric conversions 8/24
8.3-7 Bit string 8/24
8.3-8 Word, double word and floating piont tables 8/26
8.3-9 Time management 8/29
8.3-10 Character strings 8/30
8.3-11 Application-specific functions and Orphee function 8/31
8.3-12 Explicit I/O 8/32

8.4 Size of the application 8/34
8.4-1 Description of the memory zones 8/34
8.4-2 Memory size of PL7 objects 8/35
8.4-3 Module memory size 8/35
8.4-4 Memory size of advanced functions 8/39

8.5 Appendix : method of calculating the number of instructions 8/44

9 Index 9/1

Description of basic instructions 1

1 / 1

B

Section 1
1 Description of basic instructions

Section 1

1.1 Presentation of basic instructions

1.1-1 General

The instructions described in this section comply with the main basic instructions defined
in IEC standard 1131.3.

These instructions always produce the same effect, irrespective of the language used.
Only their presentation in the program changes.

Example of a Boolean equation :

In Instruction list language : LD %I1.0
ST %Q2.0

In Ladder language :
%I1.0 %Q2.O

In Structured text language :%Q2.0 := %I1.0 ;

These three Boolean equations are equivalent. Bit object %Q2.0 takes the value
(assignment instruction) of bit object %1.0 (load instruction).

Basic instructions include :

• Boolean instructions (processing on bits),

• Predefined control system timer and counter function blocks,

• Numerical instructions on integers (processing on words and double words),

• Program instructions.

The other instructions are described in section 2, "Description of advanced instructions".

1 / 2

B
1.2 Boolean instructions

1.2-1 Presentation of Boolean instructions

Boolean instructions act on all bit type data (I/O bits, internal bits etc).

• Test elements , example : N/O contact. Contact closed when the bit object which
controls it is at state 1.

 LD %I1.0 %I1.0

• Action elements , example : direct coil.
The associated bit object takes the logic value of the logic result of the test element.

 ST %Q2.0 %Q2.0 :=

• Boolean equation :
The Boolean result of the test elements is applied to the action element.

 LD %I1.0
 AND %I1.1
 ST %Q2.0 %Q2.0 := %I1.0 AND %I1.1 ;

Rising and falling edges
Test instructions can be used to detect rising or falling edges on PLC I/O bits or internal bits.

Rising edge sensing contact : Falling edge sensing contact :

LDR %I1.0 RE %I1.0 LDF %I1.0 FE %I1.0

• For all inputs (discrete, counter, etc) : an edge is detected when the state of the bit
has changed between scan n-1 and the current scan n. It remains detected during the
current scan (see part A, section 1.3-2).

Rising edge : detects a change of the Falling edge : detects a change of the
controlling input from 0 to 1. controlling input from 1 to 0.

• For outputs or internal bits : detection of an edge is independent of the task scan.
A rising or falling edge on internal bit %Mi is detected when its state has changed
between two read operations. This rising or falling edge remains detected as long as
the internal bit is not scanned in the action zone.

• Do not perform a SET or RESET on an object whose rising or falling edge is being
tested (in Ladder language and Instruction list language).

%I1.0

%Q2.0

%I1.0

P
%I1.0

N

Boolean
result

%I1.0 time

time

1 task scanBoolean
result

%I1.0

1 task scan

time

time

%I1.0 %I1.1 %Q2.0

Description of basic instructions 1

1 / 3

B

Timing diagram for
the LD instruction

Timing diagram

Input state

Output state

The 4 timing diagrams have been
grouped together.

%Q2.3

%I1.1

LD

List of operands
0/1 immediate value 0 (false) or 1 (true)
%I PLC input %Ix.i
%Q PLC output %Qx.i
%M internal bit %Mi
%S system bit %Si
%BLK function block bit, eg : %TMi.Q
%•:Xk word extract bit, eg : %MWi:Xk
%Xi step bit

The instruction described appears in bold
type. Each equation is illustrated using the
different languages.

%M0

%I1.1 %Q2.3

%Q2.2

%Q2.3

%I1.1

LD

%M0

LDN

%Q2.2

1.2-2 Instruction format

Boolean instructions are described in the following way :

Load instructions
These instructions correspond to :

• N/O contacts : contact closed when the bit object which controls it is at state 1.

• ...

Ladder language Instruction list language

LD %I1.1
ST %Q2.3
LDN %M0
ST %Q2.2

Structured text language

%Q2.3 := %I1.1 ;
%Q2.2 := NOT %M0 ;

Authorized operands Timing diagram

Code Operand

LD %I,%Q,%M,%S,%BLK,%•:Xk, %Xi

LDN %I,%Q,%M,%S,%BLK,%•:Xk, %Xi

1 / 4

B
1.2-3 Load instructions

These instructions correspond to :

• N/O contacts : contact closed when the bit object which controls it is at 1.

• N/C contacts : contact closed when the bit object which controls it is at 0.

• Rising edge contacts : detects a change of the controlling bit from 0 to 1.

• Falling edge contacts : detects a change of the controlling bit from 1 to 0.

Ladder language Instruction list language

LD %I1.1
ST %Q2.3
LDN %M0
ST %Q2.2
LDR %I1.2
ST %Q2.4
LDF %I1.3
ST %Q2.5

Structured text language

%Q2.3 := %I1.1 ;
%Q2.2 := NOT %M0 ;
%Q2.4 := RE %I1.2 ;
%Q2.5 := FE %I1.3 ;

Authorized operands Timing diagram

 Code Operand

LD %I,%Q,%M,%S,%BLK,%•:Xk, %Xi (1)

LDN %I,%Q,%M,%S,%BLK,%•:Xk, %Xi (1)

LDR %I,%Q,%M

LDF %I,%Q,%M

(1) True (1)/False (0) in Instruction list or
Structured text language

(2) Set to 1 during 1 cycle

%M0

%I1.1 %Q2.3

%I1.2

%Q2.2

%Q2.4

%I1.3 %Q2.5

P

N

%Q2.3

%I1.1

LD

%M0 %I1.2 %I1.3

LDN LDR LDF

%Q2.2 %Q2.4 (2) %Q2.5 (2)

NP

N

P

Description of basic instructions 1

1 / 5

B

%Q2.3

%I1.1

ST

%I1.1 %I1.1 %I1.2

STN S R

%Q2.2 %Q2.4

S R

R

S

Authorized operands Timing diagram

Code Operand

ST %I,%Q,%M,%S,%•:Xk

STN %I,%Q,%M,%S,%•:Xk

S %I,%Q,%M,%S,%•:Xk, %Xi (1)

R %I,%Q,%M,%S,%•:Xk, %Xi (1)

(1) Only in preprocessing.

%I1.1 %Q2.3

%Q2.2

%Q2.4

%I1.2 %Q2.4

S

R

1.2-4 Assignment instructions

These instructions correspond to :

• Direct coils : the associated bit object takes the value of the result of the equation.

• Negated coils : the associated bit object takes the inverse value of the result of the
equation.

• Set (latch) coils : the associated bit object is set to 1 when the result of the equation is at 1.

• Reset (unlatch) coils : the associated bit object is set to 0 when the result of the
equation is at 1.

Ladder language Instruction list language

LD %I1.1
ST %Q2.3

STN %Q2.2

S %Q2.4

LD %I1.2
R %Q2.4

Equivalent in Structured text language

%Q2.3 := %I1.1 ;
%Q2.2 := NOT %I1.1 ;
IF %I1.1 THEN

SET %Q2.4 ;
END_IF ;
IF %I1.2 THEN

RESET %Q2.4 ;
END_IF ;

1 / 6

B

%Q2.3

%I1.1

AND

%M2 %I1 .3 %M3

ANDN ANDR ANDF

%Q2.2 %Q2.4 (2) %Q2.5 (2)

%M1 %I1.2 %I1.4 %I1.5

P N

N

P

1.2-5 Logic AND instructions

These instructions perform :

• A logic AND between the operand and the Boolean result of the preceding instruction.

• A logic AND between the inverse of the operand and the Boolean result of the
preceding instruction.

• A logic AND between the rising edge of the operand and the Boolean result of the
preceding instruction.

• A logic AND between the falling edge of the operand and the Boolean result of the
preceding instruction.

Ladder language Instruction list language

LD %I1.1
AND %M1
ST %Q2.3
LD %M2
ANDN %I1.2
ST %Q2.2
LD %I1.3
ANDR %I1.4
ST %Q2.4
LD %M3
ANDF %I1.5
ST %Q2.5

Structured text language

%Q2.3 := %I1.1 AND %M1 ;
%Q2.2 := %M2 AND (NOT %I1.2) ;
%Q2.4 := %I1.3 AND (RE %I1.4) ;
%Q2.5 := %M3 AND (FE %I1.5) ;

Note : The parentheses are optional but make the program easier to read.

Authorized operands Timing diagram

Code Operand

AND %I,%Q,%M,%S,%BLK,%•:Xk, %Xi (1)

ANDN %I,%Q,%M,%S,%BLK,%•:Xk, %Xi (1)

ANDR %I,%Q,%M

ANDF %I,%Q,%M

(1) True (1)/False (0) in Instruction list or
 Structured text language

(2) Set to 1 during 1 cycle

%M2

%I1.1 %Q2.3

%I1.3

%Q2.2

%Q2.4

%M3 %Q2.5

%I1.2

%M1

%I1.4

%I1.5

P

N

Description of basic instructions 1

1 / 7

B
1.2-6 Logic OR instructions
These instructions perform :
• A logic OR between the operand and the Boolean result of the preceding instruction.
• A logic OR between the inverse of the operand and the Boolean result of the preceding

instruction.
• A logic OR between the rising edge of the operand and the Boolean result of the

preceding instruction.
• A logic OR between the falling edge of the operand and the Boolean result of the

preceding instruction.

Ladder language Instruction list language

LD %I1.1
OR %M1
ST %Q2.3

LD %M2
ORN %I1.2
ST %Q2.2

LD %I1.3
ORR %I1.4
ST %Q2.4

LD %M3
ORF %I1.5
ST %Q2.5

Structured text language

%Q2.3 := %I1.1 OR %M1 ;
%Q2.2 := %M2 OR (NOT %I1.2) ;
%Q2.4 := %I1.3 OR (RE %I1.4) ;
%Q2.5 := %M3 OR (FE %I1.5) ;

Note : The parentheses are optional but make the program easier to read.

Authorized operands Timing diagram
 Code Operand

OR %I,%Q,%M,%S,%BLK,%•:Xk,
%Xi (1)

ORN %I,%Q,%M,%S,%BLK,%•:Xk,
%Xi (1)

ORR %I,%Q,%M

ORF %I,%Q,%M

(1) True (1)/False (0) in Instruction list or Structured text language

P

N

%I1.1

%M1

%Q2.3

%M2

%I1.2

%Q2.2

%I1.3

%I1.4

%Q2.4

%M3

%I1.5

%Q2.5
P

N

%Q2.3

%I1.1

OR

%M2 %I1.3 %M3

ORN ORR ORF

%Q2.2 %Q2.4 %Q2.5

%M1 %I1.2 %I1.4 %I1.5

NP

1 / 8

B
1.2-7 Exclusive OR instructions

These instructions perform :

• An exclusive OR between the operand and the Boolean result of the preceding
instruction.

• An exclusive OR between the inverse of the operand and the Boolean result of the
preceding instruction.

• An exclusive OR between the rising edge of the operand and the Boolean result of the
preceding instruction.

• An exclusive OR between the falling edge of the operand and the Boolean result of
the preceding instruction.

Note :
There are no specific graphic elements for the exclusive OR in Ladder language. However, the
exclusive OR can be programmed by using a combination of N/O and N/C contacts (see example
below).

Ladder language equivalent Instruction list language

LD %I1.1
XOR %M1
ST %Q2.3

LD %M2
XORN %I1.2
ST %Q2.2

LD %I1.3
XORR %I1.4
ST %Q2.4

LD %M3
XORF %I1.5
ST %Q2.5

Note : The parentheses are optional but make the program easier to read.

Authorized operands Timing diagram

Code Operand

XOR %I,%Q,%M,%S,%BLK,%•:Xk, %Xi

XORN %I,%Q,%M,%S,%BLK,%•:Xk, %Xi

XORR %I,%Q,%M

XORF %I,%Q,%M

%I1.1

%M1

%Q2.3

%M2

%I1.2

%Q2.2

%M 1

%I1.1

%I1.2

%M2

Structured text language

%Q2.3 := %I1.1 XOR %M1 ;
%Q2.2 := %M2 XOR (NOT %I1.2) ;
%Q2.4 := %I1.3 XOR (RE %I1.4) ;
%Q2.5 := %M3 XOR (FE %I1.5) ;

%Q2.3

%I1.1

XOR

%M2 %I1.3 %M3

XORN XORR XORF

%Q2.2 %Q2.4 %Q2.5

%M1 %I1.2 %I1.4 %I1.5

Description of basic instructions 1

1 / 9

B
1.3 Predefined function blocks

1.3-1 Programming principles for predefined function blocks

The function blocks use bit objects and specific words.

Control system function blocks are
pre-programmed in the PLC and therefore
occupy a particular zone of the user
memory.
In order to optimize memory occupation,
the type and number of function blocks
used must be defined at the outset, within
the limits imposed by the system (via the
Configuration and Data editors).

There are six types of control system function block :

Type of block Max TSX 37 Max TSX 57 See section

Timer %TMi 64 (1) 255 (1) 1.3-2

Up/down counter %Ci 32 255 1.3-3

Monostable %MNi 8 255 2.2-1

Register %Ri 4 255 2.2-2

Drum controller %DRi 8 255 2.2-3

Timer (Series 7) %Ti 64 (1) 255 (1) 2.2-4

(1) The total number of %TMi + %Ti timers must be less than or equal to 64 on the TSX 37 and less
than or equal to 255 on the TSX 57.

Each block contains :

• Inputs (eg : IN) which are used to control
it.

• Outputs (eg : Q) which indicate its state.
Each output has an associated output
bit (eg : %TM1.Q) which can be tested
by the user program. In addition, each
output can control one or more coils
(eg : %Q2.3 and SR2).

• Parameters which are used to adapt it to
the application (preset, time base etc).

The parameters of function blocks (preset, current value, etc) are displayed within the
block. In Instruction list language, predefined blocks are programmed using instructions
(see part A, section 3.2-6).

R

S

CU

CD F

D

E

%CI

C.P : 9999

MODIF : Y

Up/down counter block

%Q2.3%I1.1
IN Q

%TM1

SR2
c

1 / 1 0

B
1.3-2 Timer function block %TMi

Timers have three operating modes :

• TON : this mode is used to control
on-delay actions. This delay is
programmable and can be modified via
the terminal.

• TOF : this mode is used to control
off-delay actions. This delay is
programmable and can be modified via
the terminal.

• TP : this mode is used to create a pulse
of an exact duration. This duration is
programmable and can be modified via
the terminal.

Characteristics

Timer number %TMi 0 to 63 for a TSX 37, 0 to 254 for a TSX 57

Mode TON • on-delay (default)
TOF • off-delay
TP • monostable

Time base TB 1min (default), 1s, 100ms, 10ms (max of
16 timers when 10ms). The smaller the time
base, the greater the accuracy of the timer.

Current value %TMi.V Word which increments from 0 to %TMi.P when
the timer is running. Can be read and tested
but not written by the program (1).

Preset value %TMi.P 0≤%TMi.P≤9999. Word which can be read,
tested and written by the program. It is set to
9999 by default. The time period or delay
generated is equal to %TMi.P x TB.

Adjust via the terminal Y/N Y : the preset value can be modified %TMi.P
(MODIF) in adjust mode.

N : no access in adjust mode.

Setting input IN The timer starts on a rising edge (TON or TP
(instruction) mode) or a falling edge (TOF mode).

Timer output Q Associated bit %TMi.Q is set to 1 depending on
the function performed TON, TOF or TP.

(1) %TMi.V can be modified via the terminal.

Timer block

IN
MODE:TON

MODIF:Y

Q

%TMi

TB: 1mn

TM.P:9999

Description of basic instructions 1

1 / 1 1

B
Using as an on-delay timer : TON mode

The timer is started on a rising edge at
input IN : its current value %TMi.V increases
from 0 to %TMi.P by one unit on each
pulse of the time base TB. Output bit
%TMi.Q changes to 1 when the current
value reaches %TMi.P and then remains
at 1 as long as input IN is at 1.
When input IN is at 0, the timer is stopped,
even if its value is still changing : %TMi.V
takes the value 0.

Using as an off-delay timer : TOF mode

The current value %TMi.V is set to 0 on a
rising edge at input IN (even if the timer is
still running). The timer is started on a
falling edge at input IN.
The current value increases to %TMi.P by
one unit on each pulse of the time base TB.
Output bit %TMi.Q changes to 1 when a
rising edge is detected on input IN and the
timer returns to 0 when the current value
reaches %TMi.P.

Using as a monostable : TP mode

The timer is started on a rising edge at
input IN : (if the timer has not already
started) its current value %TMi.V increases
from 0 to %TMi.P by one unit on each
pulse of the time base TB. Output bit
%TMi.Q changes to 1 when the timer is
started and returns to 0 when the current
value reaches %TMi.P.
When input IN and output %TMi.Q are at 0,
TMi.V takes the value 0.
This monostable cannot be reset.

IN

Q

%TMi.V

%TMi.P

IN

Q

%TMi.V

%TMi.P

IN

Q

%TMi.V

%TMi.P

1 / 1 2

B
Programming and configuration
Timer function blocks are programmed in the same way, irrespective of the mode of use
selected. TON, TOF or TP mode can be chosen in the variables editor.

• Configuration

The following parameters must be entered in the variables editor :
- Mode : TON, TOF or TP.
- TB : 1min, 1s, 100ms or 10ms.
- %TMi.P : 0 to 9999.
- MODIF : Y or N.

• Programming

Ladder language Instruction list language

LD %I1.1
IN %TM1
LD %TM1.Q
ST %Q2.3

%Q2.3%I1.1
IN Q

%TM1

Structured text language

IF RE %I1.1 THEN
START %TM1 ;

ELSIF FE %I1.1 THEN
DOWN %TM1 ;

END_IF ;
%Q2.3 := %TM1.Q ;

The START %TMi instruction generates a rising edge on the timer block input IN (Mode
TON and TP) or a falling edge on the timer block input IN (Mode TOF).
The DOWN %TMi instruction generates a falling edge on the timer block input IN (Mode
TON and TP) or a rising edge on the timer block input IN (Mode TOF).

TON

Description of basic instructions 1

1 / 1 3

B
Special cases

• Effect of a cold restart : (%S0=1) forces the current value to 0, sets output %TMi.Q
to 0 and the preset value is reset to the value defined during configuration.

• Effect of a warm restart : (%S1=1) has no effect on the current value of the timer nor
on the preset value. The current value does not change during a power outage.

• Effect of a PLC stop, de-activation of a task or execution of a break point : does
not freeze the current value.

• Effect of a program jump : the fact of not scanning the instructions where the timer
block is programmed does not freeze the current value %TMi.V, which continues to
increment to %TMi.P. Similarly, bit %TMi.Q associated with output Q of the timer block
maintains its normal operation and can thus be tested by another instruction.
However, the output wired directly to the block output is neither activated nor scanned
by the PLC.

• Testing bit %TMi.Q : it is advisable to test bit %TMi.Q once only in the program.

• Effect of modifying the preset %TMi.P : modifying the preset value via an instruction
or in adjust mode only takes effect when the timer is next activated : modifying the
preset value in the variables editor is only taken into account after a cold restart
(%S0=1).

1 / 1 4

B
1.3-3 Up/down counter function block %Ci

The up/down counter function block is
used to upcount and downcount events.
These two operations can be simultaneous.

Characteristics

Counter number %Ci 0 to 31 for a TSX 37, 0 to 254 for a TSX 57

Current value %Ci.V Word incremented or decremented according to
inputs CU and CD.
Can be read and tested but not written by the
program (1).

Preset value %Ci.P 0≤%Ci.P≤9999. Word can be read, tested and
written. (default value 9999)

Adjust via terminal Y/N Y : the preset value can be modified in
(MODIF) adjust mode.

N : no access in adjust mode.

Reset input R At state 1 : %Ci.V = 0.
(instruction)

Preset input S At state 1: %Ci.V = %Ci.P.
(instruction)

Upcount input CU Increments %Ci.V on a rising edge.
(instruction)

Downcount input CD Decrements %Ci.V on a rising edge.
(instruction)

Underflow output E (Empty) The associated bit %Ci.E=1 when downcounter
%Ci.V changes from 0 to 9999 (set to 1 when
%Ci.V reaches 9999, and reset to 0 if the
counter continues to downcount).(2)

Preset reached D (Done) The associated bit %Ci.D=1 when %Ci.V=%Ci.P.
output

Overflow output F (Full) The associated bit %Ci.F =1 when %Ci.V
changes from 9999 to 0 (set to 1 when %Ci.V
reaches 0, and reset to 0 if the counter continues
to upcount).

(1) %Ci.V can be modified via the terminal.
(2) When there is an upcount overflow or downcount underflow, bit %S18 changes to 1.

Up/down counter block

R

S

CU

CD F

D

E

%Ci

C.P : 9999

MODIF : Y

Description of basic instructions 1

1 / 1 5

B
Operation

• Upcount : when a rising edge appears at the upcounting input CU, the current value
is incremented by one unit. When this value is equal to the preset value %Ci.P, the
"preset reached" output bit %Ci.D assigned to output D changes to state 1. Output bit
%Ci.F (upcount overflow) changes to state 1 when %Ci.V changes from 9999 to 0, and
is reset to 0 if the counter continues to upcount.

• Downcount : when a rising edge appears at the downcounting input CD, the current
value %Ci.V is decremented by one unit. Output bit %Ci.E (downcount underflow)
changes to state 1 when %Ci.V changes from 0 to 9999, and is reset to 0 if the counter
continues to downcount.

• Up/down count : to use both the upcount and the downcount functions simulta-
neously, the two corresponding inputs CU and CD must be controlled. These two
inputs are then scanned in succession. If they are both at 1 simultaneously, the current
value remains unchanged.

• Reset : when input R is set to state 1, the current value %Ci.V is forced to 0, and
outputs %Ci.E, %Ci.D and %Ci.F are at 0. The "reset" input has priority.

• Preset : if "preset" input S is at state 1 and the "reset" input R is at state 0, the current
value %Ci.V takes the value %Ci.P, and output %Ci.D is set to 1.

Note

On resetting (input R or instruction R) :

• In Ladder language, the logs of inputs CU and CD are updated with
the wired values.

• In Instruction list language and Structured text language, the logs of inputs CU
and CD are not updated. Each one maintains the value it had before being called.

Special cases

• Effect of a cold restart : (%S0=1)
- The current value %Ci.V is set to zero.
- Output bits %Ci.E, %Ci.D and %Ci.F are set to zero.
- The preset value is initialized with the value defined during configuration.

• Effect of a warm restart (%S1=1), a PLC stop, de-activation of a task or execution
of a break point : this has no effect on the current value of the counter (%Ci.V).

• Effect of modifying the preset %Ci.P : modifying the preset value via an instruction
or in adjust mode takes effect when the block is processed by the application
(activation of one of the inputs).

1 / 1 6

B
Configuration and programming
Counting of a number of items = 5000. Each pulse on input %I1.2 (when internal bit %M0
is at 1) increments the upcounter %C8 up to its final preset value (bit %C8.D=1). The
counter is reset by input %I1.1.

• Configuration
The following parameters must be entered via the variables editor :
- %Ci.P, set to 5000 in this example,
- MODIF : Y.

• Programming
Ladder language Instruction list language

LD %I1.1
R %C8
LD %I1.2
AND %M0
CU %C8
LD %C8.D
ST %Q2.0

Structured text language

IF %I1.1 THEN
RESET %C8 ;

END_IF ;
%M1 := %I1.2 AND %M0 ;
IF RE %M1 THEN

UP %C8 ;
END_IF ;
%Q2.0 := %C8.D;

In Structured text language, 4 instructions are used to program the up/down counter
function blocks :
• RESET %Ci : Resets the current value,
• PRESET %Ci : Loads the preset value into the current value,
• UP %Ci : Increments the current value,
• DOWN %Ci : Decrements the current value.
The CU and CD input logs are reset when the UP and DOWN instructions are used in
Structured text language. The user must therefore manage the rising edges for these
two instructions.

%I1.2

%C8.D

%I1.1

%Q2.0

%M0

R

S

CU

CD F

D

E

%C8

C.P : 5000

MODIF : Y

Description of basic instructions 1

1 / 1 7

B
1.4 Numerical processing on integers

1.4-1 General

The numerical instructions described in this section apply to objects of the following
type :
• bit tables,
• words,
• double words.

Instructions for other types of object are described in the section "Description of
instructions and advanced functions".

In Ladder language
Numerical instructions are entered in
blocks :

• located in the test zone for comparison
blocks.

• located in the action zone for operation
blocks.

These blocks can contain :

• a simple expression, eg :
OP3:=OP1+OP2,

• a complex expression, eg :
OP5:=(OP1+OP2)*OP3-OP4.

In Instruction list language
Instructions are placed between square
brackets.
They are executed if the Boolean result of
the test instruction preceding the numerical
instruction is at 1.

In Structured text language
Numerical instructions are entered directly.
The conditional instruction IF enables
numerical instructions to be conditioned
via a Boolean expression.

%MW50>10

%MW10:=%KW0+10

INC%MW100N

%I1.2

%I1.0

%Q2.2

LD [%MW50>10]
ST %Q2.2
LD %I1.0
[%MW10:=%KW0+10]
LDF %I1.2
[INC %MW100]

%Q2.2 := %MW50 > 10 ;
IF %I1.0 THEN

%MW10 := %KW0 + 10 ;
END_IF ;
IF FE %I1.2 THEN

INC %MW100 ;
END_IF ;

1 / 1 8

B
List of operands
List of bit tables

Abbreviations Full addressing Type of word Access

%M:L %Mi:L table of internal bits R/W

%I:L %Ixy.i:L table of input bits R/W

%Q:L %Qxy.i:L table of output bits R/W

%Xi:L %Xi:L table of step bits R

List of single format words

Abbreviations Full addressing Type of word Access Indexed form

Immed. val. - immediate values R -

%MW %MWi internal word R/W %MWi[%MWj]

%KW %KWi internal constant R %KWi[%MWj]

%SW %SWi system word R/W (1) -

%IW %IWxy.i(.r) input word R -

%QW %QWxy.i(.r) output word R/W -

%NW %NW{j}k common word R/W -

%BLK eg : %TMi.P function block extract word R/W (2) -

%Xi.T %Xi.T step activity time R -

(1) Write depending on i. (2) Write depending on the type of word, for example : preset values
(%Ci.P can be written, whereas the current values %Ci.V can only be read).

List of double words

Abbreviations Full addressing Type of double word Access Indexed form

Immed. val. - immediate values R -

%MD %MDi internal double word R/W %MDi[%MWj]

%KD %KDi internal double constant R %KDi[%MWj]

%SD %SDi system double word R/W (1) -

%ID %IDxy.i(.r) input double word R -

%QD %QDxy.i(.r) output double word R/W -

(1) Only double word %SD18.

Notes

There are other types of words and double words, such as %MWxy.i %KWxy.i and
%MDxy.i %KDxy.i associated with applications. These double words behave like the
words and double words %MWi %KWi and %MDi %KDi respectively.
Implicit conversion of words <--> double words
PL7 software allows mixing of operations using words and double words. Conversion
to one or other of the formats is performed implicitly. An operation involving a double
word or several immediate values is automatically performed internally in double format.

Description of basic instructions 1

1 / 1 9

B

%M0

%I1.2

%MW10>100

%MW20<%KW35

%MW30>=%MW40

%Q2.3

%Q2.2

%Q2.4

LD [%MW10 > 100]
ST %Q2.3
LD %M0
AND [%MW20 < %KW35]
ST %Q2.2
LD %I1.2
OR [%MW30 >= %MW40]
ST %Q2.4

The comparison is executed inside square
brackets following instructions LD, AND
and OR.

1.4-2 Comparison instructions

Comparison instructions are used to compare two operands.

> : test if operand 1 is greater than operand 2.
>= : test if operand 1 is greater than or equal to operand 2.
< : test if operand 1 is less than operand 2.
<= : test if operand 1 is less than or equal to operand 2.
= : test if operand 1 is equal to operand 2.
<> : test if operand 1 is different from operand 2.

The result is 1 when the comparison requested is true.

Structure
Ladder language Instruction list language

Comparison blocks are programmed in
the test zone.

Structured text language

%Q2.3 := %MW10 > 100 ;
%Q2.2 := %M0 AND (%MW20 < %KW35) ;
%Q2.4 := %I1.2 OR (%MW30 >= %MW40) ;

Note : The parentheses are optional but make the program easier to read.

Syntax
Operators : >,>=,<,<=,=,<> Op1 Operator Op2

1 / 2 0

B

1.4-3 Assignment instructions

These are used to load an Op2 operand into an Op1operand.

Syntax : Op1:=Op2 <=> Op2->Op1

The following assignment operations can be performed :
• On bit tables
• On words or double words.

Several assignment instructions can be linked within the same block :
Op1:=Op2:=Op3:=Op4:=...

Assignment of bit tables (see bit table object, section 1.2-6, part A)
The following operations on bit tables can be performed :
• Bit table -> bit table example 1
• Bit table -> word or double word (indexed) example 2
• Word or double word (indexed) -> bit table example 3

Structure
Ladder language Instruction list language

LD TRUE
[%Q2.0:8:= %M10:8] example 1

LD %I3.2
[%MW100:= %I1.0:16] example 2

LDR %I3.3
[%M100:16:=%KW0] example 3

%I3.2

%I3.3

%Q2.0:8:=%M10:8

%MW100:=%I1.0:16

%M100:16:=%KW0P

Operands

Type Operands 1 and 2 (Op1 and Op2)

Indexable words %MW,%KW

Non-indexable words Immed.val.,%IW,%QW,%SW,%NW,%BLK, %Xi.T
Numerical expr.

Indexable double words %MD,%KD

Non-indexable double words Immed.val.,%ID,%QD,%SD,Numerical expr.

Notes

• In Ladder language, comparisons can also be executed using the
vertical comparison block (see part B, section 2.3).

• In Instruction list language, comparison instructions can be used in parentheses.

Description of basic instructions 1

1 / 2 1

B
Structured text language

%Q2.0:8 := %M10:8 ; example 1
IF %I3.2 THEN

%MW100 := %I1.0:16 ; example 2
END_IF ;
IF RE %I3.3 THEN

%M100:16 := %KW0 ; example 3
END_IF ;

Syntax
Operator := Op1:=Op2

Operands

Type Operand 1 (Op1) Operand 2 (Op2)

Bit table %M:L,%Q:L,%I:L %M:L,%Q:L,%I:L, %Xi:L

Indexable words %MW %MW,%KW

Non-indexable words %QW,%SW,%NW Immed.val.,%IW,%QW,%SW
%BLK %NW,%BLK, %Xi.T, Num. expr.

Indexable double words %MD %MD,%KD

Non-indexable double words %QD,%SD, Immed.val.,%ID,%QD,%SD
Num. expr.

Rules for use

• The source and target bit tables are not necessarily the same length. If the source table
is longer than the target table, only the least significant bits will be transferred.
Otherwise the target table is completed with 0s.

• Example of assigning a bit table -> a word (or double word) : the bits in the table are
transferred into the word (the low-order word for a double word) starting from the right
(first bit of the table to bit 0 of the word). The bits of the word which are not transferred
(length<16 or 32) are set to 0.

• Example of assigning a word -> bit table : the bits of the word are transferred starting
from the right (bit 0 of the word to the first bit of the table).

1 / 2 2

B

%I3.2

%I3.3

%SW112:=%MW100

%MD0:=%KD0[%MW20]

%MW10:=100P

Assignment of words
The following assignment operations on words can be performed :

• word (indexed) -> word (indexed) or double word (indexed) example 1
• double word (indexed) -> double word (indexed) or word (indexed) example 2
• immediate value -> word (indexed) or double word (indexed) example 3

Structure
Ladder language Instruction list language

LD TRUE
[%SW112 := %MW100] example 1
LD %I3.2
[%MD0:= %KD0[%MW20]] example 2

Structured text language

IF RE %I3.3 THEN
%MW10 := 100 ; example 3

END_IF ;

Syntax
Operator := Op1:=Op2

Operands

Type Operand 1 (Op1) Operand 2 (Op2)

Indexable words %MW %MW,%KW

Non-indexable words %QW,%SW,%NW, Immed.val.,%IW,%QW,%SW
%BLK %NW,%BLK,%Xi.T, Num. expr.

Indexable double words %MD %MD,%KD

Non-indexable double words %QD,%SD, Immed.val.,%ID,%QD,%SD
Numerical expr.

Note

Word <--> double word conversions are performed implicitly during double word -->
word assignment. If the value of the double word cannot be contained in the word,
bit %S18 is set to 1.

It is possible to execute multiple assignments.
Example : %MW0 := %MW2 := %MW4

Note that in the example %MD14 := %MW10 := %MD12, it is not necessarily true
that %MD14 := %MD12, as the higher order word of the double word will be lost when
assignment to %MW10 occurs, due to the conversion from a double word to a single word.

Description of basic instructions 1

1 / 2 3

B

%I3.2

%I3.3

%MW0:=%MW10+100

%MW0:=SQRT(%MW10)

INC %MW100

%M0

P

1.4-4 Arithmetic instructions on integers

These instructions are used to perform arithmetic operations between two operands or
on one operand.

+ : add two operands SQRT : square root of an operand
- : subtract two operands INC : increment of an operand
* : multiply two operands DEC : decrement of an operand
/ : divide two operands ABS : absolute value of an operand
REM : remainder of division of the two operands

Structure
Ladder language Instruction list language

LD %MW0
[%MW0 := %MW10 + 100]

LD %I3.2
[%MW0 := SQRT(%MW10)]

LDR %I3.3
[INC %MW100]

Structured text language

IF %M0 THEN
%MW0 := %MW10 + 100 ;

END_IF ;
IF %I3.2 THEN

%MW0 := SQRT (%MW10) ;
END_IF ;
IF RE %I3.3 THEN

INC %MW100 ;
END_IF ;

Syntax
Operators

• +,-,*,/,REM Op1:=Op2 Operator Op3

• SQRT, ABS Op1:=Operator(Op2)

• INC, DEC Operator Op1

1 / 2 4

B

%S18

%S18

%MW0:=%MW1+%MW2

%MW10:=%MW0

%MW10:=32767

%M0

%S18
R

Operands

Type Operand 1 (Op1) Operands 2 & 3 (Op2 and 3)

Indexable words %MW %MW,%KW

Non-indexable words %QW,%SW,%NW, Immed.val.,%IW,%QW,%SW
%BLK %NW,%BLK,%Xi.T, Num. expr.

Indexable double words %MD %MD,%KD

Non-indexable double words %QD,%SD, Immed.val.,%ID,%QD,%SD
Numerical expr.

Note :
The operations INC and DEC cannot be used in numerical expressions.

Rules for use

• Addition : Overflow during operation

If the result exceeds the limits :
-32768 or +32767 for a single length operand,
-2 147 483 648 or +2 147 483 647 for a double length operand,

bit %S18 (overflow) is set to 1. The result is therefore not significant. The user program
manages bit %S18.

Example :
Ladder language Instruction list language

LD %M0
[%MW0 := %MW1+ %MW2]
LDN %S18
[%MW10 := %MW0]
LD %S18
[%MW10 := 32767]
R %S18

Structured text language

IF %M0 THEN
%MW0 := %MW1 + %MW2 ;

END_IF ;
IF %S18 THEN

%MW10 := 32767 ; RESET %S18 ;
ELSE

%MW10 := %MW0 ;
END_IF ;

Where %MW1 =23241 and %MW2=21853, the real result (45094) cannot be
expressed in a 16-bit word. Bit %S18 is set to 1 and the result obtained (-20442) is
incorrect. In this example, when the result is greater than 32767, its value is set to

Description of basic instructions 1

1 / 2 5

B

1.4-5 Logic instructions

The associated instructions are used to perform a logic operation between two operands
or on one operand.

AND : AND (bit-wise) between two operands
OR : Logic OR (bit-wise) between two operands
XOR : Exclusive OR (bit-wise) between two operands
NOT : Logic complement (bit-wise) of an operand

Structure
Ladder language Instruction list language

LD %M0
[%MW0 := %MW10 AND 16#FF00]

LD TRUE
[%MW0 := %KW5 OR %MW10]

LD %I1.3
[%MW102:= NOT %MW100]%I1.3

%MW0:=%MW10 AND 16#FF00

%MW0:=%KW5 OR %MW10

%MW102:=NOT %MW100

%M0

• Multiplication :
Overflow during operation.
If the result exceeds the capacity of the result word, bit %S18 (overflow) is set to 1 and
the result is not significant.

• Division/Remainder :
Division by 0.
If the divider is 0, division is impossible and system bit %S18 is set to 1. The result is
then incorrect.
Overflow during operation.

• Square root extraction :
Square root extraction is only performed on positive values. Thus, the result is always
positive. If the square root operand is negative, system bit %S18 is set to 1 and the
result is incorrect.

Note :
• When the result of an operation is not an integer (in the case of division or square root extraction),

the result is rounded down to the nearest integer.
• The sign of the remainder (REM) is that of the numerator.
• The user program is responsible for managing system bit %S18. It is set to 1 by the PLC and must

be reset by the program so that it can be re-used (see previous page for example).

1 / 2 6

B
Structured text language

IF %M0 THEN
%MW0 := %MW10 AND 16#FF00 ;

END_IF ;
%MW0 := %KW5 OR %MW10 ;
IF %I1.3 THEN

%MW102 := NOT %MW100 ;
END_IF ;

Syntax
Operators

 • AND,OR,XOR, Op1:=Op2 Operator Op3

 • NOT, Op1:=NOT Op2

Operands

Type Operand 1 (Op1) Operands 2 & 3 (Op2 and 3)

Indexable words %MW %MW,%KW

Non-indexable words %QW,%SW,%NW, Immed. val.,%IW,%QW,%SW
%BLK %NW,%BLK,%Xi.T,Num. expr.

Indexable double words %MD %MD,%KD

Non-indexable double words %QD,%SD Immed. val.,%ID,%QD,%SD
Num. expr.

Description of basic instructions 1

1 / 2 7

B
1.4-6 Numerical expressions

Numerical expressions are composed of several numerical operands and the arithmetic
and logic operators described above.

Example : %MW25 * 3 - SQRT(%MW10) + %KW8* (%MW15 + %MW18) AND 16#FF

The number of operators and operands in an arithmetic expression is not limited.

Numerical expressions on integer objects
Operands in the same numerical expression can be both single or double length.
Example : %MW6 * %MW15 + SQRT(%DW6) / (%MW149[%MW8]) + %KD29)
AND 16#FF
An operand or an operation to a single operand can be preceded by the sign + or - (by
default, the sign +).
Example : SQRT (%MW5) * - %MW9

All word objects can be used in arithmetic expressions. Certain words can be indexed.

Execution priority of instructions
In numerical expressions, priority of different instructions is observed. They are
executed in the order described below :

1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 8
 instruction to * + <,> = AND XOR OR
 an operand / - <=,>= <>

REM

In the example below, the instructions are executed following the order of numbering :
SQRT (%MW3) + %MW5 * 7 AND %MW8 OR %MW5 XOR %MW10

1 2
3

4 5

Parentheses
Parentheses are used to modify the order in which priorities are executed. Their use is
recommended for structuring numerical expressions.

((%MW5 AND %MW6) + %MW7) * %MW8

6

2

3

1

1 / 2 8

B

LD %M8
SR10

%M8 SR10

C

Subroutine module Subroutine module

SR 10 SR 12

Call SR 12

Call SR 10

Call SR 10

1.5 Program instructions

1.5-1 Subroutine call

Subroutine call instructions are used to call a subroutine module located in the same
task.

Structure
Ladder language Instruction list language

Structured text language

IF %M8 THEN
SR10 ;

END_IF ;

SRi represents the subroutine module called : i (number from 0 to 253).

Rules
• A subroutine can only be called if the subroutine module has already been created.
• A subroutine return is performed on the action immediately following the subroutine

call instruction.
• A subroutine can call another subroutine. The number of cascaded calls is limited to 8.
• Subroutines are assigned to a task. They can only be called from within the same task.

Principle

Description of basic instructions 1

1 / 2 9

B

%M8

<RETURN>

1.5-2 Subroutine return

Subroutine return instructions are reserved for subroutine modules and are used to
return to the calling module, if the Boolean result of the preceding test instruction is 1.

Structure
Ladder language Instruction list language

LD %M8
RETC

Structured text language

IF %M8 THEN
RETURN ;

END_IF ;

Rule for use
Subroutine return instructions are implicit at the end of each subroutine, but can be used
to return to the calling module before the end of the subroutine.

Example :
Ladder language Instruction list language

LD [%MW5>3]
RETC
LD %M8
[%MD26:=%MW4*%KD6]

Structured text language

IF (%M5 > 3) THEN
RETURN ;

END_IF ;
IF %M8 THEN

%MD26 := %MW4 * %KD6 ;
END_IF ;

Instruction list language includes the following additional instructions :

RETCN : subroutine return if the Boolean result of the preceding test instruction is 0.
RET : unconditional subroutine return.

%MW5>3

%MD26:=%MW4*%KD6
%M8

<RETURN>

1 / 3 0

B

Jump to label
%L10 if %M8 is
at 1.

%I1.0

%L10

%Q2.5

>>

%M8

%I1.0

%M5

%Q2.1

%M20
%L10

%I1.2

1.5-3 Program jumps
Jump instructions allow connection to a line of programming identified by a label %Li :
JMP : unconditional program jump,
JMPC : program jump if the Boolean result of the preceding test instruction is 1,
JMPCN : program jump if the Boolean result of the preceding test instruction is 0,
%Li represents the label of the line to which the connection is made (i numbered from
1 to 999 with up to 256 labels).

Structure
Ladder language Instruction list language

LD %M8
JMPC %L10
LD %I1.0
ST %Q2.5
..............
%L10 :
LD %M20
ST %M5
LD %I1.0
AND %I1.2
ST %Q2.1

Structured text language

IF %M8 THEN
JUMP %L10 ;

END_IF ;
%Q2.5 := %I1.0 ;

%L10 :
%M5 := %M20 ;
%Q2.1 := %I1.0 AND %I1.2 ;

Jump to label %L10,
if %M8 is at 1.

Description of basic instructions 1

1 / 3 1

B
Ladder language Instruction list language

%I2.0

%L20

%Q3.5

>>

%M2

%M6%M30
%L20

Jump to label
%L20 if %M2 is
at 0.

LD %M2
JMPCN %L20
LDN %I2.0
ST %Q3.5
..............
%L20 :
LD %M30
ST %M6

Uncondit ional
jump to label
%L40.

JMP %L40
%L20 :
LD %I2.1
ST %Q3.5
..............
%L40 :
LD %M20
ST %M5

%M5%M20
%L40

%L40

>>

%I2.1 %Q3.5
%L20

Structured text language

IF NOT %M2 THEN
JUMP %L20 ;

END_IF ;
%Q3.5 := NOT %I2.0 ;

%L20 :
%M6 := %M30 ;

Ladder language Instruction list language

Jump to label %L20,
if %M2 is at 0.

Structured text language

JUMP %L40 ;

%L20 :
%Q3.5 := %I2.1 ;

%L40 :
%M5 := %M20 ;

Unconditional
jump to label %L40,

1 / 3 2

B
Rules
• A program jump is performed within the same programming entity (main module of a

master task (MAIN), subroutine %SRi, etc).
• A program jump is performed to a line of programming which is downstream or

upstream.
When the jump is upstream, attention must be paid to the program scan time :
the program scan time is then extended and can mean the task period including the
upstream jump is exceeded.

1.5-4 Program end instructions

The end of the execution of a program scan is defined using the instructions END, ENDC
and ENDCN :

END : unconditional end of program
ENDC : end of program if the Boolean result of the preceding test instruction is 1.
ENDCN : end of program if the Boolean result of the preceding test instruction is 0.

By default (normal mode), when the end of program is activated, the outputs are updated
and the next scan is started.
If scanning is periodic, the outputs are updated when the end of period is reached and
the next scan is started.

Note :
These instructions can only be used in Instruction list language in the master task.

Example :
Instruction list language

LD %M1
ST %Q2.1
LD %M2
ST %Q2.2
.....................
END

LD %M1
ST %Q2.1
LD %M2
ST %Q2.2
.....................
LD %I1.2
ENDC
LD %M2
ST %Q2.2
....................
END

If %I1.2 =1, end of
program scanning.
If %I1.2 =0, continues
program scanning until
new END instruction.

Description of basic instructions 1

1 / 3 3

B
1.5-5 Stop program

Execution of an application program can be stopped using the instruction HALT (stops
all tasks). This freezes the variable objects in this program.

A program stopped in this way must be initialized to restart it (using the PL7 command
INIT). Any instructions following the instruction HALT will therefore not be executed.

Structured text language

IF %M10 THEN
HALT ;

END_IF ;

Structure
Ladder language Instruction list language

LD %M10
HALT

%M10

<HALT>

1 / 3 4

B
1.5-6 Event masking/unmasking instructions

Event masking/unmasking instructions are used to mask or unmask all the events which
activate event-triggered tasks.

MASKEVT : masks all events. The events are stored by the PLC. However, the
associated event-triggered tasks remain inactive as long as the masking operation is
enabled (until the next UNMASKEVT instruction).

UNMASKEVT : unmasks all events. The events which were stored during the mask
period are processed. The event processing mechanism is operational until the next
MASKEVT instruction.

Structure
Ladder language Instruction list language

LD %M0
[MASKEVT ()]

LD %M8
[UNMASKEVT ()]

MASKEVT ()

UNMASKEVT ()
%M8

%M0

Structured text language

IF %M0 THEN
MASKEVT () ;

END_IF ;
IF %M8 THEN

UNMASKEVT () ;
END_IF ;

1.5-7 NOP Instruction
The NOP instruction does not perform any operation. It is used for "reserving" lines in
a program which allow the user to insert instructions later without modifying the line
numbers.

Description of advanced instructions 2

2 / 1

B

Section 2

2.1 Presentation of advanced instructions

2.1-1 General

The instructions described in this section are suitable for advanced programming
requirements.

They have the same effect, irrespective of the language used. Only the syntax differs.

They are :

• Either basic instructions of the software.

• Or Functions considered as extensions of the software.

Extended Function type instructions are used to enhance the basic software using
special programming instructions.

• Operations on character strings, word tables, etc.

• Application-specific functions : Communication, PID control, Man-Machine Interface,
etc.

They include the following families :

• Character strings.

• Word tables.

• Management of Dates, times and time periods.

• Conversions.

• Bit tables.

• "Orphee" functions.

• Communication.
• PID control. ==> see the relevant application-specific function
• Man-Machine Interface.
• Motion control.

Notes on programming

Function type instructions require additional application memory occupation (only
when they are actually used in the program).
This memory occupation should be taken into account by the programmer for each
function, irrespective of the number used, and the maximum memory size of the PLC
used must be observed.

2 Description of advanced instructions

2 / 2

B
2.2 Advanced predefined function blocks

2.2-1 Monostable function block %MNi

The monostable function block is used to
create a pulse of an exact duration.

This duration is programmable and can be
modified via the terminal.

Characteristics

Number %MNi 0 to 7 for a TSX 37, 0 to 254 for a TSX 57

Time base TB 1min, 1s, 100ms, 10ms (1min by default).

Current value %MNi.V Word which decreases from %MNi.P to 0 when
the timer is running. Can be read and tested but not
written.

Preset value %MNi.P 0 < %MNi.P ≤ 9999. Word which can be read,
tested and written. The duration of the pulse
(PRESET) is equal to : %MNi.P x TB.

Edit via terminal Y/N Y : possibility of changing the preset value in
MODIF adjustment mode.

N : no access in adjustment mode.

Start input S(Start) On a rising edge %MNi.V = %MNi.P then %MNi.V
(or instruction) decreases to 0.

Monostable output R(Running) The associated bit %MNi.R is at 1 if %MNi.V > 0
(monostable running)
%MNi.R = 0 if %MNi.V = 0.

Operation

When input S of the monostable is at 1 (rising edge), the current value %MNi.V takes
the preset value %MNi.P and decreases to 0 by one unit on each pulse of the time base
TB. Output bit %MNi.R (Running) assigned to output R changes to 1 when the current
value %MNi.V is other than 0.
When the current value %MNi.V = 0, output bit %MNi.R returns to 0.

Start input S :

Current value %MNi.V :

Running output R :

Monostable block

S

MODIF:Y

R

%MNi

TB: 1mn

MN.P:9999

PRESET PRESET PRESET

S

R

%MNi.P
%MNi.V

Description of advanced instructions 2

2 / 3

B
Programming and configuration

• Example of use : flashing at variable
cyclical periods : the preset value of
each monostable defines the duration of
each pulse.

• Configuration
The following parameters must be entered in the variables editor :
- TB : 1min, 1s, 100ms, 10ms or 1ms (100ms in this example).
- %MNi.P : 0 to 9999 (%MN0.P=50 and %MN1.P=20 in this example).
- MODIF : Y or N.

• Programming
Ladder language Instruction list language

LDN %MN1.R
ANDN %Q3.0
S %MN0
LD %MN0.R
ST %Q3.0
LDN %MN0.R
S %MN1

Structured text language

%M0:=NOT %MN1.R ;
IF RE %M0 THEN

START %MN0 ;
END_IF ;
%Q3.0 := %MN0.R ;
%M1 := NOT %MN0.R ;
IF RE %M1 THEN

START %MN1 ;
END_IF ;

In the example above, output %Q3.0 is set to 1 for 5s (%MN0.P) and reset to 0 for 2s
(%MN1.P).

In Structured text language, the instruction START %Mni is used to start the monostable
function block. This instruction forces a rising edge on input S of the block and thus
reinitializes the function block. The conditioning instruction must therefore be an edge-
type.

5s 5s
2s 2s

%Q3.0

%MN0

S

%Q3.0

R

%MN1.R

%MN1

S R

%MN0.R

2 / 4

B
Note

The monostable function can also be performed by the function block %TMi in TP
mode (see part B, section 1.3-2).

Special cases

• Effect of a cold restart : (%S0 = 1) the preset value %MNi.P is loaded into the current
value %MNi.V. Since the preset value which may have been modified by the terminal
is lost, output %MNi.R is reset to 0.

• Effect of a warm restart : (%S1) has no effect on the current value of the monostable
(%MNi.V).

• Effect of a PLC stop, de-activation of the task and break point : a PLC stop, de-
activation of the current task or execution of a break point does not freeze the current
value.

• Effect of a program jump : the fact of not scanning the rung where the monostable
block is programmed does not freeze current value %MNi.V which continues to
decrease to 0.
Similarly, bit %MNi.R assigned to the monostable block output continues to operate
normally and can thus be tested in another rung.
However, the coils directly "connected" to the block output (eg %Q3.0) will not be
activated since they are not scanned by the PLC.

• Testing bit %MNi.R : the state of this bit can change during a scan.

Description of advanced instructions 2

2 / 5

B
2.2-2 Register function block %Ri

A register is a memory block which is used
to store up to 255 words of 16 bits in two
different ways :

• Queue (first in, first out) known as FIFO
stack (First In, First Out).

• Stack (last in, first out) known as LIFO
stack (Last In, First Out).

Characteristics

Register number %Ri 0 to 3 for a TSX 37, 0 to 254 for a TSX 57

Mode FIFO Queue.
LIFO Stack (default selection).

Length LEN Number of 16-bit words (1≤ LEN≤ 255) in the
register memory block.

Input word %Ri.I Register input word. Can be read, tested and
written.

Output word %Ri.O Register output word. Can be read, tested and
written.

Storage input I (In) On a rising edge, stores the contents of word
(or instruction) %Ri.I in the register.

Retrieval input O (Out) On a rising edge, loads a data word into word
(or instruction) %Ri.O.

Reset input R (Reset) At state 1 initializes the register.
(or instruction)

Empty output E (Empty) The associated bit %Ri.E indicates that the
register is empty. Can be tested.

Full output F (Full) The associated bit %Ri.F indicates that the
register is full. Can be tested.

Note :
When the two inputs I and O are activated simultaneously, storage is performed before retrieval.

R E

%Ri

MODE:LIFO
LEN :16

O

FI

Register block

2 / 6

B
FIFO (First In, First Out)
The first data item entered is the first to be
retrieved.
When a storage request is received (rising
edge at input I or activation of instruction I),
the contents of input word %Ri.I (which
have already been loaded) are stored at the
top of the stack (fig a).
When the stack is full (output F=1), no
further storage is possible and system bit
%S18 changes to 1.
When a retrieval request is received (rising
edge at input O or activation of instruction O)
the data word lowest in the stack is loaded
into output word %Ri.O and the contents of
the register are moved down one place in
the stack (fig.b).
When the register is empty (output E=1), no
further retrieval is possible. Output word
%Ri.O does not change and retains its value.
The stack can be reset at any time (state 1
at input R or activation of instruction R).

LIFO (Last In, First Out)
The last data item entered is the first to be
retrieved.
When a storage request is received (rising
edge at the input or activation of instruction
I), the contents of input word %Ri.I (which
have already been loaded) are stored at the
top of the stack (fig c).
When the stack is full (output F=1), no
further storage is possible and system bit
%S18 changes to 1.
When a retrieval request is received (rising
edge at input O or activation of instruction O)
the highest data word (last word to be entered)
is loaded into output word %Ri.O (fig.d).
When the register is empty (output E=1), no
further retrieval is possible. Output word
%Ri.O does not change and retains its last
value. The stack can be reset at any time
(state 1 at input R or activation of instruction
R). The element indicated by the pointer is
then the highest in the stack.

Example :

Storage of the contents of %Ri.I at the
top of the stack.

Example :

Storage of the contents of %Ri.I at the
top of the stack.

20

80
20

50

%Ri.I
(a)

Retrieval of the first data item which is
then loaded into %Ri.O.

20

80
20

50

%Ri.I
(c)

50
80

50

20

%Ri.0

(b)80
20

Retrieval of the data word highest in
the stack.

50

80
20

50

%Ri.0
(b)

80
20

Description of advanced instructions 2

2 / 7

B

%R2

R

O

I

%M1

%I1.3

%M1

%I1.3

%I1.2

%R2.E

%R2.F

%MW20:=%R2.O

%R2.I:=%MW34

E

F
MOD :
LEN :

Programming and configuration

• Configuration
The following parameters must be entered in the configuration editor :

- Number : 1 to 4 for a TSX 37, 1 to 255 for a TSX 57,
- Length : 1 to 255.

The operating mode (FIFO or LIFO) must be entered in the variables editor.

• Programmation
Ladder language Instruction list language

LD %M1
I %R2
LD %I1.3
O %R2
LD %I1.3
ANDN %R2.E
[%MW20:=%R2.O]
LD %I1.2
ANDN %R2.F
[%R2.I:=%MW34]
ST %M1

Structured text language

IF RE %M1 THEN
PUT %R2 ;

END_IF ;
IF RE %I1.3 THEN

GET %R2 ;
END_IF ;
IF (%I1.3 AND NOT %R2.E) THEN

%MW20 := %R2.O ;
END_IF ;
%M1 := %I1.2 AND NOT %R2.F ;
IF %M1 THEN

%R2.I := %MW34 ;
END_IF ;

The programming example shows word %MW34 being loaded into %R2.I at the storage
request %I1.2, if register R2 is not full (%R2.F=0). The storage request in the register
is made by %M1. The retrieval request is made by input %I1.3 and %R2.O is loaded into
%MW20 if the register is not empty (%R2.E=0).

2 / 8

B

Special cases

• Effect of a cold restart : (%S0=1) initializes the contents of the register. The Output
bit %Ri.E assigned to output E is set to 1.

• Effect of a warm restart : (%S=1) has no effect on the contents of the register, nor
on the state of its output bits.

• When resetting to 0 (input R or instruction R)
- In Ladder language, the memorized values of inputs I and O are updated with the

actual values.
- In Instruction list language, the memorized values of inputs I and O are not updated.

Each one retains the value it had before being called.
- In Structured text language, the memorized values of inputs I and O are updated

with 0.

In Structured text language, 3 instructions are used to program the register function
blocks :

• RESET %Ri : Initializes the register,
• PUT %Ri : Stores the contents of word %Ri.I in the register,
• GET %Ri : Loads a data word into word %Ri.O.

The PUT and GET instructions create a rising edge on inputs I and O respectively of the
function block. The conditioning instruction must therefore be an edge-type.

Description of advanced instructions 2

2 / 9

B
2.2-3 Drum controller function block %DRi

The drum controller operates on a similar
principle to an electromechanical drum
controller, which changes step according
to external events. On each step, the high
point of a cam gives an order which is
executed by the control system. In the
case of a drum controller, these high points
are symbolized by state 1 for each step
and are assigned to output bits %Qi.j or
internal bits %Mi, known as control bits.

Characteristics

Number %DRi 0 to 7 for a TSX 37, 0 to 254 for a TSX 57

Step number LEN 1 to 16 (default 16).

Time base TB 1min, 1s, 100ms, 10ms (default 1min).

Time envelope %DRi.V 0≤%DRi.V≤9999. Word is reset on each step
or time period of change. Can be read and tested but not written.
current step The duration is equal to %DRi.V x TB.

Current step %DRi.S 0≤%DRi.S≤15. Word which can be read and
number tested.

Can only be written with an immediate value.

Return to step 0 R (RESET) At state 1 initializes the drum controller to step 0.
input

Advanced U (UP) On a rising edge, causes the drum controller to
input advance by one step and updates the control

bits.

Output F (FULL) Indicates that the current step equals the last
step defined. The associated bit %DRi.F can be
tested (%DRi.F=1 if %DRi.S=configured step
number - 1).

State of a step %DRi.Wj 16-bit word defining the states of step j of drum
controller i. Can be read and tested but not
written.

Control bits Outputs or internal bits associated with the step
(16 control bits).

Note : Bit %S18 changes to 1, if a non-configured step is written.

Drum controller block

R F

%DRi

%TB:1mn
U
LEN:16

2 / 1 0

B
Operation
The drum controller comprises :
• A matrix of constant data (the cams) organized :

- in columns : in steps from 0 to N-1 (N is the step number configured). Each column
shows the states of the step in the form of 16 data bits numbered 0 to F.

• A list of control bits (1 per line) corresponding to either outputs %Qxy.i, or to internal
bits %Mi. During the current step, the control bits take on the binary states defined for
this step.

The table below summarizes the main characteristics of the drum controller (controller
configured with 16 steps).

In the above example, for step 1, control bits %Q2.1;%Q3.5; %Q2.8;%Q3.6;%M5 and
%M6 are set to state 1. The other control bits are set to 0.
The current step number is incremented on each rising edge at input U (or activation of
instruction U). This number can be modified by the program.

Operating diagram

Bit

Step

Control
bits

%DRi.F

U:

R:

%DRi.S 0 1 2 3 N-1 0 1 2 0 1

%DRi.V

Input

Input

Step no.

Output

Time
envelope

Description of advanced instructions 2

2 / 1 1

B

%DR1

R F

U

LEN:5

%TB:1 mn%I1.1

%Q2.8%I1.0

Programming and configuration
In this example, the first 5 outputs %Q2.0 to %Q2.4 are activated in succession each
time input %I1.1 is set to 1.
Input I1.0 resets the outputs to step 0.

Configuration
The following information is defined in the variables editor :

• Step number : 5 (LEN:5).

• The state of the outputs (control bits) for each step of the drum controller.

Step Assignment of control bits
0 1 2 3 4

0 : 1 0 0 0 0 %Q2.0
1 : 0 1 0 0 0 %Q2.1

Bit 2 : 0 0 1 0 0 %Q2.2
3 : 0 0 0 1 0 %Q2.3
4 : 0 0 0 0 1 %Q2.4

• Time base (TB:1 min).

Programming
 Ladder language Instruction list language

LD %I1.0
R %DR1
LD %I1.1
U %DR1
LD %DR1.F
ST %Q2.8

Structured text language

IF %I1.0 THEN
RESET %DR1 ;

END_IF ;
IF RE %I1.1 THEN

UP %DR1 ;
END_IF ;
%Q2.8 := %DR1.F ;

In Structured text language, 2 instructions are used to program the drum controller
function blocks :
• RESET %DRi : Initializes the controller to step 0,
• UP %DRi : Advances the controller by one step and updates the control bits.

This instruction creates a rising edge on input U of the function block : this conditioning
instruction must therefore be an edge-type.

2 / 1 2

B
Note

When resetting to 0 (input R, instruction R or RESET instruction)
• In Ladder language, the memorized value of input U is updated with the actual

values.
• In Instruction list language, the memorized value of input U is not updated. It

retains the value it had before being called.
• In Structured text language, the memorized value of input U is updated with 0.

Special cases
• Effect of a cold restart : (%S0=1) resets the drum controller to step 0 (with updating

of the control bits).
• Effect of a warm restart : (%S1=1) updates the control bits, according to the current

step.
• Effect of a program jump, de-activation of the task and break point : the fact of

not scanning the drum controller means that the control bits are not reset to 0.
• Updating the control bits : only occurs when there is a change of step or in the case

of a cold or warm restart.

Description of advanced instructions 2

2 / 1 3

B
2.2-4 Timer function block %Ti (Series 7)

This timer function block, which is
compatible with Series 7 PL7-2/3 blocks is
used to provide control for time-delayed
actions.
The value of this delay is programmable
and can be modified via the terminal.

Characteristics

Number %Ti 0 to 63 for a TSX 37, 0 to 254 for a TSX 57

Time base TB 1min, 1s, 100ms, 10ms (default 1min).

Current value %Ti.V Word which decreases from %Ti.P to 0 when the
timer is running. Can be read and tested but not
written.

Preset value %Ti.P 0 < %Ti.P ≤ 9999. Word which can be read, tested
and written. It is set to value 9999 by default. The
duration is equal to %Ti.P*TB.

Adjust via terminal Y/N Y : the preset value can be modified in
MODIF adjust mode.

N : no access in adjustmode.

Setting input E(Enable) At state 0, resets the timer %Ti.V = %Ti.P.

Control input C(Control) At state 0, freezes the current value %Ti.V.

Timer output D(Done) Associated bit %Ti.D = 1, if timer done %Ti.V = 0
done

Timer running R(Running) Associated bit %Ti.R = 1 if timer %Ti.P > %Ti.V > 0
output and if input C is at 1.

Note :
%Ti function blocks cannot be programmed in Instruction list language. The objects of %Ti blocks
(%Ti.V, %Ti.P, %Ti.D and %Ti.R) can, however, be accessed.

The total number of %TMi + %Ti should be less than 64 on the TSX 37 and less than 255 on the
TSX 57.

E D

%Ti

TB:1mn
RC

T.P:9999
MODIF:Y

Timer block

2 / 1 4

B
Operation

The timer changes when its two inputs (E
and C) are at 1. It behaves like a
downcounter.

• Current value %Ti.V decreases from the
preset %Ti.P to 0, by one unit on each
pulse of the time base TB.

• Output bit %Ti.R (Timer running)
assigned to output R is then at state 1
and output bit %Ti.D (Timer done)
assigned to output D is at state 0.

• When current value %Ti.V= 0, %Ti.D
changes to 1 and %Ti.R returns to 0.

Standard operations
The Timer function block can be
programmed to perform the following
functions :

• On-time delay
Ladder language

E 0 0 1 1

C 0 1 0 1

%Ti.P %Ti.V %Ti.V %Ti.V %Ti.V
= = frozen decr. from

%Ti.V %Ti.P %Ti.P %Ti.P -> 0

%Ti.D 0 0 0 1 if Timer
done

%Ti.R 0 0 0 1 if Timer
running

E

C

%Ti.V

%Ti.D

%Ti.R

%Ti.P

%I1.0 = E,C

R

PRESETPRESET

D = %Q2.0

Structured text language

IF %I1.0 THEN
START %T0 ;

ELSE
PRESET %T0 ;

END_IF ;
%Q2.0 := %T0.D ;

%T0

E D

C

MOD:N

%Q2.0%I1.0

%Ti.P = 3

R
TB =1mn

Description of advanced instructions 2

2 / 1 5

B

%T7

E D

C

MOD:N

%Q2.1%I1.1

%Ti.P = 120

R
TB =1s

% I1.1

E,C

R

PRESET

D

%Q2.1

%T5

E D

C

MOD:N

%Q2.4%I1.2

%Ti.P = 3

R
TB =1mn %Q2.5%I1.3

% I1.2 = E

%Q2.4 =D

%I1.3 = C

%Q2.5 = R
D1 D2 D3

PRESET = D1 + D2 + D3

• Off-time delay
Ladder language

Structured text language

 IF %1.1 THEN
PRESET %T7 ;

ELSE
START %T7 ;

END_IF ;
%Q2.1 := NOT %T7.D ;

• Cumulated on-time delay
Ladder language

Structured text language

IF %I1.2 THEN
IF %I1.3 THEN

START %T5 ;
ELSE

STOP %T5 ;
END_IF ;

ELSE
PRESET %T5 ;

END_IF ;
%Q2.4 := %T5.D ;
%Q2.5 := %T5.R ;

2 / 1 6

B
• Cumulated off-time delay

Ladder language

Structured text language

IF %I1.0 THEN
PRESET %T12 ;

ELSE
IF %I1.1 THEN

STOP %T12 ;
ELSE

START %T12 ;
END_IF ;

END_IF ;
%Q2.4 := NOT %T12.D ;

In Structured text language, 3 instructions are used to program the timer function blocks
%Ti :
• PRESET %Ti : Resets the timer,
• START %Ti : Starts the timer running,
• STOP %Ti : Freezes the current value of the timer.

Special cases
• Effect of a cold restart : (%S0 = 1) the preset value (defined by the variables editor)

is loaded into the current value and output %Ti.D is set to 0, since the preset value
which may have been modified by the terminal is lost.

• Effect of a warm restart : (%S1) has no effect on the current value of the timer.

• Effect of a PLC stop : a PLC stop, de-activation of the current task or execution of
a break point does not freeze the current value.

• Effect of a program jump : the fact of not scanning the rung where the timer block
is programmed does not freeze current value %Ti.V which continues to decrease to 0.
Similarly, bits %Ti.D and %Ti.R assigned to timer block outputs D and R continue to
operate normally and can thus be tested in another rung.
However, the coils directly "connected" to the block outputs will not be activated since
they are not scanned by the PLC.

• Testing bits %Ti.D and %Ti.R : the state of these bits can change during a scan.

%T12

E D

C

MOD:Y

%Q2.4%I1.0

%Ti.P = 40

R
TB =10mn%I1.1

E

%I1.1

C

R

D

% I1.0

%Q2.1

D1 D2 D3

PRESET = D1 + D2 + D3

Description of advanced instructions 2

2 / 1 7

B
2.3 Vertical comparison blocks

Vertical comparison blocks are used to
compare two operands (OP).

These two operands are either 16-bit words
(possibly indexed) or immediate values.

The number of vertical comparison blocks is neither limited nor numbered.

Characteristics

Command input EN At state 1, compares the two operands.

Greater than output > Is at state 1 if the contents of OP1 are greater than
those of OP2.

Equal to output = Is at state 1 if the contents of OP1 are equal to those
of OP2.

Less than output < Is at state 1 if the contents of OP1 are less than
those of OP2.

Different from output <> Is at state 1 if the contents of OP1 are different from
those of OP2.

Operand no.1 OP1 This operand is a single length word object (it can
be indexed).

Operand no.2 OP2 This operand is a single length word object (it can
be indexed).

EN

OP1

OP2

>

COMPARE

=

<

< >< >

2 / 1 8

B
Operation
When the command input is set to 1, the two operands are compared and the four
outputs are activated according to the result of the comparison. Setting the command
input to 0 resets the activated outputs.

• Example of use
The program below shows the comparison of word %MW2 indexed by word %MW40
with the immediate value 150.
If the contents of %MW2[%MW40] are greater than 150 and %I1.3 = 1, coil %Q2.7 is
activated.
If the contents are equal to 150, coil %MW10:X4 is activated. Coil %M5 is only
controlled if the contents are different from 150 (< or >).

Ladder language

This function block does not exist in
Instruction list language or Structured text
language. Use comparison operations >,
<, =, <>

Special cases

• Effect of a cold restart : (%S0) operand OP1 and possibly OP2 (if OP2 is an internal
word) are reset and the outputs are activated according to the result of their
comparison with the new values.

• Effect of a warm restart : (%S1) has no effect on the comparison block.

=

%Q2.7

<

%I1.3
>

< >

EN

%MW10:X4

%M5

%MW2
[%MW40]

150

Description of advanced instructions 2

2 / 1 9

B
2.4 Shift instructions

Shift instructions consist of moving bits of a word or double word operand a certain
number of positions to the right or to the left.

• Logic shift :

- SHL(op2,i) logic shift of i positions to
the left.
- SHR(op2,i) logic shift of i positions to
the right.

• Rotate shift :

- ROL(op2,i) rotate shift of i positions to
the left.
- ROR(op2,i) rotate shift of i positions to
the right.

If the operand to be shifted is a single
length operand, the variable i will be
between 1 and 16.
If the operand to be shifted is a double
length operand, the variable i will be
between 1 and 32.
The state of the last output bit is stored in
bit %S17.

Structure
Ladder language Instruction list language

LDR %I1.1
[%MW0 := SHL(%MW10,5)]

Structured text language

IF RE %I1.2 THEN
%MW10 := ROR (%KW9,8) ;

END_IF ;

Syntax
Operators SHL,SHR,ROL,ROR Op1:=Operator(Op2,i)

Operands

Type Operand 1 (Op1) Operand 2 (Op2)

Indexable words %MW %MW,%KW

Non-indexable words %QW,%SW,%NW, Immed.val.,%IW,%QW,%SW
%BLK %NW,%BLK,%Xi.T,Num. expr.

Indexable double words %MD %MD,%KD

Non-indexable double words %QD,%SD, Immed.val.,%ID,%QD,%SD
Numeric expr.

15 (or 31) 0

0%S17

%S17

0

0

%S17

%S17

15 (or 31)

%MW0:=SHL(%MW10,5)

%MW10:=ROR(%KW9,8)

%I1.2

P

%I1.1

P

2 / 2 0

B
2.5 Floating point instructions

2.5-1 General

PL7 Micro software is used to perform operations on floating point objects.

The floating point object format used is that of standard IEEE STD 734-1985 (equivalent to
IEC 559). Words are 32 bits long, which corresponds to single length floating point numbers.

Examples of floating point values : 1285.28 1.28528E3

Floating point values are between -3.402824E+38 and -1.175494E-38, and 1.175494E-38
and 3.402824E+38.
Representation is accurate to 2-24. When viewing floating point numbers, no more than
six digits can be displayed after the comma.

Notes

 • The value "1285" is interpreted as an integer value. To be considered as a floating
point value it must be written : "1285.0",

 • The conversion instructions Integer <--> Floating Point are used to change from one
format to the other.

Addressing floating point objects

Abbreviations Full Type of floating Access Indexed form
addressing point

Immed. val. - immediate values R -

%MF %MFi internal floating point val. R/W %MFi[%MWj]

%KF %KFi floating point constant R %KFi[%MWj]

Possibility of overlap between objects :
The single and double length and floating
point words are stored within the data area
in a single memory zone. Thus, floating
point word %MFi corresponds to single
length words %MWi and %MWi+1 (word
%MWi containing the least significant bits
and word %MWi+1 containing the most
significant bits of word %MFi).

Examples :
%MF0 corresponds to %MW0 and %MW1
%KF543 corresponds to %KW543 and
%KW544.

%MW0

%MW1

%MW2

%MW3

%MWi

%MWi+1

%MF0

%MF2

%MFi

%MF1

%MF3

Description of advanced instructions 2

2 / 2 1

B

%M0

%I1.2

%MF10>129.7

%MF20<%KF35

%MF30>=%MF40

%Q2.3

%Q2.2

%Q2.4

2.5-2 Floating point comparison instructions

Comparison instructions are used to compare two operands.

> : test if operand 1 is greater than operand 2.
>= : test if operand 1 is greater than or equal to operand 2.
< : test if operand 1 is less than operand 2.
<= : test if operand 1 is less than or equal to operand 2.
= : test if operand 1 is equal to operand 2.
<> : test if operand 1 is different from operand 2.
The result is 1 when the comparison requested is true.

Structure
Ladder language Instruction list language

LD [%MF10 > 129.7]
ST %Q2.3
LD %M0
AND [%MF20 < %KF35]
ST %Q2.2
LD %I1.2
OR [%MF30 >= %MF40]
ST %Q2.4

The comparison is executed inside square
brackets following instructions LD, AND
and OR.

The comparison blocks are programmed
in the test zone.

Syntax

Operators >,>=,<,<=,=,<> Op1 Operator Op2

Operands

Type Operands 1 and 2 (Op1 and Op2)

Indexable floating point objects %MF,%KF

Non-indexable floating point objects Floating point immediate value.
Floating point numeric expression.

Note

In Instruction language, comparison instructions can be used in parentheses.

Structured text language

%Q2.3 := %MF10 > 129.7 ;
%Q2.2 := (%MF20 < %KF35) AND %M0 ;
%Q2.4 := (%MF30 >= %MF40) OR %I1.2 ;

2 / 2 2

B

%I3.2

%I3.3

%MF10:=%KF100

%MF5:=%KF0[%MW20]

%MF100=150.25P

2.5-3 Floating point assignment instructions

The following floating point assignment operations can be performed :

• floating point (indexed) -> floating point (indexed) example 1

• floating point immediate value -> floating point (indexed) example 2

Structure
Ladder language Instruction list language

LD TRUE
[%MF10 := %KF100] example 1

LD %I3.2
[%MF5:= %KF0[%MW20]] example 1

LDR %I3.3
[%MF100:=150.25] example 2

Structured text language

%MF10 := %KF100 ; example 1
IF %I3.2 THEN

%MF5 := %KF0 [%MW20] ; example 1
END_IF ;
IF RE %I3.3 THEN

%MF100 := 150.25 ; example 2
END_IF ;

Syntax
Operator := Op1:=Op2

Operands

Type Operand 1 (Op1) Operand 2 (Op2)

Indexable floating points %MF,%KF

Non-indexable floating points Floating point immediate value.
Floating point numeric expr.

It is possible to execute multiple assignments.
Example : %MF0 := %MF2 := %MF4

2.5-4 Floating point arithmetic instructions

These instructions are used to perform arithmetic operations between two operands or
on one operand.

+ : add two operands SQRT : square root of an operand
- : subtract two operands ABS : absolute value of an operand
* : multiply two operands / : divide two operands

Description of advanced instructions 2

2 / 2 3

B

P

%I3.2

%I3.3

%MF0:=%MF10+129.7

%MF1:=SQRT(%MF10)

%M0

P %MF2:=ABS(%MF20)

Structure
Ladder language Instruction list language

LD %M0
[%MF0 := %MF10 + 129.7]

LD %I3.2
[%MF1 := SQRT(%MF10)]

LDR %I3.3
[%MF2 := ABS(%MF20)]

Structured text language

IF %M0 THEN
%MF0 := %MF10 + 129.7 ;

END_IF ;
IF %I3.2 THEN

%MF1 := SQRT (%MF10) ;
END_IF ;
IF RE %I3.3 THEN

%MF2 := ABS (%MF20) ;
END_IF ;

Syntax

Operators

• +,-,*,/ Op1:=Op2 Operator Op3

• SQRT, ABS Op1:=Operator(Op2)

Operands

Type Operand 1 (Op1) Operands 2 and 3 (Op2 and 3)

Indexable words %MF %MF,%KF

Non-indexable words Floating point immediate value.
Floating point numeric expression.

Rules for use
• Operations on floating points and on integers cannot be directly mixed.

Conversion operations convert to one or other of these formats (see section 2.6,
part B).

• System bit %S18 is controlled in the same way as for integer operations. It is set to 1 if :
- Capacity is exceeded during an operation.
- Division by 0 occurs.
- The square root of a negative value is extracted (see section 1.4-4, part B).

2 / 2 4

B
2.6 Numeric conversion instructions

2.6-1 BCD <--> Binary conversion instructions

There are six types of conversion instruction :

• BCD_TO_INT : 16-bit BCD number --> 16-bit integer conversion.
• INT_TO_BCD : 16-bit integer --> 16-bit BCD number conversion.
• DBCD_TO_DINT : 32-bit BCD number --> 32-bit integer conversion.
• DINT_TO_DBCD : 32-bit integer --> 32-bit BCD number conversion.
• DBCD_TO_INT : 32-bit BCD number --> 16-bit integer conversion.
• INT_TO_DBCD : 16-bit integer --> 32-bit BCD number conversion.

Review of the BCD code :
The BCD (Binary Coded Decimal) code represents a decimal digit (0 to 9) by coding 4
bits. A 16-bit word object can thus contain a number expressed in 4 digits (0≤ N ≤ 9999).

 Decimal 0 1 2 3 4 5 6 7 8 9

 BCD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

Example :

• Word %MW5 expresses the BCD value "2450" which corresponds to the binary
value : 0010 0100 0101 0000,

• Word %MW12 expresses the decimal value "2450" which corresponds to the binary
value : 0000 1001 1001 0010.

Word %MW5 is converted to word %MW12 by using instruction BCD_TO_INT.
Word %MW12 is converted to word %MW5 by using instruction INT_TO_BCD.

Structure
Conversion operations are performed as follows :

Ladder language Instruction list language

LD TRUE
[%MW0 := BCD_TO_INT(%MW10)]

LD %I1.2
[%MW10 := INT_TO_BCD(%KW9)]

Structured text language

%MW0 := BCD_TO_INT (%MW10) ;
IF %I1.2 THEN

%MW10 := INT_TO_BCD (%KW9) ;
END_IF ;

%MW0:=BCD_TO_INT(%MW10)

%MW10:=INT_TO_BCD(%KW9)

%I1.2

Description of advanced instructions 2

2 / 2 5

B

Application examples
The BCD_TO_INT instruction is used to process a setpoint value at PLC inputs via BCD
encoded thumbwheels.
The INT_TO_BCD instruction is used to display numeric values (for example, the result
of a calculation or the current value of a function block) on BCD coded displays.

Syntax
Operators (conversion of a 16-bit number)

• BCD_TO_INT Op1:=Operator(Op2)
INT_TO_BCD
INT_TO_DBCD

Operands

Type Operand 1 (Op1) Operand 2 (Op2)

Indexable words %MW %MW,%KW

Non-indexable words %QW,%SW,%NW, %BLK Immed. val.,%IW,%QW,%SW
%NW,%BLK,%Xi.T,Num. expr.

Indexable double words %MD

Non-indexable double words %QD, %SD

Syntax
Operators (conversion of a 32-bit number)

• DBCD_TO_DINT Op1:=Operator(Op2)
DINT_TO_DBCD
DBCD_TO_INT

Operands

Type Operand 1 (Op1) Operand 2 (Op2)

Indexable words %MW

Non-indexable words %QW,%SW,%NW, %BLK

Indexable double words %MD %MD, %KD

Non-indexable double words %QD, %SD Immed. val.,%ID,%QD,%SD
Numeric expr.

2 / 2 6

B

2.6-2 Integer <--> Floating point conversion instructions
There are four conversion instructions :
• INT_TO_REAL : integer word --> floating point conversion.
• DINT_TO_REAL : integer double word --> floating point word conversion.
• REAL_TO_INT : floating point word --> integer word conversion (the result is the

nearest algebraic value).
• REAL_TO_DINT : floating point word --> integer double word conversion (the result

is the nearest algebraic value).

Structure
Ladder language Instruction list language

LD TRUE
[%MF0 := INT_TO_REAL(%MW10)]

LD %I1.8
[%MD4 := REAL_TO_DINT(%MF9)]

Structured text language

%MF0 := INT_TO_REAL (%MW10) ;
IF %I1.8 THEN

%MD4 := REAL_TO_DINT (%MF9) ;
END_IF ;

Rules for use
• BCD-->Binary conversion

The BCD-->Binary conversion instructions ensure that the conversion operator is
applied to a BCD coded value. If the value is not a BCD coded value, system bit %S18
is set to 1 and the result gives the value of the first faulty 4-bit byte.
Eg : BCD_TO_INT(%MW2) where %MW2=4660 gives a result of 1234.

However, %MW2=242 (16#00F2) sets %S18 to 1 and the result is 15.

For the DBCD_TO_INT instruction, if the BCD number is greater than 32767, system
bit %S18 is set to 1 and value -1 is loaded in the result.

• Binary--> BCD conversion
The INT_TO_BCD instruction ensures that the conversion operator is applied to a
value between 0 and 9999 (or 0 and 9999 9999). If this is not the case, system bit %S18
is set to 1 and the result gives the value of the input parameter.
Eg : INT_TO_BCD(%MW2) where %MW2=2478 gives a result of 9336.

However, %MW2=10004 sets %S18 to 1 and the result is 10004.
For the INT_TO_DBCD instruction, if the input parameter is negative, system bit
%S18 is set to 1 and the result gives the value of the input parameter.

%MD4:=REAL_TO_DIN(%MF9)

%MFO:=INT_TO_REAL(%MW10)

%I1.8

Description of advanced instructions 2

2 / 2 7

B
Syntax
Operator Op1:=INT_TO_REAL (Op2)

Operands

Type Operand 1 (Op1) Operand 2 (Op2)
Indexable words %MW,%KW
Non-indexable words Immed. val.,%IW,%QW,%SW

%NW,%BLK,%Xi.T,Num. expr.
Indexable floating point words %MF

Example : integer word --> floating point word conversion : 147 --> 1.47e+02

Operator Op1:=DINT_TO_REAL (Op2)

Operands

Type Operand 1 (Op1) Operand 2 (Op2)
Indexable words %MD,%KD
Non-indexable words Val.imm.,%ID,%QD,%SD

Numerical expr.
Indexable floating point words %MF

Example : integer double word --> floating point word conversion : 68905 000 --> 6.8905e+07

Operator Op1:=REAL_TO_INT (Op2)
 Op1:=REAL_TO_DINT (Op2)

Operands
Type Operand 1 (Op1) Operand 2 (Op2)
Indexable words %MW
Non-indexable words %QW,%NW,%BLK
Indexable double words %MD
Non-indexable double words %QD
Indexable floating point words %MF,%KF
Non-indexable floating point words Floating point immed. value

Example : floating point word --> integer word conversion 5978.6 --> 5978
floating point word --> integer double word conversion -1235978.6 --> -1235979

Note : If, during conversion of a real word to an integer (or a real word to a whole double word),
the floating point value exceeds the limits of the word (or double word), bit %S18 is set to 1.

2 / 2 8

B

%MW0:=GRAY_TO_INT(%MW10)

2.6-3 Gray --> Integer conversion instructions
The instruction GRAY_TO_INT converts a word in Gray code to an integer (pure binary
code).

Review of Gray code : Gray or "reflected binary" code is used to code a changing
numeric value into a series of binary configurations which are distinguished from each
other by the change of state of a single bit. This code is used, for example, to avoid the
following random conditions : in pure binary code, the value 0111 changing to 1000 may
generate random values between 0 and 1000 since the bits do not change value at
exactly the same time.

Structure
Ladder language Instruction list language

LD TRUE
[%MW0 := GRAY_TO_INT(%MW10)]

Structured text language

%MW0 := GRAY_TO_INT (%MW10) ;

Syntax
Operator Op1:=GRAY_TO_INT(Op2)

Operands

Type Operand 1 (Op1) Operand 2 (Op2)

Indexable words %MW %MW,%KW

Non-indexable words %QW,%SW,%NW,%BLK Immed.val.,%IW,%QW,%SW
%NW,%BLK,%Xi.T,Num. expr.

0110 0111 1000 10010010 0011 0100 01010000 0001

0

Binary

Decimal 1 2 3 4 5 6 7 8 9

0101 0100 1100 11010011 0010 0110 01110000 0001Gray

Description of advanced instructions 2

2 / 2 9

B
2.7 Word table instructions

2.7-1 General

PL7 software is used to perform operations on tables of :

• words,
• double words,
• floating point words.

Word tables are sequences of adjacent
words of the same type and of a defined
length, L.

Example of word tables : %KW10:5

Type Format Maximum Size Write
address access

Internal words Single length %MWi:L i+L≤ Nmax (1) Yes
Double length %MDi:L i+L≤ Nmax-1 (1) Yes
Floating point %MFi:L i+L≤ Nmax-1 (1) Yes

Constant words Single length %KWi:L i+L≤ Nmax (1) No
Double length %KDi:L i+L≤ Nmax-1 (1) No
Floating point %KFi:L i+L≤ Nmax-1 (1) No

System words Single length %SW50:4 (2) - Yes

(1) Nmax = maximum number of words defined during software configuration.
(2) Only words %SW50 to %SW53 can be addressed in table form.

General rules for operations on tables
• Table operations are only performed on tables containing objects of the same type.
• Table operations can only be performed on a maximum of two tables.
• If the tables in an operation are of different sizes, the result table will correspond to the

smaller of the two tables.
• The user should avoid performing operations on tables which overlap (for example :

%MW100[20]:=%MW90[20]+%KW100[20]).
• Operations on two tables are performed on each element of the same position of the

two tables and the result is transferred to the element in the same position of the result
table.

• If during an operation between two elements, system bit %S18 is set to 1, the result
for this operation is then incorrect, but operations on the following elements will be
performed correctly.

• If one of the operands is a numeric expression it must be placed in parentheses.
• The position of the first word in the table corresponds to position 0.

16 bits%KW10

%KW14

2 / 3 0

B
2.7-2 Word table assignment

The following can be assigned to word tables :

• immediate value -> word table (indexed) example 1
double format immediate value -> double word table (indexed)
floating point immediate value -> floating point table (indexed)

Example 1 : %MW0 :5:= 100

• word (indexed) -> word table (indexed) example 2
double word (indexed) -> double word table (indexed)
floating point (indexed) -> floating point table (indexed)

Example 2 : %MW0 :5:= %MW11

• word table (indexed) -> word table (indexed) example 3
double word table (indexed) -> double word table (indexed)
floating point table (indexed) -> floating point table (indexed)

Example 3 : %MW0 :5:= %KW0:5

Note :
Multiple assignments are authorized in examples 1 and 2
(%MW0:4 := %MW10:6 := %MW100) but not in example 3.

%MW0

%MW4

100
100

100
100
100

100
%MW11

%MW0

%MW4

100
100

100
100
100

100

%MW0

%MW4

200
100

0
10
100

200
100

0
10
100

%KW0

%KW4

Description of advanced instructions 2

2 / 3 1

B

%I3.2

%I3.3

%MW0:5:=100

%MW0:5:=%MW11

%MW0:5:=%KW0:5P

Structure
Ladder language Instruction list language

LD TRUE
[%MW0 :5:= 100] example 1

LD %I3.2
[%MW0:5 := %MW11] example 2

Structured text language

IF RE %I3.3 THEN
%MW0:5 := %KW0:5 ; example 3

END_IF ;

Syntax
Operator := Op1 := Op2

Word tables

Type Operand 1 (Op1) Operand 2 (Op2)

Tables of indexable words %MW:L %MW:L,%KW:L

Indexable words %MW,%KW

Non-indexable words Immed.val.,%IW,%QW,%SW
%NW,%BLK,%Xi.T,Num. expr.

Double word tables

Type Operand 1 (Op1) Operand 2 (Op2)

Tables of indexable words %MD:L %MD:L,%KD:L

Indexable double words %MD,%KD

Non-indexable double words Immed.val.,%ID,%QD,
Numeric expr.

Floating point word tables

Type Operand 1 (Op1) Operand 2 (Op2)

Tables of floating point words %MF:L %MF:L,%KF:L

Indexable floating point words %MF,%KF

Non-indexable floating point Floating point immed.val.
words Floating point numeric expr.

Note :
Multiple assignments on tables are prohibited.

2 / 3 2

B
2.7-3 Arithmetic instructions on tables

These instructions are used to perform an arithmetic operation between two word table
(or word and word table) type operands.
+ : add * : multiply
- : subtract / : divide
REM : remainder of division

Structure
Ladder language Instruction list language

LD %M0
[%MW0:10:=%MW20:10+100]

LD %I3.2
[%MD50:5:=%KD0:5 + %MD0:5]

Structured text language

IF RE %I3.3 THEN
%MW0:10 := %KW0:10 * %MW20 ;

END_IF ;

Syntax

Operators

• +,-,*,/,REM Op1:=Op2 Operator Op3

Operands

Word tables

Type Operand 1 (Op1) Operands 2 & 3 (Op2 and 3)

Tables of indexable words %MW:L %MW:L,%KW:L

Indexable words %MW,%KW

Non-indexable words Immed.val.,%IW,%QW,%SW
%NW,%BLK,%Xi.T,Num. expr.

Double word tables

Type Operand 1 (Op1) Operands 2 & 3 (Op2 and 3)

Tables of indexable words %MD:L %MD:L,%KD:L

Indexable double words %MD,%KD

Non-indexable double words Immed.val.,%ID,%QD,
Numeric expr.

%I3.2

%I3.3

%MW0:10=%MW20:10+100

%MD50:5=%KD0:5+%MD0:5

%M0

P %MW0:10:=%KW0:10*%MW20

Description of advanced instructions 2

2 / 3 3

B

%I3.2

%I3.3

%MW0:5:=%KW0:5AND16#FF00

%MD0:10:=%KD5:10OR%MD50:10

%M0

P %MW100:50:=NOT%MW0:50

2.7-4 Logic instructions on tables

The associated instructions are used to perform a logic operation between two word
table (or word and word table) type operands.
AND : AND (bit-wise).
OR : Logic OR (bit-wise).
XOR : Exclusive OR (bit-wise).
NOT : Logic complement (bit-wise) of a table (only one operand).

Structure
Ladder language Instruction list language

LD %M0
[%MW0:5:=%KW0: 5 AND 16#FF00]

Structured text language

IF %I3.2 THEN
%MD0:10 := %KD5:10 OR %MD50:10 ;

END_IF ;
IF RE%I3.3 THEN

%MW100:50 := NOT %MW0:50 ;
END_IF ;

Syntax

Operators

AND, OR, XOR Op1:=Op2 Operator Op3

NOT Op1:=NOT Op2

Operands

Word tables

Type Operand 1 (Op1) Operands 2 & 3 (Op2 and 3)

Tables of indexable words %MW:L %MW:L,%KW:L

Indexable words %MW,%KW

Non-indexable words Immed.val.,%IW,%QW,%SW
%NW,%BLK,%XiT,Num. expr.

Double word tables

Type Operand 1 (Op1) Operands 2 & 3 (Op2 and 3)

Tables of indexable words %MD:L %MD:L,%KD:L

Indexable double words %MD,%KD,%SD

Non-indexable double words Immed.val.,%ID,%QD,
Numeric expr.

2 / 3 4

B
2.7-5 Summing function on tables

The SUM function adds together all the elements in a word table :
• If the table comprises single format words, the result is given in the form of a single

format word.
• If the table comprises double words, the result is given in the form of a double word.

Structure
Ladder language Instruction list language

LD %I3.2
[%MW5:=SUM(%MW32:12)]

Structured text language

%MD50 := SUM (%KD50:20) ;

Syntax
Function Res:=SUM(Tab)

Parameters

Word tables

Type Result (Res) Table (Tab)

Tables of indexable words %MW:L,%KW:L

Indexable words %MW

Non-indexable words %QW,%SW,%NW

Double word tables

Type Result (Res) Table (Tab)

Tables of indexable words %MD:L,%KD:L

Indexable double words %MD

Non-indexable double words %QD,%SD

Note :
Bit %S18 is set to 1 when the result exceeds the limits of the word or double word format depending
on the table operand.

Example %MW5:=SUM(%MW30:4)
%MW30= 10
%MW31= 20 %MW5=10+20+30+40=100
%MW32= 30
%MW33= 40

%MW5:=SUM(%MW32:12)

%MD50:=SUM(%KD50:20)

%I3.2

Description of advanced instructions 2

2 / 3 5

B

%MW5:=EQUAL(%MW20:7,%KW0:7,3)

%MW0:=EQUAL(%MD20:7,%KD0:7)

%I3.2

%I1.2

2.7-6 Table comparison function

The EQUAL function compares two tables element by element. If a difference is
detected, the position of the first elements which are not the same is given in the form
of a word. Otherwise, the value given is equal to -1. The third parameter provides the
position from which the comparison begins (example : 0 to start at the beginning). This
third parameter is optional. If it is omitted, the comparison is performed on all of the table.

Structure
Ladder language Instruction list language

LD %I3.2
[%MW5:=EQUAL(%MW20:7,%KW0:7,3)]

Structured text language

IF %I1.2 THEN
%MW0 := EQUAL (%MD20:7,%KD0:7) ;

END_IF ;

Syntax
Function Res:=EQUAL (Tab1,Tab2,position)

Parameters

Word tables

Type Result (Res) Table (Tab) Position

Tables of indexable words %MW:L,%KW:L

Indexable words %MW %MW,%KW

Non-indexable words %QW,%SW, Immed. val.%QW,
%NW %IW,%SW,%NW

%Xi.T,Num. expr.

Double word tables

Type Result (Res) Table (Tab) Position

Tables of indexable words %MD:L,%KD:L

Indexable double words %MD %MD,%KD

Non-indexable double words %QD,%SD Immed. val.%QD,
%ID,%SD
Numeric expr.

Note :
• The tables must be the same length.
• If the position parameter is greater than the size of the tables, the result is then equal to this position.

Example %MW5:=EQUAL(%MW30:4,%KW0:4,1)
0 %MW30= 10 %KW0= 20
1 %MW31= 20 %KW1= 20
2 %MW32= 30 %KW2= 30
3 %MW33= 40 %KW3= 60 ==> %MW33 ≠ %KW3==> %MW5= 3

2 / 3 6

B

%MW5:=FIND_EQW(%MW20:7,%KW0)

%MW0:=FIND_GTD(%MD20:7,%KD0)

%I3.2

%I1.2

2.7-7 Find functions on tables

There are six find functions :
• FIND_EQW : find the position in a word table of the first element equal to a given value.
• FIND_GTW : find the position in a word table of the first element greater than a given

value.
• FIND_LTW : find the position in a word table of the first element less than a given value.
• FIND_EQD : find the position in a double word table of the first element equal to a given

value.
• FIND_GTD : find the position in a double word table of the first element greater than

a given value.
• FIND_LTD : find the position in a double word table of the first element less than a

given value.

The result of these instructions is equal to the position of the first element found or to - 1
if the search is unsuccessful.

Structure
Ladder language Instruction list language

LD %I3.2
[%MW5:=FIND_EQW(%MW20:7,%KW0)]

Structured text language

IF %I1.2 THEN
%MW0:=FIND_GTD(%MD20:7,%KD0) ;

END_IF ;
Syntax
Function
FIND_EQW,FIND_GTW,FIND_LTW Res:=Function(Tab,Val)

Parameters

Word tables

Type Result (Res) Table (Tab) Value (Val)

Tables of indexable words %MW:L,%KW:L

Indexable words %MW %MW,%KW

Non-indexable words %QW,%SW Immed. val.%QW,
%NW %IW,%SW,%NW

%Xi.T,Num. expr.

Example %MW5:=FIND_EQW(%MW30:4,%KW0)
Position
0 %MW30= 10
1 %MW31= 20
2 %MW32= 30 ==> %KW0= 30 ==> %MW5= 2
3 %MW33= 40

Description of advanced instructions 2

2 / 3 7

B
Function
FIND_EQD,FIND_GTD,FIND_LTD Res:=Function(Tab,Val)

Parameters

Double word tables

Type Result (Res) Table (Tab) Value (Val)

Tables of indexable words %MD:L,%KD:L

Indexable (double) words %MW %MD,%KD

Non-indexable (double) words %QW,%SW Immed. val.%QD,
%ID,%SD
Numeric expr.

Example %MW5:=FIND_GTD(%MD30:4,%KD0)
Position
0 %MD30= 100000
1 %MD32= 200000 ==> %KD0= 250000 ==> %MW5= 2
2 %MD34= 300000
3 %MD36= 400000

2 / 3 8

B
2.7-8 Find maximum and minimum values function on tables

There are four find functions :

• MAX_ARW : find the maximum value in a word table.
• MIN_ARW : find the minimum value in a word table.
• MAX_ARD : find the maximum value in a double word table.
• MIN_ARD : find the minimum value in a double word table.

The result of these instructions is equal to the maximum (or minimum) value found in the
table.

Structure
Ladder language Instruction list language

LD %I3.2
[%MW5:=MAX_ARW(%MW20:7)]

Structured text language

IF %I1.2 THEN
%MD0 := MIN_ARD (%MD20:7) ;

END_IF ;
Syntax
Function
MAX_ARW,MIN_ARW Res:=Function(Tab)

Parameters

Word tables

Type Result (Res) Table (Tab)

Tables of indexable words %MW:L,%KW:L

Indexable words %MW

Non-indexable words %QW,%SW,%NW

Function
MAX_ARD,MIN_ARD Res:=Function(Tab)

Parameters

Double word tables

Type Result (Res) Table (Tab)

Tables of indexable words %MD:L,%KD:L

Indexable double words %MD

Non-indexable double words %QD,%SD

%MW5:=MAX_ARW(%MW20:7)

%MD0:=MIN_ARD(%MD20:7)

%I3.2

%I1.2

Description of advanced instructions 2

2 / 3 9

B

%MW5:=OCCUR_ARW%MW20:7,%KW0)

%MW0:=OCCUR_ARD(%MD20:7,200)

%I3.2

%I1.2

2.7-9 Number of occurrences of a value in a table

There are two find functions :

• OCCUR_ARW : searches a word table for the number of elements equal to a given
value.

• OCCUR_ARD : searches a double word table for the number of elements equal to a
given value.

Structure
Ladder language Instruction list language

LD %I3.2
[%MW5:=OCCUR_ARW(%MW20:7,%KW0)]

Structured text language

IF %I1.2 THEN
%MW0:=OCCUR_ARD(%MD20:7,200) ;

END_IF ;

Syntax
Function Res:=OCCUR_ARW(Tab,Val)

Parameters

Word tables

Type Result (Res) Table (Tab) Value (Val)

Tables of indexable words %MW:L,%KW:L

Indexable words %MW %MW,%KW

Non-indexable words %QW,%SW, Immed. val.%QW,
%NW %IW,%SW,%NW

%Xi.T,Num. expr.

Function Res:=OCCUR_ARD(Tab,Val)

Parameters

Double word tables

Type Result (Res) Table (Tab) Value (Val)

Tables of indexable words %MD:L,%KD:L

Indexable (double) words %MW %MD,%KD

Non-indexable (double) words %QW,%SW Immed. val.%QD,
%ID,%SD
Numeric expr.

2 / 4 0

B
2.7-10 Rotate shift function on tables

There are four shift functions :
• ROL_ARW : performs a rotate shift of

elements in word tables by n positions
from top to bottom.

• ROL_ARD : performs a rotate shift of
elements in double word tables by n
positions from top to bottom.

• ROR_ARW : performs a rotate shift of
elements in word tables by n positions
from bottom to top.

• ROR_ARD : performs a rotate shift of
elements in double word tables by n
positions from bottom to top.

Structure
Ladder language Instruction list language

LDR %I3.2
[ROL_ARW(%KW0,%MW20:7)]

Structured text language

IF RE%I1.2 THEN
ROR_ARD (2,%MD20:7) ;

END_IF ;
Syntax
Functions ROL_ARW,ROR_ARW Function(n,Tab)

Parameters
Word tables

Type Number of positions (n) Table (Tab)

Tables of indexable words %MW:L

Indexable words %MW,%KW

Non-indexable words Immed. val.%QW,%IW,%SW
%NW,%Xi.T,Numeric expr.

Functions ROL_ARD,ROR_ARD Function(n,Tab)

Parameters
Double word tables

Type Number of positions (n) Table (Tab)

Tables of indexable words %MD:L

Indexable words %MW,%KW

Non-indexable words Immed. val.%QW,%IW,%SW
%NW,%Xi.T,Numeric expr.

Note : If the value of n is negative or zero, no shift is performed.

0
1
2
4
5

0
1
2
4
5

ROL_ARW(%KW0,%MW20:7)

ROR_ARD(2,%MD20:7)

%I3.2

%I1.2

P

P

Description of advanced instructions 2

2 / 4 1

B

SORT_ARW(%MW20,MWO:6)

SORT_ARD(-1,%MD20:6)

%I3.2

%I1.2

2.7-11 Sort function on tables

There are two sort functions :
• SORT_ARW : sorts the elements of the word table into ascending or descending order

and stores the result in the same table.
• SORT_ARD : sorts the elements of the double word table into ascending or

descending order and stores the result in the same table.

Structure
Ladder language Instruction list language

LD %I3.2
[SORT_ARW(%MW20,%MW0:6)]

Structured text language

IF %I1.2 THEN
SORT_ARD (-1,%MD20:6) ;

END_IF ;

Syntax
Function SORT_ARW (dir.,Tab)

• The "direction" parameter determines the order of the sort : if the direction is ≥ 0, the
sort is performed in ascending order. If < 0, the sort is performed in descending order.

• The result (sorted table) is given in the Tab parameter (table to be sorted).

Parameters
Word tables

Type Direction of the sort Table (Tab)

Tables of indexable words %MW:L

Indexable words %MW,%KW

Non-indexable words Immed. val.%QW,%IW,%SW
%NW,Numeric expr.

Function SORT_ARD(dir.,Tab)

• The "direction" parameter determines the order of the sort : if the direction is ≥ 0, the
sort is performed in ascending order : if < 0, the sort is performed in descending order.

• The result (sorted table) is given in the Tab parameter (table to be sorted).

Parameters
Double word tables

Type Direction of the sort Table (Tab)

Tables of indexable words %MD:L

Indexable words %MW,%KW

Non-indexable words Immed. val.%QW,%IW,%SW
%NW,Numeric expr.

2 / 4 2

B
2.8 Character string instructions

2.8-1 Format of a string or table of characters

A character table is composed of a series of bytes in which a character string can be
stored. The size of the table is used to specify the maximum length of the character string
(up to 255 characters).

Example : %MB4:6 represents a table of 6 bytes
 containing a string of up to 6 characters.

The first byte at the beginning of a table must be even (it is not possible to enter a byte
table which starts with an odd byte, eg :%MB5:6).

Byte tables use the same memory zone as words %MW and %MD. There is therefore
a risk of overlap : see section1.2-4, part A.

The term character string represents all the characters between the start of the table and
the first string termination character encountered.

The NUL character (hexa code 00) is known as the String termination character. It is
symbolized by ∅ throughout this section.

Examples :

• The following table (of 12 elements) contains the character string 'ABCDE' (5 characters
long).

• The following table (of 10 elements) contains the character string 'ABCDEJKLMN'
(10 characters long).

The length of a character string is therefore determined either by the number of
characters before the string termination character ∅, or by the size of the table if no string
termination character is detected.

Notes :

System bit %S15 is set to 1 in the following cases :
• If, when writing a string in a table, the string is longer than the size of the table. (Impossible to

write the string termination character ∅).

• If the user attempts to access a character which is not in that string.

• Incorrect parameters :
Length to be deleted zero (DELETE function), length to be extracted zero (MID function), length
to be replaced zero (REPLACE function), search for a substring which is longer than the string
(FIND function).

'A' 'B' 'C' 'D' 'E' Ø 'J' 'K' 'L' 'M' 'N' 'O'

'A' 'B' 'C' 'D' 'E' 'J' 'K' 'L' 'M' 'N'

Description of advanced instructions 2

2 / 4 3

B

 %MB30:10:= 'set_to_run'
OPERATE

2.8-2 Character string assignment

This function is used to transfer a character string to a byte table of length L.

Structure
Ladder language Instruction list language

LD TRUE
[%MB30:10 := 'set_to_run']

Structured text language

%MB30:10:='set_to_run' ;

Example Transfer of the character string 'set_to_run' to a byte table 10
characters long

Syntax

Operator Op1:=Op2

Operands

Type Operand 1 (Op1) Operand 2 (Op2)

Byte tables %MB:L %MB:L,%KB:L
Immediate value

's' 'e' 't' '_' 't' 'o' '_' 'r' 'u' 'n'

%MB 30 31 32 33 34 35 36 37 38 39

2 / 4 4

B

'a' 'b' 'c' 'd' 'e' 'f' 'h' 'l' Ø 'k' 'w' 'z'

%MB 40 41 42 43 44 45 46 47 48 49 50 51

'a' 'b' 'c' 'd' 'e' 'f' 'g' 'l' Ø 'k' 'w' 'z'

%MB 20 21 22 23 24 25 26 27 28 29 30 31

The comparison is executed inside square
brackets after the instructions LD, AND
and OR.

%MB20:12< %MB40:12
COMPARE

%M10

2.8-3 Alphanumeric comparisons

These operators are used to compare two character strings contained in the byte tables
provided as parameters. Comparison is performed character by character.
The result is a bit which equals 1 if both strings satisfy the conditions determined by the
operator, character by character. Otherwise, the bit equals 0.

The order of characters is determined by the ASCII code table (ISO 646). For example,
string 'Z' is larger than string 'AZ' which is larger than the string 'ABC'.

Structure
Ladder language Instruction list language

LD [%MB20:12 < %MB40:12]
ST %M10

Comparison blocks are programmed in
the test zone.

 Structured text language

%M10 := %MB20:12 < %MB40:12 ;

Example : %MB20:12 < %MB40:12 ==> YES The result equals 1

 where

The elements after the termination character are not taken into account.

Syntax

Operator
 <, >, <=, >=, =, < > Op1 Operator Op2

Operands

Type Operand 1 (Op1) and Operand 2 (Op2)

Byte tables %MB:L,%KB:L, immediate value

Description of advanced instructions 2

2 / 4 5

B
2.8-4 Numeric <---> ASCII conversion functions

These functions are used to convert a numeric (or floating point) value to a character
string in ASCII code or vice versa.
The result of the conversion must be transferred to a PL7 object via an assignment
operation : byte table, single or double length word, floating point.

The conversions possible are :

INT_TO_STRING Binary -->ASCII conversion
DINT_TO_STRING Binary -->ASCII conversion
STRING_TO_INT ASCII-->Binary conversion
STRING_TO_DINT ASCII-->Binary conversion
REAL_TO_STRING Floating point -->ASCII conversion
STRING_TO_REAL ASCII-->Floating point conversion

Review of floating point format : ==> See section 2.5, part B

Review of the ASCII code :
All 256 alphanumeric and control characters can be coded on 8 bits.
This code, known as ASCII (American Standard Code for Information Interchange), is
compatible with the notion of bytes. Any tables of n bytes can therefore be formed by n
ASCII codes defining n characters.

2.8-5 Binary --->ASCII conversion

These functions are used to convert a numeric value (single or double length word) to
a character string in ASCII code.
Each digit, as well as the sign of the value provided as a parameter, is coded in ASCII
in an element of the result byte table.

• INT_TO_STRING function : The contents of a single length word can be between
-32768 and +32767, that is, 5 digits plus the sign. The result will therefore be a table
of 6 characters plus the string termination character. The sign '+' or '-' is stored in the
first character, the units in the sixth character, the tens in the fifth, and so on.

• DINT_TO_STRING function : The contents of a double length word can be between
-2147483648 and +2147483647, that is, 10 digits plus the sign. The result will
therefore be a table of 12 characters plus the string termination character. The sign
'+' or '-' is stored in the first character, the unit in the twelth character, the tens in the
eleventh, and so on. The second character is always '0'.

2 / 4 6

B

%MB10:7:= INT_TO_STRING(%MW20)
OPERATE

%MB2:13:= DINT_TO_STRING(%MD30)
OPERATE

'_' '0' '3' '7' '8' '2' Ø

%MB 10 11 12 13 14 15 16

'-' '0' '0' '2' '3' '4' '7' '1' '1' '0' '8' '4'

%MB 2 3 4 5 6 7 8 9 10 11 12 1 3

Ø

1 4

Structure
Ladder language Instruction list language

LD TRUE
[%MB10:7 := INT_TO_STRING (%MW20)]

Structured text language

%MB2:13:=DINT_TO_STRING (%MD30) ;

Example : Binary ---> ASCII conversion

 %MB10:7 := INT_TO_STRING (%MW20) where %MW20 = - 3782 in decimal

 ==> The result is stored in the following 7-byte table %MB10:7

Example : %MB2:13 := DINT_TO_STRING (%MD30) where %MD30 = - 234701084

Syntax

Operator result := INT_TO_STRING (value)

Operands

Type Result Value

6-byte tables %MB:7
+ string termination character

Indexable words %MW, %KW

Non-indexable words %IW,%QW,%SW,%NW
Immed. val., %Xi.T, Num. expr.

Operator result := DINT_TO_STRING (value)

Operands

Type Result Value

12-byte tables %MB:13
+ string termination character

Indexable double words %MD, %KD

Non-indexable double words %ID,%QD,%SD,
Immed. val., Numeric expr.

Description of advanced instructions 2

2 / 4 7

B
2.8-6 ASCII ---> Binary conversion

This function is used to convert a character string representing a numeric value into
binary code (result transferred to a single or double length word).
Each element of the table provided as a parameter represents the ASCII code of a
character. Authorized characters are digits and the characters '+' and '-'.
• STRING_TO_INT function : converts a string of 6 characters representing a numeric

value between -32768 and +32767. The first character must represent the sign and
the following characters the value. The second character represents the tens of
thousands, ..., and the sixth character the units. The value must be right-justified in the
string.

• STRING_TO_DINT function : converts a string of 12 characters representing a
numeric value between -2147483648 and +2147483647. The first character must
represent the sign and the following characters the value. The second is the character
'0', the third the thousands of millions,..., the twelfth the units. The value must be
right-justified in the string.

Structure

LD TRUE
[%MW13 := STRING_TO_INT (%MB20:7)]

Example : %MW13 := STRING_TO_INT (%MB20:7) where

Syntax

Operator result := STRING_TO_INT (string)
Operands

Type Result String

Indexable words %MW

Non-indexable words %QW,%SW,%NW.

6-byte tables %MB:7,%KB:7, Immed. val.
+ string termination character

Bit %S18 is set to 1 if the value described by the string is not between -32768 and +32767 or if one
of the 6 characters is incorrect.

Operator result := STRING_TO_DINT (string)
Operands

Type Result String

Indexable double words %MD

Non-indexable double words %QD,%SD

12-byte tables %MB:13,%KB:13, Immed. val.
+ string termination character

Bit %S18 is set to 1 if the value described by the string is not between -2147483648 and
+2147483647 or if one of the 12 characters is incorrect.

 %MW13:= STRING_TO_INT(%MB20:7)
OPERATE

'_' '0' '2' '3' '4' '7' Ø

%MB 20 21 22 23 24 25 2 6

 ==> result %MW13 = -2347 in decimal

2 / 4 8

B

 %MB20:15:=REAL_TO_STRING(%MF30)
OPERATE

2.8-7 Floating point ---> ASCII conversion

This function is used to convert a real numeric value contained in a floating point type
word to a character string coded in ASCII. The result is transferred to a table of 14 bytes
+ the string termination character.
Each digit in the value and the characters '+', '-', '.', 'e' and 'E' are coded in ASCII in an
element in the result table.
The sign of the value is located in the first character, the decimal point (.) in the third,
the exponent 'e' in the eleventh and the sign of the exponent in the twelfth.

Structure
Ladder language Instruction list language

LD TRUE
[%MB20:15 := REAL_TO_STRING (%MF30)]

Structured text language

%MB20:15 := REAL_TO_STRING (%MF30) ;

Example : %MB20:15 := REAL_TO_STRING (%MF30) where %MF30 = - 3.234718 e26

 ==> result

Syntax

Operator result := REAL_TO_STRING (value)

Operands

Type Result Value

14-byte tables %MB:15
+ string termination character

Indexable words %MF, %KF

Non-indexable words Immediate val., Num. expr.

Bit %S18 is set to 1 if the floating point value provided as a parameter is not between
- 3.402824e+38 and -1.175494e-38 or +1.175494e-38 and +3.402824e+38. In this
case, the value of the result is incorrect.

'-' '3' '.' '2' '3' '4' '7' '1' '8' '0' 'e' '+'

%MB 20 21 22 23 24 25 26 27 28 29 30 31

'2' '6' Ø

32 33 34

Description of advanced instructions 2

2 / 4 9

B

 %MF18:=STRING_TO_REAL(%MB20:14)
OPERATE

'-' '3' '.' '2' '3' '4' '7' '1' '8' '0' 'e' '+'

%MB 20 21 22 23 24 25 26 27 28 29 30 31

'2' '6' Ø

32 33 34

2.8-8 ASCII --> Floating point conversion

This function is used to convert a character string representing a real numeric value to
floating point (result transferred to a floating point type word).
Each element in the table provided as a parameter represents the ASCII code of one
character. Authorized characters are digits and the characters '+', '-', '.', 'e' and 'E'. The
string termination character is not used to determine the end of the string. This means
that the 14 characters of the table must all be correct.

The sign of the value must be located in the first character, the decimal point (.) in the
third, the 'e' in the eleventh and the sign of the exponent in the twelfth.
For example, the value 3.12 must be in the form '+3.1200000e+00'.

Structure
Ladder language Instruction list language

LD TRUE
[%MF18 := STRING_TO_REAL (%MB20:14)]

Structured text language

%MF18 := STRING_TO_REAL (%MB20:14) ;

Example : %MF18 := STRING_TO_REAL (%MB20:14)

 where

 ==> result %MF18 = - 3.234718e26

Syntax

Operator result := STRING_TO_REAL (string)

Operands

Type Result String

Indexable words %MF

14-byte tables %MB:14, %KB:14
Immediate value

Bit %S18 is set to 1 if the value described by the string is not between -3.402824e+38
and -1.175494e-38 or +1.175494e-38 and +3.402824e+38 or if one of the 14 characters
is incorrect.

2 / 5 0

B
2.8-9 Concatenation of two strings

This function allows concatenation of two character strings as defined by parameters.
The result is a byte table containing a character string.

Structure
Ladder language Instruction list language

LD TRUE
[%MB30:14 := CONCAT (%MB4:6, %MB14:9)]

Structured text language

%MB30:14 := CONCAT (%MB4:6, %MB14:9) ;

Example : %MB30:14 := CONCAT (%MB4:6, %MB14:9)

Syntax

Operator result :=CONCAT (string1, string2)

Operands

Type Result String 1 and 2

Byte tables %MB:L %MB:L,%KB:L, Immed. val.

• If the result table is too short, the result is truncated and system bit %S15 is
set to 1. %MB30:10 := CONCAT (%MB4:6, %MB14:9)

• If the result table is too long, termination characters '∅' are added to the string.
%MB30:15 := CONCAT (%MB4:6, %MB14:9)

 %MB30:14:=CONCAT(%MB4:6,% MB14:9)
OPERATE

'i' 'n' 'c' 'o' 'n' 't' 'e' 's' 't' 'a' 'b' 'l'

%MB 30 31 32 33 34 35 36 37 38 39 40 41

'e' Ø

42 43

Ø

 44

'i' 'n' 'c' 'o' 'n' 't' 'e' 's' 't' 'a' 'b' 'l'

%MB 30 31 32 33 34 35 36 37 38 39 40 41

'e' Ø

42 43

'i' 'n' 'c' 'o' 'n' Ø

%MB 4 5 6 7 8 9

't' 'e' 's' 't' 'a' 'b' 'l' 'e' Ø

%MB 14 15 16 17 18 19 20 21 22

'i' 'n' 'c' 'o' 'n' 't' 'e' 's' 't' 'a'

%MB 30 31 32 33 34 35 36 37 38 39

==> %S15 at 1

Description of advanced instructions 2

2 / 5 1

B

'i' 'n' 'c' 'o' 'n' 't' 'e' 's' 't' 'a' 'b' 'l'

%MB 30 31 32 33 34 35 36 37 38 39 40 41

'e' Ø

42 43

2.8-10 Deletion of a character substring

This function is used to delete a number of characters (zone length L), from a given
position (position of the first character to be deleted) in the string defined as a parameter.
The result is a byte table containing a character string.

Structure
Ladder language Instruction list language

LD TRUE
[%MB14: 9 := DELETE (%MB30:14, %MW2, %MW4)]

Structured text language

%MB14:9 := DELETE (%MB30:14, %MW2, %MW4) ;

Example : %MB14: 9 := DELETE (%MB30:14, %MW2, %MW4)
 with %MW2 = 5 (5 characters to be deleted) %MW4 = 3 (position =3)

Syntax

Operator result :=DELETE (string, length, pos)

Operands

Type Result String Length
pos (position)

Byte tables %MB:L %MB:L,%KB:L
Immediate val.

Indexable words %MW, %KW

Non-indexable words %IW,%QW,%SW,%NW
Immediate value, %Xi.T

Numeric expr.

Notes :

Some parameters may overlap depending on the indices of PL7 objects :
• Table containing the source string.
• Table containing the result string.
• Word containing the length to be deleted.
• Word containing the position of the first character to be deleted.

A negative length or position is interpreted as being 0. The position parameter starts at the value
1 which corresponds to the first position in the character string.

 %MB14:9:=DELETE(%MB30:14,% MW2,%MW4)
OPERATE

'i' 'n' 's' 't' 'a' 'b' 'l' 'e' Ø

%MB 14 15 16 17 18 19 20 21 22

2 / 5 2

B
If the result table is too long, termination characters ∅ are added to the string.

System bit %S15 is set to 1 in the following cases :

• The length to be deleted is zero, the output table is a copy of the source table.
• The position is greater than the length of the string, or the position of the first

termination character found is less than or equal to the position of the first character
to be deleted. The result is therefore an empty string.

• The position is equal to 0. The result table therefore contains an empty string.
• The result table is too short. It has therefore been truncated.

2.8-11 Insertion of a character substring

Insertion of the character substring defined by the second parameter (string2) in the
character string defined by the first parameter (string1).
The insertion is made in the first string, after the character in the location given by the
position parameter (Pos).
The result of the insertion is a new character string transferred to a byte table.

Structure
Ladder language Instruction list language

LD TRUE
[%MB2:14 := INSERT (%MB20:9, %MB30:6, %MW40)]

Structured text language

%MB2:14 := INSERT (%MB20:9, %MB30:6, %MW40) ;

Example : %MB2:14 := INSERT (%MB20:9, %MB30:6, %MW40)
where % MW40 := position 2

 %MB2: 14:=INSERT(%MB20:9,% MB30:6,%MW40)
OPERATE

'i' 'n' 's' 't' 'a' 'b' 'l' 'e' Ø

%MB 20 21 22 23 24 25 26 27 28

'c' 'o' 'n' 't' 'e' Ø

%MB 30 31 32 33 34 35

'i' 'n' 'c' 'o' 'n' 't' 'e' 's' 't' 'a' 'b' 'l'

%MB 2 3 4 5 6 7 8 9 10 11 12 13

'e' Ø

14 15

Description of advanced instructions 2

2 / 5 3

B
Syntax

Operator result :=INSERT (string1, string2, pos)

Operands

Type Result String 1 and 2 Pos (position)

Byte tables %MB:L %MB:L,%KB:L
Immed. value

Indexable words %MW, %KW

Non-indexable words %IW,%QW,%SW,%NW
Immediate value, %Xi.T
Numeric expr.

Notes :

The position parameter starts at the value 1 which corresponds to the first position in the character
string.

It is impossible to insert at the beginning of a string. In order to do this, use the CONCAT function.

If the table is too long, termination type characters must be added.

System bit %S15 is set to 1 in the following cases :

The value of the position parameter is negative or equal to 0. In this case, it is interpreted as being
0 and the result table contains an empty string (composed of termination characters).

The position provided as a parameter is greater than or equal to the length of the source string. The
result table then contains an empty string (composed of termination characters).
If the result table is too short, truncation occurs.

2 / 5 4

B
2.8-12 Replacement of a character substring

This function is used to replace a section of a character string defined in the source table
(string1) by a character substring defined in the replacement table (string2). The
replacement to be made is defined by the position (pos.) and length parameters. This
length corresponds to the length of the string which is removed and not to the
length of the substring which replaces it.

Structure
Ladder language Instruction list language

LD TRUE
[%MB2:13 := REPLACE (%MB20:12,
 %MB30:9, %MW40, %MW41)]

Structured text language

%MB2:13 := REPLACE (%MB20:12, %MB30:9, %MW40, %MW41) ;

Example : %MB2:13 := REPLACE (%MB20:12, %MB30:9, %MW40, %MW41)
where %MW40 = 3 (length=3) and %MW41 = 9 (position=9)

Syntax

Operator result := REPLACE (string1, string2, length, pos.)

Operands

Type Result String 1 and 2 Length
pos (position)

Byte tables %MB:L %MB:L,%KB:L
Immed. value

Indexable words %MW, %KW

Non-indexable words %IW,%QW,%SW,%NW
Immediate value,%Xi.T
Numeric expr.

 %MB2: 13:=REPLACE(%MB20:12,% MB30:9,
%MW40, %MW41)

OPERATE

String 1 'm' 'i' 's' 'e' '_' 'e' 'n' '_' 'r' 'u' 'n' Ø

%MB 20 21 22 23 24 25 26 27 28 29 30 31

's' 't' 'o' 'p' Ø 'r'

%MB 30 31 32 33 34 35

'u' 'n' Ø

36 37 38

String 2

'm' 'i' 's' 'e' '_' 'e' 'n' '_' 's' 't' 'o' 'p'

%MB 2 3 4 5 6 7 8 9 10 11 12 13

Ø

14

Description of advanced instructions 2

2 / 5 5

B
Notes :

The position parameter starts at the value 1 which corresponds to the first position in the character
string.

If the output table is too long, termination type characters are added to the string.

System bit %S15 is set to 1 in the following cases :

• If the value of the position parameter is negative or equal to 0. In this case, it is interpreted as being
0 and the result table contains an empty string (composed of termination characters).

• If the position provided as a parameter is greater than or equal to the length of the source string,
the result table then contains an empty string (composed of termination characters).

• If the result table is too short, truncation occurs.

• If the position of the first string termination character is less than or equal to the position of the first
character to be replaced, the output table is a copy of the source table up to the string termination
character and completed by termination characters.

2 / 5 6

B
2.8-13 Extraction of a character substring

This function is used to extract a number of characters from a source string provided as
a parameter (string).
The position of the first character to be extracted is determined by the position parameter
(pos), and the number of characters to be extracted is given by the length parameter.
The extracted string is stored in a byte table (result).

Structure
Ladder language Instruction list language

LD TRUE
[%MB14: 7 := MID (%MB30:13, %MW2, %MW4)]

Structured text language

%MB14:7 := MID (%MB30:13, %MW2, %MW4) ;

Example : %MB14: 7 := MID (%MB30:13, %MW2, %MW4)
where %MW2 = 4 (length), %MW4 = 9 (position)

 ==> result

Syntax

Operator result :=MID (string, length, pos)

Operands

Type Result String Length
pos (position)

Byte tables %MB:L %MB:L,%KB:L
Immed. value

Indexable words %MW,%KW

Non-indexable words %IW,%QW,%SW,%NW
Immediate value,%Xi.T
Numeric expr.

 %MB14:7:=MID(%MB30:13,% MW2,%MW4)
OPERATE

'm' 'i' 's' 'e' '_' 'e' 'n' '_' 's' 't' 'o' 'p'

%MB 30 31 32 33 34 35 36 37 38 39 40 41

Ø

42

's' 't' 'o' 'p' Ø Ø

%MB 14 15 16 17 18 19

Ø

20

Description of advanced instructions 2

2 / 5 7

B
Notes :

The position parameter starts at value 1 which corresponds to the first position in the character
string.

If the output table is too long, termination type characters are added to the result string.

If the length provided as a parameter is greater than the size of the source string, the result table
then contains the source string.

If the last element of the table or the string termination character is reached before the number of
characters defined by the length parameter has been extracted, extraction stops at this point.

System bit %S15 is set to 1 in the following cases :

• If the value of the length parameter to be extracted is negative or equal to 0. In this case, it is
interpreted as being 0 and the result table contains an empty string (composed of termination
characters).

• If the value of the position parameter for the beginning of the extraction is zero or greater than or
equal to the length of the table, or greater than or equal to the position of the first termination
character. In this case, the result table contains an empty string (composed of termination
characters).

• If the result table is too short, truncation occurs.

2 / 5 8

B

 %MB10:10:=LEFT(%MB30:13,% MW2)
OPERATE

'm' 'i' 's' 'e' '_' 'e' 'n' '_' 's' 't' 'o' 'p'

%MB 30 31 32 33 34 35 36 37 38 39 40 41

Ø

42

'm' 'i' 's' 'e' '_' 'e' 'n' '_' Ø Ø

%MB 10 11 12 13 14 15 16 17 18 19

2.8-14 Extraction of characters

Extraction of a number of characters the furthest to the left (LEFT) or furthest to the right
(RIGHT) in a source string provided as a parameter (string).
The number of characters to be extracted is defined by the length parameter.
The extracted string is stored in a byte table (result).

Structure
Ladder language Instruction list language

LD TRUE
[%MB10: 10 := LEFT (%MB30:13, %MW2)]

Structured text language

%MB10:10 := LEFT (%MB30:13, MW2) ;

 Example : %MB10: 10 := LEFT (%MB30:13, %MW2)
where %MW2 = 8 (length)

 ==> result

Syntax

Operator result :=LEFT (string, length)

result :=RIGHT (string, length)

Operands

Type Result String Length

Byte tables %MB:L %MB:L,%KB:L
Immed. value

Indexable words %MW,%KW

Non-indexable words %IW,%QW,%SW,%NW
Immediate value,%Xi.T
Numeric expr.

Description of advanced instructions 2

2 / 5 9

B
Notes :

If the output table is too long, termination type characters are added to the result string.

If the length provided as a parameter is greater than the size of the source string, the result table
then contains the source string.

System bit %S15 is set to 1 in the following cases :

• If the value of the length parameter to be extracted is negative or 0. In this case, the result table
contains an empty string (composed of termination characters).
• If the result table is too short, truncation occurs.

2 / 6 0

B
2.8-15 Comparison of two character strings

This function is used to compare two character strings. The result is a word containing
the position of the first different character.
If the two character strings are exactly the same, the result is -1.

Structure
Ladder language Instruction list language

LD TRUE
[%MW2 := EQUAL_STR (%MB18:14, %MB50:14)]

Structured text language

%MW2 := EQUAL_STR (%MB18:14, %MB50:14) ;

Example : %MW2 := EQUAL_STR (%MB18:14, %MB50:14) where

 ==> MW2 := 5

Syntax

Operator result :=EQUAL_STR (string1, string2)

Operands

Type Result String 1 and 2

Indexable words %MW

Non-indexable words %QW,%SW,%NW.

Byte tables %MB:L,%KB:L
Immediate value

Note :
A negative length or position is interpreted as being equal to 0.

Upper case letters are different from lower case letters.

 %MW2:= EQUAL_STR(%MB18:14, %MB 50:14)
OPERATE

'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'p' 'w' 'x'

%MB 18 19 20 21 22 23 24 25 26 27 28 29

'y' 'z'

30 31

'a' 'b' 'c' 'd' '?' 'f' 'g' 'h' Ø 'v' 'w' 'x'

%MB 50 51 52 53 54 55 56 57 58 59 60 61

'y' 'z'

62 63

Description of advanced instructions 2

2 / 6 1

B

 %MW2:= FIND(%MB18:14, %MB 50:4)
OPERATE

'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' Ø 'w' 'x'

%MB 18 19 20 21 22 23 24 25 26 27 28 29

'y' 'z'

30 31

'f' 'g' 'h' Ø

%MB 50 51 52 53

2.8-16 Search for a character substring

This function is used to search for the character substring defined by the second
parameter in the character string defined by the first parameter.
The result is a word containing the position in the first string of the beginning of the
substring searched for.
If the search is not successful, the result is -1.

Structure
Ladder language Instruction list language

LD TRUE
[%MW2 := FIND (%MB18:14, %MB50:4)]

Structured text language

%MW2 := FIND (%MB18:14, %MB50:4) ;

 Example : %MW2 := FIND (%MB18:14, %MB50:4) where

 ==> MW2 := 6 Indicates that the beginning of the string searched for is located
 from the sixth character onwards.

Syntax

Operator result :=FIND (string1, string2)

Operands

Type Result String 1 and 2

Indexable words %MW

Non-indexable words %QW,%SW,%NW.

Byte tables %MB:L,%KB:L
Immediate value

Note :

A negative length or position is interpreted as being equal to 0.

2 / 6 2

B
2.8-17 Length of a character string

This function gives the length of the character string provided as a parameter, that is,
the number of characters located before the termination character.

Structure
Ladder language Instruction list language

LD TRUE
[%MW2 := LEN (%MB20:14)]

Structured text language

%MW2 := LEN (%MB20:14) ;

 Example : %MW2 := LEN (%MB20:14) where

==> %MW2 = 7

Syntax

Operator result := LEN (string)

Operands

Type Result String

Indexable words %MW

Non-indexable words %QW,%SW,%NW.

Byte tables %MB:L, %KB:L,
Immediate value

 %MW2:= LEN (%MB20:14)
OPERATE

'a' 'b' 'c' 'd' 'e' 'f' 'g' Ø 'n' 'o' 'p' 'r'

%MB 20 21 22 23 24 25 26 27 28 29 30 31

Note :

If no termination character is found, the function gives the size of the table (see section 2.8-1).

Description of advanced instructions 2

2 / 6 3

B
2.9 Time management instructions : Date, Time of day, Duration

2.9-1 Parameter format

The Date, Time of day and Duration parameters used by these instructions correspond
to the standard formats defined by IEC standard 1131-3.

• Duration format (TIME type)

This format is used to code durations expressed in tenths of a second and corre-
sponds to the TIME format of the standard.

These values are displayed in the following way : sssssssss.d
which gives for example : 3674.3
for 1 hour, 1 minute, 14 seconds and 3 tenths of a second.

The value is coded on 32 bits (a double word) of which the limits are set at [0,
4294967295] tenths of a second, which represents approximately 13 years and
7 months.

• Data format (DATE type)

 This format is used to code the year, the month and the day. It corresponds to the
 DATE format of the standard.

 The value is displayed in the following way : yyyy-mm-dd
which gives for example : 1984-06-25

 The value is coded in BCD on 32 bits (a double word) with 3 fields :
 31 16 8 0 Year : 4 digits

Year Month Day Month : 2 digits
 Day : 2 digits
 Example :
 expressed in hexadecimal format

19h 84h 06h 25h = 1984-06-25

 Only values within the time period [1990-01-01, 2099-12-31] are permitted.

2 / 6 4

B
• Time of day format (TOD type)

 This format is used to code the hour, the minutes and the seconds. It corresponds to
the TIME_OF_DAY format of the standard.

 The value is displayed in the following way : hh:mm:ss
 which gives for example : 23:12:34

 The value is coded in BCD on 32 bits (a double word) with 3 fields :
 31 24 16 8 0 Hours : 2 digits (high-order word)

Hr Min Sec Minutes : 2 digits (high-order word)
Seconds : 2 digits (low-order word)

 Example :
 expressed in hexadecimal format

23h 12h 34h = 23:12:34

 Only values within the time period [00:00:00, 23:59:59] are permitted.

• Date and time format (DT type)

 This format is used to code the year, the month, the day, the hour, the minutes and the
 seconds. It corresponds to the DATE_AND_TIME format of the standard.

 The value is displayed in the following way : yyyy-mm-dd-hh:mm:ss
 which gives for example : 1984-06-25-23:12:34

 The value is coded in BCD on 64 bits (a 4-word table) :
 64 48 40 32 24 16 8 0

 Year Month Day Hr Min Sec

 Example :
 expressed in hexadecimal format

 1984h 06h 25h 23h 12h 34h

Only values within the time period [1990-01-01-00:00:00, 2099-12-31-
23:59:59] are permitted.

Description of advanced instructions 2

2 / 6 5

B
• Hour, Minute, Second Format (HMS type)
 This format, used exclusively by the function TRANS_TIME, is used to code
 the hour, the minutes and the seconds.

 The value is displayed in the following way : hh:mm:ss
 which gives for example : 23:12:34

 The value is coded in BCD on 32 bits (a double word) with 3 fields :
 31 16 8 0 Hours : 4 digits (high-order word)

Hr Min Sec Minutes : 2 digits (low-order word)
Seconds : 2 digits (low0order word)

 Example :
 expressed in hexadecimal format

 23h 12h 34h = 23:12:34

2.9-2 Use of system bits and words - General

System bit %S17 is set in the following cases :

• Result of an operation outside the permitted time period values.

• An input parameter cannot be interpreted and is not consistent with the required format
(DAT, DT or TOD).

• Operation on a Time of day (TOD) format leading to a change in the day.

• Access clash to the real-time clock.

System bit %S15 is set to 1 if a string written in a table is longer than the size of that table.

System words :

• %SD18 : absolute time counter is also used to perform time period calculations
(incremented every 1/10 of a second by the system).

• %SW49 to %SW53 can also be used to display dates (see section 3.2-2, part B).

2 / 6 6

B
2.9-3 Read system date

Reads the system date (Real-Time Clock) and transfers to the object given as a
parameter in the Date and time (DT) format.

Structure
Ladder language Instruction list language

LD %M6
[RRTC (%MW2:4)]

Structured text language

IF %M6 THEN
RRTC (%MW2:4) ;

END_IF ;

Example : RRTC (%MW2:4)
The result is transferred to the table of internal words which is 4 words long : %MW2 to
%MW5.

Syntax
Operator RRTC(date)

Operand

Type Date

4-word tables %MW:4
in date and time format

2.9-4 Update system date

Updates the system date (Real-Time Clock) and transfers to the object given as a
parameter in Date and time (DT) format.

Structure
Ladder language Instruction list language

LDR %M7
[%MW2:= 16#4300]
[%MW3:= 16#1732]
[%MW4:= 16#1124]
[%MW5:= 16#1995]
[WRTC (%MW2:4)]

 RRTC (%MW2:4)
OPERATE

%M6

%M7

%MW2:=16#4300
OPERATE

%MW3:=16#1732

%MW4:=16#1124

%MW5:=16#1995

P

OPERATE

OPERATE

OPERATE

 WRTC (%MW2:4)
OPERATE

Description of advanced instructions 2

2 / 6 7

B
Structured text language

IF RE %M7 THEN
%MW2 := 16#4300 ;
%MW3 := 16#1732 ;
%MW4 := 16#1124 ;
%MW5 := 16#1995 ;
WRTC (%MW2:4) ;

END_IF ;

Example : The new date is loaded into an internal word table, %MW2:4, which is 4 words
long and then sent to the system using the WRTC functions.

Syntax

Operator WRTC(date)

Operand

Type Date

4-word tables %MW:4, %KW:4
 in date and time format

2.9-5 Read date and stop code

Reads the date of the last PLC stop and the code specifying the cause of the stop (in
the fifth word, equivalent to %SW58. See section 3.2-2, part B).

Structure
Ladder language Instruction list language

LD %M7
[PTC (%MW4:5)]

Structured text language

IF %M7 THEN
PTC (%MW4:5) ;

END_IF ;

Example : PTC (%MW4:5)
The result is transferred to the table of internal words which is 5 words long : %MW4 to
%MW8.

Syntax
Operator PTC (date)

Operand

Type Date

5-word tables %MW:5
in date and time format

 PTC (%MW4:5)
OPERATE

%M7

2 / 6 8

B
2.9-6 Read day of the week

This function gives the current day of the week in the form of a digit from 1 to 7 which
is transferred to a word (1 = Monday, 2 = Tuesday, 3 = Wednesday, 4 = Thursday, 5 =
Friday, 6 = Saturday, 7 = Sunday).

Structure
Ladder language Instruction list language

LD %M7
[%MW5 := DAY_OF_WEEK()]

Structured text language

IF %M7 THEN
%MW5 := DAY_OF_WEEK () ;

END_IF ;

Example : %MW5 := DAY_OF_WEEK() %MW5 := 4 corresponds to Thursday

Syntax

Operator result :=DAY_OF_WEEK ()

Operand

Type Result

Indexable words %MW

Non-indexable words %QW, %SW, %NW

Note

If the function was unable to update the result following an access error to the
real-time clock, the result given is 0 and system bit %S17 is set to 1.

 %MW5:=DAY_OF_WEEK()
OPERATE

%M7

Description of advanced instructions 2

2 / 6 9

B
2.9-7 Add / Remove a duration at a date

Adds or removes a duration (in tenths of a second) (In2) at a sorce date (In1). The result
is a new date, transferred to a table of 4 words.

 ADD_DT () = Add a duration SUB_DT () = Remove a duration

Structure
Ladder language Instruction list language

LD %M7
[RRTC (%MW2:4)]
[%MD8 := 906]
[%MW2:4:= ADD_DT(%MW2:4, %MD8)]
[WRTC (%MW2:4)]

Structured text language

IF %M7 THEN
RRTC (%MW2:4) ;
%MD8 := 906 ;
%MW2:4 := ADD_DT (%MW2:4, %MD8) ;
WRTC (%MW2:4) ;

END_IF ;

Example : %MW2:4 := ADD_DT(%MW2:4, %MD8)
 %MW2:4 := Source date

 %MD8 := 906 (906 tenths of a second rounded to 1 min. 31 s)
 %MW2:4 := New date

Syntax

Operators result :=ADD_DT (In1, In2)

result :=SUB_DT (In1, In2)

%M7

RRTC (%MW2:4)
OPERATE

 %MD8:=906
OPERATE

%MW2:4:=ADD_DT(%MW2:4,%MD8)
OPERATE

 WRTC (%MW2:4)
OPERATE

2 / 7 0

B
Operands

Type Result In1(initial date) In2 (time period)

Table of four words %MB:4 %MW4:4, %KW:4
in the date and time format

Indexable double words %MD,%KD

Non-indexable double %ID,%QD
words Immediate value

Numeric expr.

Notes :

• The "duration" parameter (expressed in 1/10 of a second) will be rounded up or down so that the
date and time can be increased or decreased (precision to within one second).

- sssssssss.0 to sssssssss.4 rounded to sssssssss.0
- sssssssss.5 to sssssssss.9 rounded to sssssssss.0 + 1.0

• Provision must be made in the application to handle leap years.

• If the result of the operation is outside the permitted time period values, system bit %S17 is set
to 1 and the value of the result equals the minimum limit (for SUB_DT) or remains blocked at the
maximum (for ADD_DT).

• If the "source date" input parameter cannot be interpreted and is not consistent with the DT
(DATE_AND_TIME) format, system bit %S17 is set to 1 and the value of the result is
0001-01-01-000:00:00.

2.9-8 Add / Remove a duration at a time of day

Adds or removes a time period at a time of day. The result is a new time of day which
is transferred to a double word.

 ADD_TOD () = Add a duration SUB_TOD () = Remove a duration

Structure
Ladder language Instruction list language

LD %M7
[%MD8 := 906]
[%MD2 := ADD_TOD (%MD2, %MD8)]

%M7

%MD8:= 906
OPERATE

 %MD2:=ADD_TOD(%MD2,%MD8)
OPERATE

Description of advanced instructions 2

2 / 7 1

B
Structured text language

IF %M7 THEN
%MD8 := 906 ;
%MD2 := ADD_TOD (%MD2, %MD8) ;

END_IF ;

Example : %MD2 := ADD_TOD (%MD2, %MD8)
%MD2 := Initial time (eg. 12:30:00)
%MD8 := 906 (906 tenths of a second rounded to 1 min. 31 s)
%MD2 := New time (eg. 12:31:31)

Syntax

Operators result :=ADD_TOD (In1, In2)

result :=SUB_TOD (In1, In2)

Operands

Type Result In1(initial time) and In2 (time period)

Indexable double words %MD %MD,%KD

Non-indexable double %QD %ID,%QD
words Immediate value, Numeric expr.

result and In1 are in the TOD format and In2 is in the time period format.

Notes :

• The "time period" parameter (expressed in 1/10 of a second) will be rounded up or down so that
the date and time can be increased or decreased (precision to within one second).
- sssssssss.0 to sssssssss.4 rounded to sssssssss.0
- sssssssss.5 to sssssssss.9 rounded to sssssssss.0 + 1.0

• The day changes if the result of the operation is outside the permitted time period values. In this
case, system bit %S17 is set to 1 and the value of the result can be interpreted with a modulo
24:00:00.

• If the "time of day" input parameter cannot be interpreted in the TOD format, system bit %S17 is
set to 1 and the result is 00:00:00.

2 / 7 2

B

 %MD10:=DELTA_D(%MD2,%MD4)
OPERATE

%M7

2.9-9 Difference between two dates (no time)

This function is used to calculate the difference in days between two dates. The result,
given as an absolute value, is transferred to a double word.

Structure
Ladder language Instruction list language

LD %M7
[%MD10 := DELTA_D (%MD2, %MD4)]

Structured text language

IF %M7 THEN
%MD10 := DELTA_D (%MD2, %MD4) ;

END_IF ;

Example : %MD10 := DELTA_D (%MD2, %MD4)
 %MD2 := Date number1 (eg. 1994-05-01)
 %MD4 := Date number2 (eg. 1994-04-05)
==> %MD10 = 22464000 (==> difference = 26 days)

Syntax

Operator result :=DELTA_D (Date1,Date2)

Operands

Type Result Date 1 and 2

Indexable double words %MD %MD,%KD

Non-indexable double %QD %ID,%QD
words Immediate value, Numeric expr.

result is in the TIME format and Date 1 and 2 are in the DATE format.

The TIME format is defined to be accurate to within one tenth of a second. The DATE
format is defined to be accurate to within one day. The time difference calculated will
therefore be a multiple of 864000 (= 1day = 24 h x 60 min x 60 s x 10 tenths of a second).

Warning

• Overflow occurs if the result exceeds the maximum value permitted for a duration
(TIME). In this case, the result is 0 and system bit %S18 is set to 1.

• If one of the input parameters cannot be interpreted and is not consistent with the
DATE format, system bit %S17 is set to 1 and the result is 0.

Description of advanced instructions 2

2 / 7 3

B

 %MD10:= DELTA_D T(%MW2:4,%MW6:4)
OPERATE

2.9-10 Difference between two dates (with time)

This function is used to calculate the time difference between two dates. The result,
given as an absolute value, is transferred to a double word.

Structure
Ladder language Instruction list language

LD TRUE
[%MD10 := DELTA_DT (%MW2:4, %MW6:4)]

Structured text language

%MD10 := DELTA_DT (%MW2:4, %MW6:4) ;

Example : %MD10 := DELTA_DT (%MW2:4, %MW6:4)
 %MW2:4 := Date number1 (eg. 1994-05-01-12:00:00)
 %MW6:4 := Date number2 (eg. 1994-05-01-12:01:30)
==> %MD10 = 900 (==> difference = 1 minute and 30 seconds)

Syntax

Operator result :=DELTA_DT (Date1,Date2)

Operands

Type Result Date 1 and 2

Indexable double words %MD,

Non-indexable double %QD
words

4-word tables %MW:4, %KW:4
in DT format

result is in the TIME format and Date 1 and 2 are in the DT format.

The TIME format is defined to be accurate to within one tenth of a second. The DT format
is defined to be accurate to within one second. The time difference calculated will
therefore be a multiple of 10.

Warning

• Overflow occurs if the result exceeds the maximum value permitted for a duration
(TIME). In this case, the result is 0 and system bit %S18 is set to 1.

• If one of the input parameters cannot be interpreted and is not consistent with the
DT format, system bit %S17 is set to 1 and the result is 0.

2 / 7 4

B
2.9-11 Difference between two times

This function is used to calculate the time difference between two times of day. The result
is transferred to a double word as an absolute value, giving a duration.

Structure
Ladder language Instruction list language

LD TRUE
[%MD10 := DELTA_TOD (%MD2, %MD4)]

Structured text language

%MD10 := DELTA_TOD (%MD2, %MD4) ;

Example : %MD10 := DELTA_TOD (%MD2, %MD4)
 %MD2 := Time1 (eg. 02:30:00)
 %MD4 := Time2 (eg. 02:40:00)
==> %MD10 = 6600 (==> difference = 11 minutes)

Syntax

Operator result :=DELTA_TOD (Time1,Time2)

Operands

Type Result Time 1 and 2

Indexable double words %MD %MD,%KD

Non-indexable double %QD %ID,%QD
words Immediate value, Numeric expr.

result is in the TIME format and Time 1 and 2 are in the TOD format.

The TIME format is defined to be accurate to within one tenth of a second. The TOD
format is defined to be accurate to within one second. The time difference calculated will
therefore be a multiple of 10.

Attention

If one of the input parameters cannot be interpreted and is not consistent with the
TOD format, system bit %S17 is set to 1 and the result is 0.

 %MD10:= DELTA_TOD (%MD2,%MD4)
OPERATE

Description of advanced instructions 2

2 / 7 5

B
2.9-12 Convert a Date to a character string

This instruction converts a date to a character string (no time) in the format :
YYYY-MM-DD (10 characters). This string ends with the termination character ∅. Each
character Y,M,D represents a number.

Structure
Ladder language Instruction list language

LD TRUE
[%MB2:11 := DATE_TO_STRING (%MD40)]

Structured text language

%MB2:11 := DATE_TO_STRING (%MD40) ;

Example : %MB2:11 := DATE_TO_STRING (%MD40)
 %MD40 := DATE (eg. 1998-12-27)

 ==>

Syntax
Operator result :=DATE_TO_STRING(Date)

Operands

Type Result Date

11-byte tables %MB:11

Indexable double words %MD,%KD

Non-indexable double %ID,%QD
words Immediate value, Numeric expr.

Notes : If the input parameter (date) cannot be interpreted and is not consistent with the DATE
format, system bit %S17 is set to 1 and the function returns the string : ' **** - ** - ** ' . If the output
string is too short, truncation occurs and system bit %S15 is set to 1.

%MB2:8 := DATE_TO_STRING (%MD40)

 ==>

If the output string is too long, termination type characters ∅ are added to the string.

%MB2:12 := DATE_TO_STRING (%MD40)

 ==>

 %MB2:11:= DATE_TO_STRING(%MD40)
OPERATE

'1' '9' '9' '8' '-' '1' '2' '-' '2' '7'

%MB 2 3 4 5 6 7 8 9 10 11

Ø

12

'1' '9' '9' '8' '-' '1' '2' '-'

%MB 2 3 4 5 6 7 8 9

 ==> %S15 = 1

'1' '9' '9' '8' '-' '1' '2' '-' '2' '7' Ø

%MB 2 3 4 5 6 7 8 9 10 11 12

Ø

13

2 / 7 6

B
2.9-13 Convert a complete Date to a character string

This instruction converts a complete date (with time) to a character string in the format :
YYYY-MM-DD-HH:MM:SS (19 characters). This string ends with the termination
character ∅. Each character Y,M,D,H,M,S represents a number.

Structure
Ladder language Instruction list language

LD TRUE
[%MB2:20 := DT_TO_STRING (%MW50:4)]

Structured text language

%MB2:20 := DT_TO_STRING (%MW50:4) ;

Example : %MB2:20 := DT_TO_STRING (%MW50:4)
 %MW50:4 := Date and time (type DT) (eg. 1998-12-27-23:14:37)

Syntax

Operator result :=DT_TO_STRING(Date)

Operands

Type Result Date

20-byte tables %MB:20

4-word tables %MW:4, %KW:4
in DT format

Notes : If the input parameter (date) cannot be interpreted and is not consistent with the DT
format (DATE_AND_TIME), system bit %S17 is set to 1 and the function returns the string
' **** - ** -** - ** : ** : **'. If the output string is too short, truncation occurs and system bit %S15
is set to 1.

%MB2:8 := DT_TO_STRING (%MW50:4)

 ==>

• If the output string is too long, termination type characters ∅ are added to the string.

%MB2:21 := DT_TO_STRING (%MW50:4)
 ==>

 %MB2:20:= DT_TO_STRING(%MW50:4)
OPERATE

'1' '9' '9' '8' '-' '1' '2' '-' '2' '7'

%MB 2 3 4 5 6 7 8 9 10 11

'-' '2' '3' ':' '1' '4' ':' '3 '

12 13 14 15 16 17 18 19

'7' Ø

20 21

'1' '9' '9' '8' '-' '1' '2' '-'

%MB 2 3 4 5 6 7 8 9

 ==> %S15 = 1

'1' '9' '9' '8' '-' '1' '2' '-' '2' '7'

%MB 2 3 4 5 6 7 8 9 10 11

'-' '2' '3' ':' '1' '4' ':' '3 '

12 13 14 15 16 17 18 19

'7' Ø

20 21

Ø

22

Description of advanced instructions 2

2 / 7 7

B

LD TRUE
[%MB2:15 := TIME_TO_STRING (%MD40)]

 %MB2:15:=TIME_TO_STRING(%MD40)
OPERATE

'0' '0' '7' '6' '5' '4' ':' '3' '2' ':'

%MB 2 3 4 5 6 7 8 9 10 11

'1' '0' '.' '3' Ø

12 13 14 15 16

2.9-14 Convert a Duration to a character string

This instruction converts a time period (in the TIME format) to a character string.
 The format of the result can be broken down into hours, minutes, seconds and tenths
of a second over 15 characters : HHHHHH:MM:SS.D. This string ends with the
termination character ∅. Each character H,M,S,D represents a number.

The maximum time period corresponds to 119304 hours, 38 minutes, 49 seconds and
5 tenths of a second.

Structure
Ladder language Instruction list language

Structured text language

%MB2:15 := TIME_TO_STRING (%MD40) ;

Example : %MB2:15 := TIME_TO_STRING (%MD40)
where %MD40 := 27556330.3 (TIME format)

Syntax

Operator result :=TIME_TO_STRING(Duration)

Operands

Type Result Duration

15-byte tables %MB:15

Indexable double words %MD,%KD

Non-indexable double %ID,%QD
words Immediate value, Numeric expr.

Time period : is in the TIME format.

Note :
If the output string is too short, truncation occurs and system bit %S15 is set to 1.

%MB2:8 := TIME_TO_STRING (%MD40)

 ==>
'0' '0' '7' '6' '5' '4' ':' '3'

%MB 2 3 4 5 6 7 8 9

 ==> %S15 = 1

2 / 7 8

B

'0' '0' '7' '6' '5' '4' ':' '3' '2' ':'

%MB 2 3 4 5 6 7 8 9 10 11

'1' '0' '.' '3' Ø

12 13 14 15 16

Ø

17

If the output string is too long, termination type characters Ø are added to the string.

%MB2:16 := TIME_TO_STRING (%MD40)
 ==>

2.9-15 Convert a Time of day to a character string

This instruction converts a time of day (in the format TOD - TIME_OF_DAY) to a
character string in the format HH:MM:SS on 8 characters plus a termination character
∅. Each character H,M,S represents a number.

Structure
Ladder language Instruction list language

Structured text language

%MB2:9 := TOD_TO_STRING (%MD40) ;

Example : %MB2:9 := TOD_TO_STRING (%MD40)
where %MD40 := 23:12:27 (TOD format)

 ==>

Syntax

Operator result :=TOD_TO_STRING(time)

Operands

Type Result Time of day

9-byte tables %MB:9

Indexable double words %MD,%KD

Non-indexable double %ID,%QD
words Immediate value, Numeric expr.

time : is in the TOD format.

LD TRUE
[%MB2:9 := TOD_TO_STRING (%MD40)]

 %MB2:9:=TOD_TO_STRING(%MD40)
OPERATE

'2' '3' ':' '1' '2' ':' '2' '7'

%MB 2 3 4 5 6 7 8 9

Ø

10

Description of advanced instructions 2

2 / 7 9

B
Note :
If the output string is too short, truncation occurs and system bit %S15 is set to 1.

%MB2:8 := TOD_TO_STRING (%MD40) (where %MD40 := 23:12:27)

 ==>
'2' '3' ':' '1' '2' ':' '2' '7'

%MB 2 3 4 5 6 7 8 9

 ==> %S15 = 1

If the output string is too long, termination type characters Ø are added to the string.

%MB2:10 := TOD_TO_STRING (%MD40) (where %MD40 := 23:12:27)
 ==>

'2' '3' ':' '1' '2' ':' '2' '7'

%MB 2 3 4 5 6 7 8 9

Ø

10

Ø

11

2 / 8 0

B
2.9-16 Convert a Duration to HHHH:MM:SS

This instruction converts a duration (in the TIME format) to a number of hours-minutes-
seconds, HHHH:MM:SS. The limit values are [0000:00:00, 9999:59:59].

Structure
Ladder language Instruction list language

LD TRUE
[%MD100 := TRANS_TIME (%MD2)]

Structured text language

%MD100 := TRANS_TIME (%MD2) ;

Example : %MD100 := TRANS_TIME (%MD2)
where %MD2 := 86324873 tenths of a second

 ==> MD2

 values expressed in hexadecimal format

Syntax

Operator result :=TRANS_TIME(Duration)

Operands

Type Result Time period

Indexable double words %MD %MD,%KD

Non-indexable double %QD %ID,%QD

words Immediate value, Numeric expr.

result : is in the HMS format.
duration : is in the TIME format.

Notes :
The "duration" parameter (expressed in 1/10 of a second) will be rounded up or down to allow
conversion (accuracy to within one second).

- sssssssss.0 to sssssssss.4 rounded to sssssssss.0
- sssssssss.5 to sssssssss.9 rounded to sssssssss.0 + 1.0

The maximum converted time period can reach 10000 hours. This means that if the value of the
duration (TIME) provided as a parameter is greater than or equal to 360000000, it cannot be
converted. System bit %S15 is set to 1 and the result is 0000:00:00.

 %MD100:=TRANS_TIME(%MD2)
OPERATE

 31 16 8 0

 2 3 9 7 54 47

Description of advanced instructions 2

2 / 8 1

B
2.10 Bit table instructions

2.10-1 Copy one bit table to another bit table

This function copies one bit table into another bit table bit-wise.

Structure
Ladder language Instruction list language

LD TRUE
[%M10:5 := COPY_BIT (%M20:5)]

Structured text language

%M10:5 := COPY_BIT (%M20:5) ;

Syntax

Operator result :=COPY_BIT (Tab)

Operands

Type Result Table (tab)

Bit table %M:L, %Q:L, %I:L %M:L, %Q:L, %I:L, %Xi:L

Notes :
• The tables can be of different sizes. In this case, the result table contains the result of the function

executed on a length which is equivalent to the smallest table size, and the rest of the result table
is not modified.

• Beware of overlapping between the input table and the result table.

 %M10:5:=COPY_BIT(%M20:5)
OPERATE

2 / 8 2

B
2.10-2 Bit table logic instructions

Associated functions are used to execute a bit-wise logic operation between two bit
tables and load the result into another bit table.

• AND_ARX : logic AND (bit-wise).
• OR_ARX : logic OR (bit-wise).
• XOR_ARX : exclusive OR (bit-wise).
• NOT_ARX : logic complement (bit-wise) of a table.

Structure
Ladder language Instruction list language

LD TRUE
[%M10:7 := AND_ARX (%M20:7,
%M30:7)]

LD TRUE
[%M50:10 := NOT_ARX (%M60:10)]

Structured text language

%M10:7 := AND_ARX (%M20:7, %M30:7) ;
%M50:10 := NOT_ARX (%M60:10) ;

Syntax

Operator result := AND_ARX (Tab 1, Tab 2)
result := OR_ARX (Tab 1, Tab 2)
result := XOR_ARX (Tab 1, Tab 2)
result := NOT_ARX (Tab 1)

Operands

Type Result Table 1 and 2 (tab)

Bit table %M:L, %Q:L, %I:L %M:L, %Q:L, %I:L, %Xi:L

Notes :
• The tables can be of different sizes. In this case, the result table contains the result of the function

executed on a length which is equivalent to the smallest table size, and the rest of the result table
is not modified.

• Beware of overlapping between the input table and the result table.

%M10:7:= AND_ARX(%M20:7, %M30:7)
OPERATE

%M50:10:=NOT_ARX(%M60:10)
OPERATE

Description of advanced instructions 2

2 / 8 3

B
2.10-3 Copy from a bit table to a word table

This function copies bits from a bit table or part of a bit table to a word table (or double
word table).

Copying from the bit table is from a certain row (brow) for a number of bits (nbit).

Copying to the word table (or double word table) is from the row (wrow or drow) beginning
with the least significant bit of each word.

• BIT_W : Copies from a bit table to a word table.
• BIT_D : Copies from a bit table to a double word table.

Structure
Ladder language Instruction list language

LD TRUE
[%MW10:7 := BIT_W (%M20:29, 3, 22, 2)]

LD TRUE
[%MD10:4 := BIT_D (%M20:29, 3, 22, 1)]

Structured text language

%MW10:7 := BIT_W (%M20:29, 3, 22, 2) ;
%MD10:4 := BIT_D (%M20:29, 3, 22, 1) ;

Example : %MW10:7 := BIT_W (%M20:29, 3, 22, 2) ;

%MW10:7:= BIT_W(%M20:29, 3, 22, 2)
OPERATE

%MD10:4:=BIT_D(%M20:29, 3, 22, 1)
OPERATE

row 0

row 2

bit 15 bit 0

row 0

row 3 (brow)

Number of bits (nbit) :
16 + 6

%MW10:7

%M20:29

2 / 8 4

B
Syntax

Operator result := BIT_W (Tab, brow, nbit, wrow)
result := BIT_D (Tab, brow, nbit, drow)

Operands

Type Result Table (tab) brow - nbit
wrow or drow

Word tables %MW:L

Double word tables %MD:L

Bit tables %M:L, %Q:L, %I:L,
%Xi.L

Indexable words %MW, %KW

Non-indexable words %IW, %QW,
%SW, %NW, %Xi.T
Immediate value
Numeric expr.

Notes :
• If the number of bits to be processed is greater than the number of bits remaining in the table from

the row (brow), the function copies up to the last element in the table.
• If the number of bits to be copied is greater than the number of bits constituting the words

remaining in the result table, the function stops copying at the last element in the word table (or
double word table).

• A negative value in the brow, nbit, wrow or drow parameters is interpreted as zero.

Description of advanced instructions 2

2 / 8 5

B
2.10-4 Copy from a word table to a bit table

This function copies bits constituting all or part of a word table (or double word table) to
a bit table.

Copying from the word table (or double word table) is from a certain row word (wrow or
drow) for a number of words (nwd).

Copying to the bit table is from the row (brow) beginning with the least significant bit of
each word.

• W_BIT : Copies from a word table to a bit table.
• D_BIT : Copies from a double word table to a bit table.

Structure
Ladder language Instruction list language

LD TRUE
[%M20:36 := W_BIT (%MW10:7, 2, 2, 3)]

LD TRUE
[%M20:36 := D_BIT (%MD10:4, 1, 1, 3)]

Structured text language

%M20:36 := W_BIT (%MW10:7, 2, 2, 3) ;
%M20:36 := D_BIT (%MD10:4, 1, 1, 3) ;

Example : %M20:36 := W_BIT (%MW10:7, 2, 2, 3) ;

%M20:36:=W_BIT(%MW10:7,2,2,3)
OPERATE

%M20:36:=D_BIT(%MD10:4,1,1,3)
OPERATE

row 0

(wrow) row 2

bit 15 bit 0

row 0

row 3 (brow)%MW10:7

%M20:36

row 19

2 / 8 6

B
Syntax

Operator result := W_BIT (Tab, wrow, nwd, brow)
result := D_BIT (Tab, drow, nwd, brow)

Operands

Type Result Table (tab) wrow or drow
nwd - brow

Bit tables %M:L,%Q:L,%I:L

Word tables %MW:L,%KW:L

Double word tables %MD:L,%KD:L

Indexable words %MW, %KW

Non-indexable words %IW, %QW,
%SW, %NW, %Xi.T
Immediate value
Numeric expr.

Notes :
• If the number of bits to be processed is greater than the number of bits remaining in the table from

the row (wrow), the function copies up to the last element in the table.
• If the number of bits to be copied is greater than the number of bits remaining in the result table,

the function stops copying at the last element in the table.
• A negative value in the brow, nbit, wrow or drow parameters is interpreted as zero.

Description of advanced instructions 2

2 / 8 7

B
2.11 "Orphee" functions : shift, counter

2.11-1 Shifts on words with retrieval of shifted bits

These functions execute arithmetical shifts to the left or right for a number of shifts (nbit)
on a word or a double word (a).

After a shift operation, the value is loaded into (result) and the shifted bits are loaded into
(rest).

• WSHL_RBIT : Shift to left on a word with retrieval of shifted bits.
• DSHL_RBIT : Shift to left on a double word with retrieval of shifted bits.
• WSHRZ_C : Shift to right on a word with filling of spaces by 0 and retrieval of

shifted bits.
• DSHRZ_C : Shift to right on a double word with filling of spaces by 0 and retrieval

of shifted bits.
• WSHR_RBIT : Shift to right on a word with extension of sign and retrieval of shifted

bits.
• DSHR_RBIT : Shift to right on a double word with extension of sign and retrieval of

shifted bits.

Structure
Ladder language Instruction list language

LD TRUE
[WSHL_RBIT(%MW20,%MW30,%MW21,%MW10)]

LD TRUE
[WSHRZ_C(%MW20,%MW30,%MW21,%MW10)]

LD TRUE
[DSHR_RBIT(%MD30,%MW40,%MD20,%MD10)]

Structured text language

WSHL_RBIT (%MW20,%MW30,%MW21,%MW10) ;

WSHRZ_C (%MW20,%MW30,%MW21,%MW10) ;

DSHR_RBIT (%MD30,%MW40,%MD20,%MD10) ;

WSHL_RBIT(%MW20,%MW30,%MW21,%MW10)
OPERATE

WSHRZ_C(%MW20,%MW30,%MW21,%MW10)
OPERATE

DSHR_RBIT(%MD30,%MW40,%MD20,%MD10)
OPERATE

2 / 8 8

B
Example :

WSHL_RBIT(%MW20,%MW30,%MW21,%MW10) where %MW30 = 4

WSHRZ_C(%MW20,%MW30,%MW21,%MW10) where %MW30 = 4

DSHR_RBIT(%MD30,%MW40,%MD20,%MD10) where %MW40 = 6

Syntax
Operator WSHL_RBIT (a, nbit, result, rest)

WSHRZ_C (a, nbit, result, rest)
WSHR_RBIT (a, nbit, result, rest)

Operands

Type a nbit result
rest

Indexable words %MW,%KW %MW,%KW %MW

Non-indexable words %IW, %QW, %IW, %QW, %QW, %SW,%NW
%SW, %NW %SW, %NW, %Xi.T
Immediate value Immediate value
Numeric expr. Numeric expr.

1111 0110 1000 0000

Fill bits using zero

0000 0000 0000 0001 0001 1111 0110 1000

rest = %MW10 A = %MW20

Copy shifted bits

result = %MW21

1000 0000 1111 0001 0001 0000 0000 0000

a = %MW20 rest = %MW10

Copy shifted bits

Fill bits using zero

0000 1000 0000 1111

result = %MW21

0000 0000 11 00 1111

Copy shifted bits

1000 0000 1111 0001 0000 0000 0000 0000

a = %MD30 rest = %MD10

0000 0000 00 00 1111

MSB

LSB

MSB

LSB

result = %MD20

1100 0100 0000 0011

keep sign

propagate sign bit in
bits freed by shift operation

1 111 11 10 0000 0011

MSB

LSB

Description of advanced instructions 2

2 / 8 9

B
Syntax

Operator DSHL_RBIT (a, nbit, result, rest)
DSHRZ_C (a, nbit, result, rest)
DSHR_RBIT (a, nbit, result, rest)

Operands

Type a nbit result
rest

Indexable double words %MD,%KD %MD

Non-indexable double words %ID,%QD,%SD %QD,%SD
Immediate value
Numeric expr.

Indexable words %MW, %KW

Non-indexable words %IW, %QW,
%SW, %NW, %Xi.T
Immediate value
Numeric expr.

Notes :
• If the parameter (nbit) is not between 1 and 16 for shifts on words, or between 1 and 32 for shifts

on double words, the outputs (result) and (rest) are not significant and system bit %S18 is set to 1.

2 / 9 0

B
2.11-2 Up/down counting with indication of over/underflow

This function executes up/down counting with an indication of an over/underflow. The
function is only executed when the enable input (en) is at 1.

Two independent inputs (cu and cd) are used to upcount and downcount events. Output
(Qmin) is set to 1 when the minimum threshold (min) is reached and output (Qmax) is
set to 1 when the maximum threshold (max) is reached.

The initial counter value is fixed by parameter (pv) and the current counter value is given
by parameter (cv).

A 16-bit word (mwd) is used to store the state of the cu and cd inputs (bit 0 to store cu
and bit 1 to store cd).

Structure
Ladder language Instruction list language

LD TRUE
[SCOUNT(%M9,%MW10,%M11,%M12,%MW11,
%MW12,%M16,%M10,%MW15,%MW20)]

Structured text language

SCOUNT(%M9,%MW10,%M11,%M12,%MW11,%MW12,%M16,%M10,%MW15,%MW20) ;

Example :
SCOUNT (%M9,%MW10,%M11,%M12,%MW11,%MW12,%M16,%M10,%MW15,%MW20)

where %MW10 (pv) = 5, %MW11 (min) = 0, %MW12 (max) = 7

SCOUNT (%M9,%MW10,%M11,%M12,%MW11,
%MW12,%M16,%M10,%MW15,%MW20)

OPERATE

5 4 5 6 5 6 7 5

en : %M9

cd : %M12

mcd : %MW20:X1

cu : %M11

mcu : %MW20:X0

Qmax : %M10

Qmin : %M16

cv = %MW15

Description of advanced instructions 2

2 / 9 1

B
Syntax

Operator SCOUNT (en, pv, cu, cd, min, max, Qmin, Qmax, cv, mwd)

Operands

Type en, cu, cd Qmin, Qmax pv, min, max cv, mwd

Bits %I,%Q,%M,%S, %I,%Q,%M
%BLK,%.:Xk

Indexable words %MW,%KW %MW

Non-indexable words %IW, %QW, %QW,%SW
%SW, %NW, %NW
%Xi.T, Immed. val.
Numeric expr.

Notes :
• If (en) = 0 then the function is no longer enabled and on each call, there is :

Qmin = Qmax = 0
mcu = mcd = 0
cv = pv

• If max > min then :
cv ≥ max ---> Qmax = 1 and Qmin = 0
min < cv < max ---> Qmax = Qmin = 0
cv ≤ min ---> Qmax = 0 and Qmin = 1

• If max < min then :
max ≤ cv ≤ min ---> Qmax = 1 and Qmin = 0
cv < max ---> Qmax = 0 and Qmin = 1
cv > min ---> Qmax = 1 and Qmin = 0

• If max = min then :
cv < min and max ---> Qmax = 0 and Qmin = 1
cv ≥ min and max ---> Qmax = 1 and Qmin = 0

• Modifiying parameter (pv) with (en) at 1 has no effect on operation.
• A negative value for parameters (pv) and (min) is interpreted as a zero value.
• A value less than 1 for parameter (max) is interpreted as 1.

2 / 9 2

B

System bits and words 3

3 / 1

B

B

Section 3
3 System bits and words

3.1 System bits

3.1-1 List of system bits

Bit Function Init. state Control (1)

%S0 1 = cold start (power return 0 S or U->S
with loss of data)

%S1 1 = warm restart (power return no 0 S or U->S
loss of data)

%S4,%S5,
%S6,%S7 Time base 10ms, 100ms, 1s, 1mn - S

%S8 Wiring test 1 U
(can be used on a non-configured TSX 37 PLC)

%S9 1 = force PLC outputs into fallback position 0 U

%S10 0 = I/O fault 1 S

%S11 1 = watchdog overflow 0 S

%S13 1 = first scan after setting to RUN - S

%S15 1 = character string fault 0 S->U

%S16 0 = task I/O fault 1 S->U

%S17 1 = overflow 0 S->U

%S18 1 = overflow or arithmetic error 0 S->U

%S19 1 = task period overflow 0 S->U

%S20 1 = index overflow 0 S->U

%S21 1 = Grafcet initialization 0 S or U->S

%S22 1 = Grafcet resetting 0 U->S

%S23 1 = Grafcet preposition and freeze 0 U->S

%S26 1 = table overflow (steps/transitions) 0 S

%S30 1 = activation of the master task 1 U

%S31 1 = activation of the fast task 1 U

%S38 1 = enable events 1 U

%S39 1 = saturation of event processing 0 S->U

%S40 to %S47 1 = I/O fault of a TSX 57 rack 1 S

%S49 1 = reset tripped solid state outputs 0 U

%S50 1 = set real-time clock 0 U

%S51 1 = loss of real-time clock time 0 S

(1) See next page.

3 / 2

B
Bit Function Init. state Control (1)

%S59 1 = enable adjustment of current date 0 U

%S66 1 = battery indicator always off 0 U

%S67 0 = memory cartridge battery operating - S

%S68 0 = backup battery (processor) operating - S

%S69 1 = enable WORD memory display 0 U
mode on displays

%S70 1 = update data on As-i bus or TSX Nano 0 S->U
link

%S73 (2) 1 = switch to protected mode on AS-i bus 0 U->S

%S74 (2) 1 = save configuration on AS-i bus 0 U->S

%S80 1 = reset message counters 0 S->U

%S90 1 = update common words 0 S->U

%S96 (2) 0 = application program backup invalid 0 S->U
1 = application program backup valid

%S97 (2) 0 = %MW backup invalid - S
1 = %MW backup valid

%S98 (2) 1 = replace TSX SAZ 10 module pushbutton 0 U
with discrete input

%S99 (2) 1 = replace centralized display block pushbutton 0 U
with discrete input

%S100 Terminal port protocol - S

(1) S = controlled by the system, U = controlled by the user, U->S = set to 1 by the user, reset to
0 by the system, S->U = set to 1 by the system, reset to 0 by the user.

(2) only on TSX 37.

System bits and words 3

3 / 3

B

B
3.1-2 Detailed description of system bits

TSX 37 and TSX 57 PLCs have %Si system bits which indicate the status of the PLC
or enable the user to intervene in its operation.
These bits can be tested in the user program in order to detect any operating event which
requires special processing. Some of them must be rest to their initial or normal state
by the program. However, the system bits which have been reset to their initial or normal
state by the system must not be reset by the program or the terminal.

System Function Description
bits

%S0 Cold Normally at 0. It is set to 1 by :
start • A power return with loss of data (battery fault).

• The user program.
• The terminal.
• Changing a cartridge.
• Pressing the RESET button.
This bit is set to 1 during the first complete scan. It is reset to 0
before the next scan.
Operation : see part A, section 1.4.

%S1 Warm Normally at 0. It is set to 1 by :
restart • A power return with saving of data.

• The user program.
• The terminal.
It is reset to 0 by the system at the end of the first complete scan
and before the outputs are updated.
Operation : see part A, section 1.4.

Time Changes in the state of these bits are controlled by an internal
base clock. They are not synchronized with the PLC scan.

%S4 10ms
%S5 100ms
%S6 1s Example : %S4
%S7 1min

%S8 Wiring Normally at 1, this bit is used to test the wiring when the TSX 37
test PLC is in the "not configured" state.
• At state 1 the outputs are forced to 0.
• At state 0 the outputs can be modified by an adjustment terminal.

 %S9 Placing outputs Normally at 0. It can be set to 1 by the program or by the terminal :
in fallback • At state 1 PLC outputs are forced into fallback position.
position • At state 0 outputs are updated normally.

 %S10 I/O Normally at 1. It is set to 0 when an I/O fault is detected on the base
fault or extension PLC (configuration fault, exchange fault, hardware

fault). Bit %S10 is reset to 1 when the fault disappears.

5ms 5ms

3 / 4

B
System Function Description
bits

 %S11 Watchdog Normally at 0. It is set to 1 by the system when the execution of a
overflow task exceeds the maximum execution time (watchdog) declared

during configuration.
Watchdog overflow causes the PLC to change to STOP and the
application stops in error mode (ERR indicator lamp flashing).

%S13 First Normally at 0. It is set to 1 by the system during the first scan after
scan the PLC has been set to RUN.

%S15 Character Normally at 0. It is set to 1 when the destination zone of a
string fault character string transfer is not sufficiently large to receive that

character string. This bit must be reset to 0 by the user.

%S16 Task I/O Normally at 1. It is set to 0 by the system if a fault occurs in an I/O
fault module configured in the task. This bit must be reset to 1 by the

user. This task controls its own %S16 bit.

%S17 Output bit on Normally at 0. It is set to 1 by the system :
shift or • During a shift operation. It contains the state of the last bit.
arithmetic • If overflow occurs in a non-signed arithmetic operation (dates).
carry This bit must be reset to 0 by the user.

%S18 Arithmetic Normally at 0. It is set to 1 in the case of overflow during a
overflow or 16-bit operation, where :
error • Result is greater than + 32767 or less than - 32768 for single

length operations.
• Result is greater than + 2 147 483 647 or less than

- 2 147 483 648 for double length operations.
• Result is greater than +3.402824E+38 or less than

-3.402824E+38 for floating point operations (software version > 1.0).
• Capacity overflow in DCB.
• Division by 0.
• The square root of a negative number.
• Forcing to a non-existent step on a drum controller.
• Stacking a full register and unstacking an empty register.
It must be tested by the user program after each operation where
there is a risk of overflow, then reset to 0 by the user if an
overflow occurs.

%S19 Task Normally at 0. It is set to 1 by the system in the event of a scan
period period overrun (task scan time greater than the period defined by
overrun the user during configuration or programmed in word %SW
(periodic associated with the task).
scan) This bit is reset to 0 by the user.

Each task controls its own %S19 bit.

System bits and words 3

3 / 5

B

B
System Function Description
bits

%S20 Index Normally at 0. It is set to 1 when the address of the indexed object
overflow becomes less than 0 or exceeds the number of objects declared

during configuration.
It must be tested by the user program after each operation where
there is a risk of overflow, then reset to 0 by the user if an overflow
occurs.

%S21 Grafcet This bit is controlled by the user to initialize the Grafcet (preferably
initialization set to 1 during preprocessing). It is reset to 0 by the system after

Grafcet initialization (at the end of preprocessing, during
assessment of the new Grafcet state). Grafcet initialization
involves deactivating all active steps and activating initial steps.
On a cold start, this bit is set to 1 by the system during
preprocessing.

%S22 Resetting Normally at 0, this bit can only be set to 1 by the program during
Grafcet preprocessing.

At state 1, it causes all Grafcet steps to deactivate. It is reset to 0 by
the system after acknowledgment of the end of the preprocessing.

%S23 Grafcet Normally at 0, setting %S23 to 1 causes the Grafcet state
freezing to be maintained. Whatever the value of the transition conditions

upstream of the active steps, the Grafcet chart does not change.
Freeze is maintained as long as bit %S23 is set to 1.
This bit is controlled by the user program. It is set to 1 or 0 only
during preprocessing.

%S26 Table Normally at 0, it is set to 1 by the system when activation
overflow capacities (steps or transitions) are exceeded or when trying to
(steps/ execute an incorrectly defined chart (such as a destination
transitions) connector to a step which is not part of the chart). An overflow

causes the PLC to STOP.
This bit is reset to 0 when the terminal is initialized.

%S30 Master task Normally at 1. If it is set to 0 by the user, the master task is
activation/ deactivated.
deactivation

%S31 Fast task Normally at 1. If it is set to 0 by the user, the fast task is
activation deactivated.

%S38 Enable/ Normally at 1. If it is set to 0 by the user, events are disabled.
disable
events

%S39 Saturation This bit is set to 1 by the system to show that one or more events
of event cannot be processed due to saturation of the stacks.
processing This bit is reset to 0 by the user.

3 / 6

B
System Function Description
bits

%S40 I/O fault Bits %S40 to %S47 are assigned to racks 0 to 7 respectively.
to (racks) (1) Normally at 1, each of these bits is set to 0 should
%S47 an I/O fault occur on the corresponding rack.

The bit is reset to 1 when the fault has cleared.

%S49 Reactivate Normally at state 0. This bit can be set to 1 by the user to
outputs request a reactivation every 10s from the occurrence of a solid

state output fault triggered by an over-current or a short-circuit.

%S50 Updating Normally at 0. This bit can be set to 1 or to 0 by the program or by
the date the terminal.
and time • At 0 it accesses the date and time by reading system words
using words %SW50 to 53.
%SW50 to 53 • At 1 it updates the date and time by writing system words

 %SW50 to 53.

%S51 Loss of This bit, which is managed by the system, signals at 1 either that
real-time the real-time clock is missing or that the system words relating to
clock the real-time clock are not significant. In this case, the clock should
time be set.

Setting the time automatically changes the bit to 0.

%S59 Updating Normally at 0. This bit can be set to 1 or to 0 by the program or by
the date the terminal.
and time • At 0 the system does not control system word %SW59.
using word • At 1 the system controls the rising and falling edges on word
%SW59 %SW59 to adjust the current date and time (in increments).

%S66 Control of Normally at 0. This bit can be set to 1 or to 0 by the program or by
battery the terminal. It is used to switch the battery indicator on or off, if the
indicator backup battery is faulty or missing :

• At 0 the battery indicator lights up if the battery is faulty or missing
• At 1 the battery indicator is always off
On a cold start, %S66 is reset to 0 by the system.

%S67 State of This bit is used to check operation of the backup battery for the RAM
cartridge memory cartridge.
battery • At 0 the battery is present and operating.

• At 1 the battery is absent or not operating.

%S68 State of This bit is used to check operation of the backup battery for
processor program and data in the RAM memory.
battery • At 0 the battery is present and operating.

• At 1 the battery is absent or not operating.

%S69 Display of Normally at 0. This bit can be set to 1 or to 0 by the program or by
user data the terminal.
on PLC • At 0 the state of the I/O are displayed on the PLC indicator lamps
displays (WRD indicator lamp off).

• At 1 user data is displayed (WRD indicator lamp on).
(see words %SW67,68 and 69).

(1) only on TSX 57 PLCs.

System bits and words 3

3 / 7

B

B
System Function Description
bits

%S70 Update data This bit is set to 1 by the system at the end of each TSX Nano or
on AS-i bus AS-i bus scan. On power-up, it indicates that all the data has been
or TSX Nano refreshed at least once and that it is therefore significant. This bit is
link reset to 0 by the user.

%S73 Switch to Normally at 0. This bit is set to 1 by the user to change to
protected mode protected mode on AS-i bus. Bit %S74 must first be at 1. This
on AS-i bus bit is only used in a wiring test, and has no application in the PLC.

%S74 Save Normally at 0. This bit is set to 1 by the user to save the
configuration configuration present on the AS-i bus. This bit is only used in a
present wiring test, and has no application in the PLC.
on AS-i bus

%S80 Reset Normally at 0. This bit can be set to 1 by the user in order to reset
message message counters %SW80 to %SW86.
counters

%S90 Refresh Normally at 0. This bit is set to 1 when common words are received
common from another station on the network.
words This bit can be set to 0 by the program or by the terminal to check

the exchange cycle of common words.

%S96 Validity of 0 -> application program backup invalid,
application 1 -> application program backup valid.
program This bit can be read at any time (by the program or in adjust mode)
backup and in particular after a cold or warm restart.

It is relevant to a Backup application created using PL7 in the
internal Flash EPROM.

%S97 Validity of 0 -> %MW backup invalid,
%MW backup 1 -> %MW backup valid.

This bit can be read at any time (by the program or in adjust mode)
and in particular after a cold start or warm restart.

%S98 Locate Normally at 0. This bit is managed by the user :
pushbutton 0 -> pushbutton on TSX SAZ 10 module active,
on TSX SAZ 10 1 -> pushbutton on TSX SAZ 10 module replaced by a discrete
module remotely input (see %SW98).

%S99 Locate Normally at 0. This bit is managed by the user :
pushbutton 0 -> pushbutton on centralized display block active,
on display 1 -> pushbutton on centralized display block replaced by a discrete
block remotely input (see %SW99).

%S100 Terminal Set to 0 or 1 by the system depending on the state of the INL/DPT
port shunt on the terminal port.
protocol • If the shunt is absent (%S100=0), UNI-TELWAY master

protocol is used.
• If the shunt is present (%S100=1), the protocol used is that
indicated by the application configuration.

3 / 8

B
3.2 System words

3.2-1 List of system words

Word Function Control
%SW0 Value of master task period (periodic task) U
%SW1 Value of fast task period U
%SW8 Control input acquisition of each task U
%SW9 Control output updating of each task U
%SW10 First scan after cold restart S
%SW11 Watchdog time S
%SW12 UNI-TELWAY terminal port address S
%SW13 Main address of the station S
%SW17 Fault status on floating point operation S and U
%SD18 Absolute time counter S and U
%SW20 Number of steps active, to activate or to deactivate S
%SW21 Number of transitions validated, to validate and to devalidate S
%SW30 Execution time of master task scan S
%SW31 Maximum time of master task scan S
%SW32 Minimum time of master task scan S
%SW33 Execution time of last fast task scan S
%SW34 Maximum time of fast task scan S
%SW35 Minimum time of fast task scan S
%SW48 Number of events processed S and U
%SW49 (1) Real-time clock function : words containing the current S and U
%SW50 (1) date and time values (in BCD)
%SW51 (1) %SW49 =day of the week (type of day)
%SW52 (1) %SW50 = seconds %SW51 = hours and minutes
%SW53 (1) %SW52 = month and day %SW53= century and year
%SW54 (1) Real-time clock function : words containing the date and time of the S
%SW55 (1) last power failure or PLC stop (in BCD)
%SW56 (1) %SW54 = seconds and fault code %SW55 = hour and minute
%SW57 (1) %SW56 = month and day %SW57= century and year
%SW58 Identification code of last stop and day of the week (type of day) S
%SW59 Incremental adjustment of the current date and time U
%SW67 Control "Display" mode, S and U
%SW68 %SW67: read pushbuttons
%SW69 %SW68: current and maximum indices of "displayed objects"

%SW69: number of the first object in the zone displayed
%SW80 No of messages transmitted by the system to the terminal port S and U
%SW81 No of messages received by the system from the terminal port
%SW82 No of messages transmitted by the system to the PCMCIA card
%SW83 No of messages received by the system from the PCMCIA card
%SW84 No of telegrams transmitted by the system
%SW85 No of telegrams received by the system
%SW86 No of messages refused by the system
%SW96 (2) Control / diagnostics of the save / retrieve application program and S and U

%MW function
%SW97 (2) Number of %MW to be saved U

(1) only on TSX 37-21/22 and TSX 57 PLCs.
(2) only on TSX 37.

System bits and words 3

3 / 9

B

B
Word Function Control
%SW98 (2) Module/channel geographical address of the discrete input replacing U

the pushbutton on the TSX SAZ 10 module
%SW99 (2) Module/channel geographical address of the discrete input replacing U

the pushbutton on the centralized display block
%SW108 No. of bits forced S
%SW109 Count number of analog channels forced to 0 S
%SW124 Type of last CPU fault found S
%SW125 Type of blocking fault S
%SW126 Address of blocking fault instruction S
%SW127

S = controlled by the system, U = controlled by the user,
(2) only on TSX 37.

3.2-2 Detailed description of system words

System Function Description
words

%SW0 Master Modifies the master task scan period defined during
task configuration via the user program or the terminal.
scan The period is expressed in ms (1..255ms). %SW0=0 during
period cyclic operation.

On a cold restart : takes the value defined by configuration.

%SW1 Fast Modifies the fast task scan period defined during
task configuration via the user program or the terminal.
scan The period is expressed in ms (1..255ms).
period On a cold restart : takes the value defined by configuration.

%SW8 Control Inhibits the acquisition phase of the inputs for each task.
input %SW8:X0 1= inhibition in the master task
acquisition %SW8:X1 1= inhibition in the fast task
of tasks

%SW9 Control Inhibits the updating phase of the outputs for each task.
output %SW9:X0 1= inhibition in the master task
updating %SW9:X1 1= inhibition in the fast task
of tasks

%SW10 First scan If the bit of the current task is at 0, this means that it is
after a performing its first scan after a cold restart.
cold %SW10:X0 : is assigned to the master task, MAST.
restart %SW10:X1 : is assigned to the fast task, FAST.

%SW11 Watchdog Reads the watchdog time defined during configuration.
time It is expressed in ms (10...500ms).

%SW12 UNI-TELWAY UNI-TELWAY terminal port address (in slave mode)
terminal port defined in configuration and loaded in this word
address during a cold restart.

3 / 1 0

B
System Function Description
words

%SW13 Main Indicates for the main network :
address • The station number (low-order byte) from 0 to 127.
of the • The network number (high-order byte) from 0 to 63.
station (position of dip switch on the PCMCIA card)

%SW17 Fault status On detecting a fault in a floating point arithmetic operation,
on floating point bit %S18 is set to 1 and the %SW17 fault status is
operation updated in line with the following code :

%SW17:X0 = Invalid operation/the result is not a number
%SW17:X1 = Non-standard operand / the result is correct
%SW17:X2 = Division by 0 / the result is ± ∞
%SW17:X3 = Overflow / the result is ± ∞
%SW17:X4 = Underflow / the result is ± 0
This word is reset to 0 by the system during a cold restart
and by the program for reuse.

%SD18 Absolute This double word is used to calculate time periods.
time It is incremented every 1/10th of a second by the
counter system (even if the PLC is in STOP). It can be read and

written by the user program or by the terminal.

%SW20 Grafcet This word contains the number of steps active, to activate
activity and deactivate for the current scan. It is updated by the
level system every time the Grafcet chart changes.

%SW21 Grafcet This word contains the number of chart transitions validated,
transitions to validate and to devalidate for the current scan. It is
validity table updated by the system every time the Grafcet chart changes.

%SW30 Master task Indicates the scan time of the last master task scan
scan (in ms).
time (1)

%SW31 Master task Indicates the longest scan time of the master task
maximum since the last cold restart (in ms).
scan
time (1)

%SW32 Master task Indicates the shortest scan time of the master task
minimum since the last cold restart (in ms).
scan
time (1)

%SW33 Fast task Indicates the scan time of the last fast task scan (in
scan ms).
time (1)

(1) This time corresponds to the time elapsed between the beginning (acquisition of inputs) and
end (update of outputs) of a scan cycle. This time includes processing of event-triggered and fast
tasks as well as processing of terminal requests.

System bits and words 3

3 / 1 1

B

B
System Function Description
words

%SW34 Fast task Indicates the longest scan time of the fast task
maximum since the last cold restart (in ms).
scan
time (1)

%SW35 Fast task Indicates the shortest scan time of the fast task
minimum since the last cold restart (in ms).
scan
time (1)

%SW48 Number Indicates the number of events processed since the last
of events cold restart (in ms).

This word can be written by the program or by the
terminal.

%SW49 Real-time System words containing the current date and time in BCD :
%SW50 clock function %SW49 : day of the week (1 for Monday to 7
%SW51 (2) for Sunday).
%SW52 %SW50 : Seconds (SS00)
%SW53 %SW51 : Hours and Minutes (HHMM)

%SW52 : Month and Day (MMDD)
%SW53 : Year (YYYY)
These words are controlled by the system when bit
%S50 is at 0.
These words can be written by the user program or by
the terminal when bit %S50 is set to 1.

%SW54 Real-time System words containing the date and time of the last power
%SW55 clock function failure or PLC stop (in BCD) :
%SW56 (2) %SW54 : Seconds (00SS),
%SW57 %SW55 : Hours and Minutes (HHMM),
%SW58 %SW56 : Month and Day (MMDD),

%SW57 : Year (YYYY).
%SW58 : high order byte containing the day of the week (1
for Monday to 7 for Sunday)

%SW58 Code of The low order byte contains the code of the last stop.
last stop 1= Change from RUN to STOP by terminal

2= Stop on software fault (PLC scan overshoot)
4= Power outage
5= Stop on hardware fault
6= Stop on HALT instruction

(1) This time corresponds to the time elapsed between the beginning (acquisition of inputs) and end
(update of outputs) of a scan cycle. This time includes processing of event-triggered and fast tasks
as well as processing of terminal requests.
(2) Only on TSX 37-21/22 and TSX 57 PLCs.

3 / 1 2

B
System Function Description
bits

%SW59 Adjust Contains two sets of 8 bits to adjust the current date.
current The operation is always performed on a rising edge of the bit.
date This word is enabled by bit %S59.

Increment Decrement Parameter
bit 0 bit 8 Day of the week
bit 1 bit 9 Seconds
bit 2 bit 10 Minutes
bit 3 bit 11 Hours
bit 4 bit 12 Days
bit 5 bit 13 Months
bit 6 bit 14 Years
bit 7 bit 15 Centuries

%SW66 Control Contains the Hexadecimal/BCD value that the user wishes to
(1) 7-segment see displayed on the optional 7-segment display.

display The display appears when bit %S66 is at 1.

%SW67 Management When %S69=1, these words enable the display block (PLC front
%SW68 of "WORD" panel) to be used in WORD mode :
%SW69 mode • %SW67 : control and status of WORD mode.

• %SW68 : maximum index and current index.
• %SW69 : number of the first object in the zone displayed.
For more information on these system words see part F,
section 1.5 (installation manual).

%SW80 Management No of messages sent by the system to the terminal port.
%SW81 of messages No of messages received by the system from the terminal port.
%SW82 and No of messages sent by the system to the PCMCIA card.
%SW83 telegrams No of messages received by the system from the PCMCIA card.
%SW84 No of telegrams sent by the system.
%SW85 No of telegrams received by the system.
%SW86 No of messages refused by the system.

(1) Not used in the current version.

System bits and words 3

3 / 1 3

B

B
System Function Description
words

%SW96 Control/ Control and/or diagnostics of the application program and %MW
diagnostics save/retrieve function :
of the save/ bit 0 : request to transfer to the save zone. This bit
retrieve is active on a rising edge. It is reset to 0 by the system once the
function rising edge is taken into account.

bit 1 : when this bit is at 1, this signifies that the save function is
complete. This bit is reset to 0 by the system once the
rising edge is taken into account.
bit 2 : report of the save :
 0 -> save with no errors,
 1 -> error during save.
bits 3 to 5 : reserved.
bit 6 : validity of the application program backup (identical to
%S96).
bit 7 : validity of the %MW backup (identical to %S97).
bits 8 to 15 : this byte is only significant if the report bit is at 1 (bit
2 = 1, error during save).
1 -> number of %MW to be saved greater than the number of
%MW configured,
2 -> number of %MW to be saved greater than 1000 or less than
0,
3 -> number of %MW to be retrieved greater than the number of
%MW configured,
4 -> size of the application in the internal RAM greater than 15
Kwords (remember that the %MW are always saved when the
application program is saved in the internal Flash EPROM),
5 -> operation prohibited in RUN,
6 -> Backup cartridge present in the PLC,
7 -> writing fault in Flash EPROM..

%SW97 Number of Is used to set the parameters for the number of %MW to be
%MW to be saved. When this word is between 1 and 1000, the first 1000
saved %MW are transferred to the internal Flash EPROM.

When this word is 0, only the application program contained in
the internal RAM is transferred to the internal Flash EPROM.
Any saved %MW are then erased .
On a cold restart, this word is initialized to -1 if the internal Flash
EPROM does not contain any %MW backup. Otherwise, it is
initialized to the value of the number of saved words.

%SW98 Discrete input When bit %S98 = 1, this word indicates the geographical address
address (module / channel) of the discrete input which replaces the

pushbutton of the TSX SAZ 10 module :

High order Low order

Module number Channel number

3 / 1 4

B
System Function Description
words

%SW99 Discrete input When bit %S99 = 1, this word indicates the geographical address
address (module / channel) of the discrete input which replaces the

pushbutton on the centralized display block :

High order Low order

Module number Channel number

%SW108 No. of Indicates the number of forced bits in the application.
forced bits Normally at 0, it is updated by the bit forcing and unforcing

system in the application memory.

%SW109 Forced Indicates the number of forced analog channels.
analog
channel
counter

%SW124 Type of The system writes in this word the last type of CPU fault found
CPU (these codes are not changed on a cold restart) :
fault 16#30 : system code fault

16#60 to 64 : battery overload
16#90 : system interrupt fault : IT not anticipated
16#53 : time-out fault during I/O exchanges

%SW125 Type of The system writes in this word the last type of blocking fault
blocking found :
fault 16#DB0 : watchdog overflow

16#2258 : execution of the HALT instruction
16#DEF8 : execution of a JMP instruction to an undefined

label
16#2XXX : execution of a CALL instruction to an undefined

subroutine
16#0XXX : execution of an unknown function
16#DEFE : Grafcet with source or destination connector

undefined
16#DEFF : floating point not implemented
16#DEF0 : division by 0, (1-->%S18)
16#DEF1 : error when transferring a character string

(1-->%S15)
16#DEF2 : capacity overflow, (1-->%S18)
16#DEF3 : index overflow (1-->%S20)

%SW126 Address Instruction address which generated the blocking application
%SW127 of blocking fault.

fault %SW126 contains the offset of this address
instruction %SW127 contains the base of this address

Differences between PL7-2/3 and PL7 Micro 4

4 / 1

B

B
4.1 Differences between PL7-2/3 and PL7-Micro/Junior

Immediate values

Objects PL7-2/3 PL7 Micro/Junior

Base 10 integer 1234 1234

Base 2 integer L'10011110' 2#10011110

Base 16 integer H'ABCD' 16#ABCD

Floating point -1.32e12 (PL7-3) -1.32e12

Character string M'aAbBcB' 'aAbBcC'

Labels

Label Li i = 0 to 999 %Li i = 0 to 999

Bits

Objects PL7-2/3 PL7 Micro/Junior

Input bit in rack Ixy,i %I<rack_mod>.<channel>
Indexed input bit in rack Ixy,i (Wj) (PL7-3)
Remote input bit RIx,y,i (PL7-3) %I\<path>\<mod>.<channel>
Indexed remote input bit RIx,y,i (Wj) (PL7-3)

Output bit in rack Oxy,i %Q<rack_mod>.<channel>
Indexed output bit in rack Oxy,i (Wj) (PL7-3)
Remote output bit ROx,y,i (PL7-3) %Q\<path>\<mod>.<channel>
Indexed remote output bit ROx,y,i (Wj) (PL7-3)

I/O fault bit in rack
• module fault bit Ixy,S / Oxy,S %I<rack_mod>.MOD.ERR
• channel fault bit %I<rack_mod>.<channel>.ERR

Remote I/O fault bit (PL7-3)
• module fault bit %I\<path>\<mod>.MOD.ERR
• channel fault bit RDx,y,i / ERRORx,y,i %I\<path>\<mod>.<channel>.ERR
• output channel trip bit TRIPx,y,i
• output channel reset bit RSTx,y,i

Internal bit Bi %Mi

Indexed internal bit Bi(Wj) (PL7-3) %Mi[%MWj]

System bit SYi %Si

Step bit Xi %Xi

Macro-step bit XMj (PL7-3)

Step bit i of macro-step j Xj,i (PL7-3)

Input step bit of macro-step j Xj,I (PL7-3)

Output step bit of macro-step j Xj,O (PL7-3)

Bit j of internal word i Wi,j %MWi:Xj

Bit j of indexed internal word i Wi(Wk),j(PL7-3) %MWi[%MWk]:Xj

Section 4
4 Differences between PL7-2/3 and PL7 Micro/Junior

4 / 2

B
Bit j of constant word i CWi,j %KWi:Xj

Bit j of indexed constant word i CWi(Wk),j (PL7-3) %KWi[%MWk]:Xj

Bit j of register i I/OWxy,i,j

Bit k of common word j COMi,j,k %NWi.j:Xk
of station i COMXi,j,k (X = B, C, D) %NXWi.j:Xk

Bit j of system word i SWi,j %SWi:Xj

Words

Objects PL7-2/3 PL7 Micro/Junior

Single length internal word Wi %MWi

Indexed single length internal word Wi(Wj) (PL7-3) %MWi[%MWj]

Double length internal word DWi (PL7-3) %MDi

Indexed double length internal word DWi(Wj) (PL7-3) %MDi[%MWj]

Real internal word %MFi

Indexed real internal word %MFi[%MWj]

Single length constant word CWi %KWi

Indexed single length constant word CWi(Wj) %KWi[%MWj]

Double length constant word CDWi (PL7-3) %KDi

Indexed double length constant word CDWi(Wj) (PL7-3) %KDi[%MWj]

Real constant word %KFi

Indexed real constant word %KFi[%MWj]

Single length input register word IWxy,i %IW<rack_mod>.<channel>

Double length input register word %ID<rack_mod>.<channel>

Single length output register word OWxy,i %QW<rack_mod>.<channel>

Double length output register word %QD<rack_mod>.<channel>

Remote input register word RIWx,y,i (PL7-3) %IW\<path>\<mod>.<channel>

Remote output register word ROWx,y,i (PL7-3)%QW\<path>\<mod>.<channel>

System word SWi %SWi

Common word j of station i COMi,j %NW{i}j
COMXi,j (where X = B, C, D) %NW{[r.]i}j

r = network no.

Status word of a remote discrete module STATUSAx,y,i (PL7-3)
STATUSBx,y,i (PL7-3)

Status word of a remote discrete module channel STSx,y,i(PL7-3)
%IW\<path>\<mod>.<channel>.ERR

Active time of Grafcet steps Xi,V %Xi.T

Active time of step i of macro-step j Xj,i,V (PL7-3)

Differences between PL7-2/3 and PL7 Micro 4

4 / 3

B

B
Active time of input step Xj,I,V (PL7-3)
of macro-step j

Active time of output step Xj,O,V (PL7-3)
of macro-step j

Function blocks

Objects PL7-2/3 PL7 Micro/Junior

Timer Ti %Ti
• preset value (word) Ti,P %Ti.P
• current value (word) Ti,V %Ti.V
• timer running (bit) Ti,R %Ti.R
• timer done (bit) Ti,D %Ti.D

Monostable Mi %MNi
• preset value (word) Mi,P %MNi.P
• current value (word) Mi,V %MNi.V
• monostable running (bit) Mi,R %MNi.R

Up/down counter Ci %Ci
• preset value (word) Ci,P %Ci.P
• current value (word) Ci,V %Ci.V
• upcounting overrun (bit) Ci,E %Ci.E
• preset done (bit) Ci,D %Ci.D
• downcounting overrun (bit) Ci,F %Ci.F

Register Ri %Ri
• input word (word) Ri,I %Ri.I
• output word (word) Ri,O %Ri.O
• register full (bit) Ri,F %Ri.F
• register empty (bit) Ri,E %Ri.E

Text TXTi no text block

Drum controller Di (PL7-2) %DRi
• number of active step (word) Di,S %DRi.S
• active time of current step (word) Di,V %DRi.V
• 16 command bits (word) Di,Wj %DRi.Wj
• last step in progress (bit) Di,F %DRi.F

Fast Counter / Timer FC (PL7-2) -
• preset value (word) FC,P -
• current value (word) FC,V -
• external reset (bit) FC,E -
• preset done (bit) FC,D -
• counting in progress (bit) FC,F -

Real-time clock H (PL7-2) -
• "WEEK" or "YEAR" type
 day selection MTWTFSS (word) VD -
• start of active time period (word) BGN -
• end of active time period (word) END -
• current value < setpoint (bit) < -
• current value = setpoint (bit) = -
• current value > setpoint (bit) > -

4 / 4

B
Bit and word tables

Objects PL7-2/3 PL7 Micro/Junior

Bit strings
• Internal bit string Bi[L] %Mi:L
• Input bit string Ixy,i[L] (PL7-3) %Ixy.i:L
• Output bit string Oxy.i[L] (PL7-3) %Qxy.i:L
• Grafcet step bit string Xi[L] (PL7-3) %Xi:L
• macro-step bit string XMi[L] (PL7-3)

Character strings %MBi:L (1)
(where i is even)

Word tables
• internal word table Wi[L] %MWi:L
• indexed internal word table Wi(Wj)[L] %MWi[%MWj]:L
• internal double word table DWi[L] (PL7-3) %MDi:L
• indexed internal double word table DWi(Wj)[L] (PL7-3) %MDi[%MWj]:L
• constant word table CWi[L] %KWi:L
• indexed constant word table CWi(Wj)[L] %KWi[%MWj]:L
• constant double word table CDWi[L] (PL7-3) %KDi:L
• indexed constant double word table CDWi(Wj)[L] (PL7-3) %KDi[%MWj]:L
• real table %MFi:L
• indexed real table %MFi[%MWj]:L
• constant real table %KFi:L
• indexed constant real table %KFi[%MWj]:L
• remote input element table RIx,y,i[L] (PL7-3)
• remote output element table ROx,y,i[L] (PL7-3)
• remote input indexed element table RIx,y,i(Wj)[L] (PL7-3)
• remote output indexed element table ROx,y,i(Wj)[L] (PL7-3)

Optional function blocks

Objects PL7-3 PL7 Micro/Junior

Optional function block <OFB>i

OFB element <OFB>i, <element>

Indexed OFB element <OFB>i,<element>(Wj)

OFB element table <OFB>i,<element>[L]

Indexed OFB element table <OFB>i,<element>(Wj)[L]

Differences between PL7-2/3 and PL7 Micro 4

4 / 5

B

B
Instructions

Objects PL7-2 PL7-3 PL7 Micro/Junior

Instructions on bits
• Reverse logic NOT NOT
• AND AND • AND
• OR OR + OR
• Exclusive OR XOR XOR
• Rising edge RE RE
• Falling edge FE FE
• Set to 1 SET SET
• Reset to 0 RESET RESET

Instructions on words and double words
• Addition + + +
• Subtraction - - -
• Multiplication * * *
• Division / / /
• Comparisons >, >=, <, <=, =, <> >, >=, <, <=, =, <>
• Division remainder MOD REM REM
• Square root SQRT SQRT
• Absolute value ABS
• Logic AND AND AND AND
• Logic OR OR OR OR
• Exclusive logic OR XOR XOR XOR
• Logic complement CPL CPL NOT
• Incrementation INC INC
• Decrementation DEC DEC
• Logic shift to left SHL SHL
• Logic shift to right SHR SHR
• Circular shift to left SLC SLC ROL
• Circular shift to right SRC SRC ROR

Floating point instructions (1)
• Addition ADDF +
• Subtraction SUBF -
• Multiplication MULF *
• Division DIVF /
• Square root SQRTF SQRT
• Absolute value ABS
• Equality test EQUF =
• Strict superiority test SUPF >
• Strict inferiority test INFF <
• Other tests >=, <=, <>

4 / 6

B
Instructions (continued)

Objects PL7-2 PL7-3 PL7 Micro/Junior

Instructions on byte strings
• Circular shift SLCWORD

Conversion instructions
• BCD to binary conversion BCD DTB BCD_TO_INT
• Binary to BCD conversion BIN BTD INT_TO_BCD
• ASCII to binary conversion ATB ATB STRING_TO_INT or

STRING_TO_DINT
• Binary to ASCII conversion BTA BTA INT_TO_STRING or

DINT_TO_STRING
• Gray to binary conversion GTB GRAY_TO_INT
• Floating point to integer conversion FTB REAL_TO_INT or

REAL_TO_DINT
• Integer to floating point conversion FTF INT_TO_REAL or

DINT_TO_REAL
• BCD to floating point conversion DTF BCD_TO_REAL
• Floating point to BCD conversion FTD REAL_TO_BCD
• ASCII to floating point conversion ATF STRING_TO_REAL
• Floating point to ASCII conversion FTA REAL_TO_STRING

Instructions on tables
• Arithmetic operations +, -, *, /, REM +, -, *, /, REM
• Logic operations AND, OR, XOR AND, OR, XOR, NOT
• Addition of words in a table + SUM
• Search for 1st different word EQUAL EQUAL
• Search for 1st equal word SEARCH FIND_EQU

Instructions on program
• Jump JUMP Li JUMP %Li
• Call for sub-routine CALL SRi SRi
• Return from sub-routine RET RETURN
• Stop application HALT HALT
• Conditional phrase IF/THEN/ELSE IF/THEN/ELSE/END_IF
• Iterative phrase WHILE/DO WHILE/DO/END_WHILE

Instructions on interruptions
• Test READINT
• Masking MASKINT MASKEVT
• Unmasking DMASKINT UNMASKEVT
• Acknowledgment ACKINT
• Generation of an IT to module SETIT

Explicit I/O instructions
• Read discrete inputs READBIT
• Write discrete outputs WRITEBIT
• Read registers READREG
• Write registers WRITEREG
• Read words READEXT
• Write words WRITEEXT

Differences between PL7-2/3 and PL7 Micro 4

4 / 7

B

B
Instructions (continued)

Objects PL7-3 PL7 Micro/Junior

Instructions on functions blocks
• Preset PRESET Ti / Ci PRESET %Ti / %Ci
• Start START Ti / Mi START %Ti / %MNi
• Activate task START CTRLi
• Reset RESET Ci / Ri / TXTi RESET %Ci / %Ri
• Deactivate task RESET CTRLi
• Upcounting UP Ci UP %Ci
• Downcounting DOWN Ci DOWN %Ci
• Store in a register PUT Ri PUT %Ri
• Retrieve from a register GET Ri GET %Ri
• Receive a message INPUT TXTi
• Transmit a message OUTPUT TXTi
• Transmit/Receive message EXCHG TXTi
• Execute an OFB EXEC <OFBi>
• Read telegrams READTLG

Delimiters

Objects PL7-2/3 PL7 Micro/Junior

Assignment -> :=

Left parenthesis for indexing ([

Right parenthesis for indexing)]

Length of table [length] :length

4 / 8

B

List of reserved words 5

5 / 1

B

B

Section 5
5 List of reserved words

5.1 Reserved words

The following reserved words should not be used as symbols.

TO * = Letter

SRi
AUXi
EVTi
XMi
 i = entier

ABS
ACCEPT
ACOS
ACTION
ACTIVATE_PULSE
ACTIVE_TIME
ADD
ADDRESS
ADD_DT
ADD_TOD
ADR
AND
ANDF
ANDN
ANDR
AND_ARX
ANY
ANY_BIT
ANY_DATE
ANY_INT
ANY_NUM
ANY_REAL
ARRAY
AR_D
AR_F
AR_W
AR_X
ASIN
ASK
ASK_MSG
ASK_VALUE
ASSIGN_KEYS
AT
ATAN

AUX
BCD_TO_INT
BIT_D
BIT_W
BLK
BLOCK
BODY
BOOL
BOTTOM
BTI
BTR
BY
BYTE
C
CAL
CALC
CALCN
CALL
CALL_COIL
CANCEL
CASE
CD
CHART
CH_M
CLK
CLOSE
CLOSED_CONTACT
COIL
COMMAND
COMMENTS
COMP4
COMPCH
CONCAT
CONF
CONFIGURATION
CONSTANT
CONTROL_LEDS
COPY_BIT
COS
CTD
CTU
CTUD

CU
D
DATE
DATE_AND_TIME
DAT_FMT
DAY_OF_WEEK
DA_TYPE
DEACTIVATE_PULSE
DEC
DELETE
DELTA_D
DELTA_DT
DELTA_TOD
DINT
DINT_TO_REAL
DINT_TO_STRING
DISPLAY_ALRM
DISPLAY_GRP
DISPLAY_MSG
DIV
DMOVE
DO
DOWN
DRUM
DS
DSHL_RBIT
DSHRZ_C
DSHR_RBIT
DSORT_ARD
DSORT_ARW
DT
DTS
DWORD
D_BIT
E
EBOOL
ELSE
ELSIF
EMPTY
EMPTY_LINE
END
ENDC

5 / 2

B
ENDCN
END_ACTION
END_BLK
END_BLOCK
END_CASE
END_COMMENTS
END_CONFIGURATION
END_FOR
END_FUNCTION
END_FUNCTION_BLOCK
END_IF
END_MACRO_STEP
END_PAGE
END_PHRASE
END_PROG
END_PROGRAM
END_REPEAT
END_RESOURCE
END_RUNG
END_STEP
END_STRUCT
END_TRANSITION
END_TYPE
END_VAR
END_WHILE
EQ
EQUAL
ERR
EVT
EXCHG
EXCH_DATA
EXIT
EXP
EXPT
F
FALSE
FAST
FBD
FE
FIFO
FIND
FIND_EQ
FIND_EQD
FIND_EQW
FIND_GTD
FIND_GTW

JMPC
JMPCN
JUMP
JUMP_COIL
L
LAD
LANGAGE
LANGUAGE
LD
LDF
LDN
LDR
LE
LEFT
LEN
LIFO
LIMIT
LINT
LIST
LIT
LN
LOCATION
LOG
LREAL
LT
LWORD
M
MACRO_STEP
MAIN
MASKEVT
MAST
MAX
MAX_ARD
MAX_ARW
MAX_PAGES
MAX_STEP
MCR
MCR_COIL
MCS
MCS_COIL
MID
MIN
MIN_ARD
MIN_ARW
MOD
MONO

FIND_LTD
FIND_LTW
FOR
FROM
FUNC
FUNCTION
FUNCTION_BLOCK
F_B
F_EDGE
F_TRIG
GE
GET
GET_MSG
GET_VALUE
GLOBAL_COMMENT
GR7
GRAY_TO_INT
GT
GTI
H
HALT
HALT_COIL
HASH_COIL
H_COMPARE
H_LINK
I
IF
IL
IN
INC
INCJUMP
INDEX_CH
INFO
INITIAL_STEP
INIT_BUTTONS
INPUT
INPUT_CHAR
INSERT
INT
INTERVAL
INT_TO_BCD
INT_TO_REAL
INT_TO_STRING
ITB
ITS
JMP

List of reserved words 5

5 / 3

B

B
MOVE
MPP
MPS
MRD
MS
MUL
MUX
M_CH
M_MACRO_STEP
N
N1
NAME
NB_ACTIVE_STEPS
NB_ACTIVE_TIME
NB_BLOCKS
NB_COMMON_WORDS
NB_CONSTANT_WORDS
NB_CPT
NB_DRUM
NB_INTERNAL_BITS
NB_INTERNAL_WORDS
NB_MACRO_STEPS
NB_MONO
NB_PAGES
NB_REG
NB_TIMER
NB_TM
NB_TRANSITIONS
NE
NIL
NO
NON_STORED
NOP
NOT
NOT_ARX
NOT_COIL
NOT_READABLE
NO_GR7
NO_PERIOD
N_CONTACT
O
OCCUR
OCCUR_ARD
OCCUR_ARW
OF

ON
OPEN
OPEN_CONTACT
OPERATE
OR
ORF
ORN
ORR
OR_ARX
OTHERS
OUT
OUTIN_CHAR
OUTPUT
OUT_BLK
P
P0
P1
PAGE
PAGE_COMMENT
PANEL_CMD
PERIOD
PHRASE
PHRASE_COMMENT
PID
PID_MMI
PLC
POST
PRESET
PRINT
PRINT_CHAR
PRIO0
PRIO1
PRIORITY
PRL
PROG
PROGRAM
PROG_LANGAGE
PROG_LANGUAGE
PT
PTC
PUT
PV
PWM
P_CONTACT
Q

QUERY
R
R1
RCV_TLG
RE
READ
READ_EVT_UTW
READ_ONLY
READ_PARAM
READ_STS
READ_VAR
READ_WRITE
REAL
REAL_TO_DINT
REAL_TO_INT
REAL_TO_STRING
REG
REM
REPEAT
REPLACE
RESET
RESET_COIL
RESOURCE
RESTORE_PARAM
RET
RETAIN
RETC
RETCN
RETURN
RET_COIL
RIGHT
ROL
ROL_ARD
ROL_ARW
ROR
ROR_ARD
ROR_ARW
RRTC
RS
RTB
RTC
RTS
RUNG
R_EDGE
R_TRIG

5 / 4

B
S
S1
SAVE_PARAM
SCHEDULE
SD
SEARCH
SEL
SEMA
SEND
SENDER
SEND_ALARM
SEND_MBX_ALARM
SEND_MBX_MSG
SEND_MSG
SEND_REQ
SEND_TLG
SERVO
SET
SET_COIL
SFC
SHIFT
SHL
SHOW_ALARM
SHOW_MSG
SHOW_PAGE
SHR
SHRZ
SIN
SINGLE
SINT
SL
SLCWORD
SMOVE
SOFT_CONFIGURATION
SORT
SORT_ARD
SORT_ARW
SQRT
SR
ST
STANDARD
START
STD
STEP
STI
STN

STOP
STR
STRING
STRING_TO_DINT
STRING_TO_INT
STRING_TO_REAL
STRUCT
SUB
SUB_DT
SUB_TOD
SUM
SU_TYPE
S_T_AND_LINK
S_T_OR_LINK
T
TAN
TASK
TASKS
THEN
TIME
TIMER
TIME_OF_DAY
TMAX
TMOVE
TO
TOD
TOF
TOFF
TON
TOP
TP
TRANSITION
TRANS_TIME
TRUE
TRUNC
TYPE
TYPES
T_S_AND_LINK
T_S_OR_LINK
U
UDINT
UINT
ULINT
UNMASKEVT
UNTIL

UP
USINT
USORT_ARD
USORT_ARW
UTIN_CHAR
VAR
VAR_ACCESS
VAR_EXTERNAL
VAR_GLOBAL
VAR_INPUT
VAR_IN_OUT
VAR_OUTPUT
VERSION
V_COMPARE
V_LINK
W
WHILE
WITH
WORD
WRITE
WRITE_CMD
WRITE_PARAM
WRITE_VAR
WRTC
WSHL_RBIT
WSHRZ_C
WSHR_RBIT
W_BIT
XM
XM_MONO
XM_MULTI
XOR
XORF
XORN
XORR
XOR_ARX
YES

Section 6
6 Conformity to IEC standard 1131-1

6/1

B
6.1 Conformity to the IEC 1131-3 standard

IEC standard 1131-3 "PLCs - Part 3: Programming languages" defines the syntax
and semantics of the software elements used to program PLCs.

This standard describes 2 textual languages, IL (Instruction List) and ST
(Structured Text), 2 graphic languages, LD (Ladder Diagram) and FBD (Function
Block Diagram) and a graphic chart, SFC (Sequential Function Chart), used to
structure the internal organization of a programmed sequence.

PL7 Junior Windows programming software is used to program a PLC conforming
to the IEC standard: PL7 Junior implements a subset of the language elements
defined in the standard and defines extensions which are authorized within this
standard.

IEC standard 1131-3 does not define the rules of interaction of software supplied
by a manufacturer claiming to conform to the standard, leaving a greater flexibility
of presentation and programming element entry for the comfort of the user.

The elements of the standard implemented in PL7 Junior, the specific
implementation information and the cases of detected errors are summarized in
the conformity tables below.

Note: Grafcet language is very similar to the 1131-3 SFC language, however not
all of its features satisfy conformity requirements: 41, 43 and 45 in table 48. These
features are shown in gray in the conformity tables.

6.1.1 Conformity tables

This system conforms to the recommendations of IEC 1131-3, as far as the
following language characteristics are concerned:

Common elements

Table n o Feature n o Description of features

1 1 Required character set

see paragraph 2.1.1 of 1131-3

1 2 Lower case characters

6/2

B

1 3a Number sign (#)

1 4a Dollar sign ($)

1 5a Vertical bar (|)

1 6a Subscript delimiters: Left and right brackets "[]"

2 1 Upper case and numbers

2 2 Upper and lower case, numbers, embedded underlines

3 1 Comments

4 1 Integer literals (Note 1)

4 2 Real literals (Note 1)

4 3 Real literals with exponents

4 4 Base 2 literals (Note 1)

4 6 Base 16 literals (Note 1)

4 7 Boolean Zero and One

4 8 Boolean TRUE and FALSE

5 1 Character string literal features

6 2 $$ Dollar sign

6 3 $' Single quote

6 4 $L or $l Line feed

6 5 $N or $n New line

6 6 $P or $p Form feed (page)

6 7 $R or $r Carriage return

6/3

Conformity to IEC standard 1131-3 6

B
6 8 $T or $t Tab

7 1a Duration literals with short prefix t# (Note 2)

10 1 BOOL -1 bit-

10 10 REAL -32 bits-

10 12 TIME -32 bits- (Note 3)

10 13 DATE -32 bits- (Note 3)

10 14 TIME_OF_DAY -32 bits- (Note 3)

10 15 DATE_AND_TIME -64 bits- (Note 3)

10 16 STRING

10 17 BYTE -8 bits-

10 18 WORD -16 bits-

10 19 DWORD -32 bits-

15 1

2

3

I prefix for Input location

Q prefix for Output location

M prefix for Memory location

15 4

5

6

7

8

X prefix, single bit size

None prefix, single bit size

B prefix, byte size (8 bits)

W prefix, word size (16 bits)

D prefix, double word size (32 bits)

6/4

B

16 VAR_EXTERNAL

VAR_GLOBAL

CONSTANT

AT

Keywords (Note 4)

21 1 The PL7 overloaded functions are as follows:

ABS, EQUAL, ROL, ROR, SHL, SHR, SQRT, SUM

21 2 In general, the PL7 functions belong to this category
(typed functions).

22 1 Type conversion functions: DINT_TO_STRING,
INT_TO_STRING, STRING_TO_DINT,
STRING_TO_INT, DATE_TO_STRING,
DT_TO_STRING, TIME_TO_STRING,
TOD_TO_STRING, REAL_TO_STRING,
STRING_TO_REAL, REAL_TO_INT,
REAL_TO_DINT, INT_TO_REAL, DINT_TO_REAL
(Note 5)

22 3 Conversion function BCD_TO_INT (Note 6)

22 4 Conversion function INT_TO_BCD (Note 6)

23 1 ABS function: absolute value

23 2 SQRT function: square root

25 1 SHL function: shift left

25 2 SHR function: shift right

25 3 ROR function: rotate right

25 4 ROL function: rotate left

29 1 LEN function: string length

29 2 LEFT function: leftmost n characters

6/5

Conformity to IEC standard 1131-3 6

B
29 3 RIGHT function: rightmost n characters

29 4 MID function: n characters from a given position

29 5 CONCAT function: extensible concatenation (Note 7)

29 6 INSERT function: insert one string into another

29 7 DELETE function: delete characters

29 8 REPLACE function: replace characters

29 9 FIND function: find one string inside another

32 Input read

Input write

Output read

Output write

(Note 8)

33 1 RETAIN qualifier on internal variables of the predefined
function blocks (Note 9)

33 2 RETAIN qualifier on outputs of the predefined function
blocks (Note 9)

37 1 Pulse timer: TP (Note 10)

37 2a On-delay timer: TON (Note 10)

37 3a Off delay timer: TOF (Note 10)

38 timing diagrams TP, TON, TOF

39 19 Use of directly represented variables (address)

40 1 Step, graphical form

Note: A step number replaces a step identifier

6/6

B

40 2 Step, textual form used in the source form of Grafcet
only

42 2l Declarations of actions in LD language

Note: PL7 Junior does not implement action blocks

46 1 Single sequence, alternation step/transition

46 2c “Or” divergence: user ensures that the transition
conditions are mutually exclusive

46 3 “Or” convergence

46 4 “And” divergence

“And” convergence

46 5c Sequence jump in an “or” divergence

46 6c Sequence loop: return to a previous step

46 7 Directional arrows

Note: Directional arrows point up and down

48 40

42

46

57

Graphic representation

Note: Grafcet is very similar to the 1131-3 SFC
language, but cannot however claim to conform
(features 41, 43, 45 are missing)

50 5b Preemptive scheduling with the multi-tasks model

Note 1: The underline characters (_) inserted between the digits of a numerical
literal are not accepted

Note 2: These literals are only visible in the application source, to show the time of
configured tasks.

6/7

Conformity to IEC standard 1131-3 6

B
Note 3: These types of data are not yet implemented in a manner visible to the
user. This table defines, however, the memory occupation of their internal
representation.

Note 4: These key words are only used in the sources generated by PL7 and by
the PL7-2 application conversion tool.

Note 5: Effects of conversions to limits:
DINT_TO_STRING: If the string accepting the result is less than 13 characters,
truncation occurs and %S15 is set.
INT_TO_STRING: If the string accepting the result is less than 7 characters
truncation occurs and %S15 is set.
STRING_TO_DINT and STRING_TO_INT: If the string cannot be converted to an
integer, the result is indeterminate and %S18 is set.
DATE_TO_STRING If the string accepting the result is less than 11 characters
truncation occurs and %S15 is set.
DT_TO_STRING: If the string accepting the result is less than 20 characters
truncation occurs and %S15 is set.
TIME_TO_STRING: If the string accepting the result is less than 15 characters
truncation occurs and %S15 is set.
TOD_TO_STRING: If the string accepting the result is less than 9 characters
truncation occurs and %S15 is set.
REAL_TO_STRING: If the string accepting the result is less than 15 characters
truncation occurs and %S15 is set.
STRING_TO_REAL: If the string cannot be converted to a real value, the value of
the result is "1.#NAN" (16#FFC0_0000) and %S18 is set.
REAL_TO_INT: If the real cannot be converted within the limits [-32768, +32767],
the value of the result is -32768 and %S18 and %SW17:X0 are set.
REAL_TO_DINT: If the real cannot be converted within the limits[-2147483648,
+2147483647], the value of the result is -2147483648 and %S18 and %SW17:X0
are set.
INT_TO_REAL: Conversion is always possible.
DINT_TO_REAL: Conversion is always possible.

Note 6: As the type INT is not formally implemented, even though it is still used,
these functions enable the coding format of a WORD to be changed.

Note 7: Limit the CONCAT function to the concatenation of 2 strings.

Note 8: This paragraph applies to the predefined PL7 function blocks.

Note 9: The RETAIN qualifier is implicit.

Note 10: The timers TP, TON, TOF respect the timing diagrams of table 38, but
have a different I/O interface from that of 1131-3.

6/8

B
IL language elements

Table n o Feature n o Description of features

51 Instruction fields Label, operator, operand, comment

52 1 LD

52 2 ST

52 3 S and R

52 4

6

7

AND

OR

XOR

52 18 JMP

52 20 RET

52 21)

54 11 IN (Note 11)

54 12 IN (Note 11)

54 13 IN (Note 11)

Note 11: The operator PT is not implemented.

ST language elements (Note 12)

Table n o Feature n o Description of features

55 1 Place in parentheses

55 2 Function evaluation

55 5 NOT

6/9

Conformity to IEC standard 1131-3 6

B
55 6

7

* Multiply

/ Divide

55 9

10

+ Add

- Subtract

55 11 <, >, <=, >= Comparison

55 12 = Equality

55 13 <> Inequality

55 15 Boolean AND

55 16 XOR Boolean Exclusive or

55 17 Boolean OR

56 1 := Assignment

56 3 RETURN structure

56 4 IF structure "if... then... elsif... then... else... end_if"

56 6 FOR structure "for... to... do... end_for" (Note 13)

56 7 WHILE structure "while... do... end_while"

56 8 REPEAT structure "repeat ... until... end_repeat"

56 9 EXIT structure

Note 12: This language is used entirely in ST modules. An ST subset is also used
in the OPERATE and COMPARE blocks of IL and LD languages.

Note 13: Implementation of the FOR loop with an implicit step of 1 (by 1).

6/10

B
Common graphic elements

Table n o Feature n o Description of features

57 2 Graphic horizontal lines

57 4 Graphic vertical lines

57 6 Graphic horizontal/vertical line connection

57 8 Graphic crossing of lines without connection

57 10 Graphic connected and non-connected corners

57 12 Blocks with graphic connected lines

58 2 Unconditional jump: LD language

58 4 Conditional jump: LD language

58 5 Conditional return: LD language

58 8 Unconditional return: LD language

LD language elements

Table n o Feature n o Description of features

59 1 Left power rail

59 2 Right power rail

60 1 Horizontal link

60 2 Vertical link

61 1 Open contact

61 3 Closed contact

61 5 Positive transition-sensing contact

61 7 Negative transition-sensing contact

6/11

Conformity to IEC standard 1131-3 6

B
62 1 Coil

62 2 Negated coil

62 3 SET (latch) coil

62 4 RESET (unlatch) coil

6/12

B

Implementation-dependent parameters

Parameter PL7 limitations and behavior

Procedure for processing errors Numerous errors are indicated on
execution with system bits and
words.

National characters used ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖ
ØÙÚÛÜÝÞàáâãäåæçèéêëìíîïðñòó
ôõöøùúûüýþßÿ

#, $, |

Maximum length of identifiers 32

Maximum length of comment 222

Range of values of duration (Note 14)

Range of values for variables of type TIME

Precision of representation of seconds in types
TIME_OF_DAY and DATE_AND_TIME

(Note 14)

(Note 15)

Maximum number of array subscripts

Maximum number of array

1 (Note 16)

Depending on the indexed area
(Note 16)

Default maximum length of STRING variables

Maximum permitted length of STRING variables

Not applicable

255

Maximum number of hierarchical levels

Logical or physical mapping

3

Logical mapping

Maximum range of subscript values Depending on the indexed area
(Note 16)

6/13

Conformity to IEC standard 1131-3 6

B

Initialization of system inputs Initialized to zero by the system.

Effects of type conversions on accuracy See table 22, feature 1

Precision on time elapsed associated with a step

Maximum number of steps per chart

100ms

96 on PLC 3710 v1.5

128 on PLCs 3720 v1.5, 5710 and
5720

Maximum number of transitions per chart and per step 1024 transitions per chart

11 transitions per step

Action control mechanism P0, P1 and N1 qualifiers

Maximum number of action blocks per step 3 actions are possible: on
activation (P1), continuous (N1)
and on deactivation (P0)

Graphic indication of step status

Transition clearing time (deactivation of upstream
steps and activation of downstream steps)

Active step in reverse video

Clearing time is variable and is
never zero

Depth of divergent and convergent constructions Limited by the entry grid

List of PLCs which can be programmed by PL7 Junior TSX 3710, 3720, 5710, 5720

Maximum number of tasks

Task interval resolution

Preemptive or non-preemptive scheduling

2 periodic tasks

8 event-triggered tasks

From 1 ms to 255 ms

Preemptive scheduling

6/14

B

Maximum length of an expression

Partial evaluation of Boolean expressions

Variable

No

Maximum length of control structures in ST Variable

Value of control variable after execution of a FOR loop The value of the control variable
equals the value of the limit + 1
(since the step is 1)

Graphic/semi-graphic representation

Restrictions on network topology

Graphic representation

An LD network can occupy a
maximum of 11 columns and 7
lines

Note 14: These types of data are not yet implemented in a manner visible to the
user. This table, however, defines their ranges of values in IEC 1131-3 format.
TIME: from T#0 to T#429496729.5s
TIME_OF_DAY: from TOD#0:0:0 to TOD#23:59:59
DATE_AND_TIME: from DT#1990-01-01:0:0:0 to DT#2099-12-31:23:59:59
DATE: from D#1990-01-01 to D#2099-12-31

Note 15: Rounding is performed as follows: x.0 s to x.4 s, are rounded to x s and
x.5 s to x.9 s are rounded to x+1 s.

Note 16: It is possible to index all types of directly represented variables positively
and negatively within the limit of their respective maximum number defined in
configuration.

6/15

Conformity to IEC standard 1131-3 6

B
Error conditions

Error conditions PL7 limitations and behavior

Type conversion errors Indicated during the with a system
bit: see table Common elements:
table 22, feature 1

Numerical result exceeds range for data type Indicated during the execution with
system bit %S18

Invalid character position specified Indicated during the execution with
system bit %S18

Result exceeds maximum string length Indicated during the execution with
system bit %S15

Overflow errors during evaluation of a transition Detected during programming

Execution deadlines not met Indicated on execution with system
bit %S19

Other task scheduling conflicts Detected during configuration

Division by zero

Type of data invalid for an operation

Detected during programming if
possible, otherwise indicated on
execution with system bit %S18

Failure of a FOR or WHILE iteration to finish The PLC goes to watchdog
overflow fault and the CPU
involved is indicated

6/16

B

Section 7

7/1

B
1

7. Quick reference guide

7.1 Quick reference guide

Boolean instructions LD IL

Accumulator or rung
initialization

LD TRUE

Test (read)

direct, negated,
rising edge,
falling edge

P N

LD
LDN
LDR
LDF

AND logic P N

P N
AND ANDN ANDR ANDF

AND(AND(N AND(R
AND(F

OR logic

direct, negated,
rising edge,
falling edge

P N

P N

OR ORN ORR ORF

OR(OR(N OR(R OR(F

Inversion N

Exclusive OR logic
(direct, negated, rising
edge, falling edge)

XOR XORN
XORR XORF

Write
(direct, negated)

() (/) ST
STN

Set to 1
Set to 0

(S) (R) S
R

Operation block
(for contents see
following pages)

OPERATE
action [action]

Horizontal comparison
block
(for contents see
following pages)

COMPARE
comparison

LD [comparison]
AND [comparison]
AND([comparison]
OR [comparison]
OR([comparison]
XOR [comparison]

Vertical comparison
block

>

=

<

<>

EN

COMPARE

PuSh memory
ReaD memory
PoP memory

MPS
MRD
MPP

7/2

B

Boolean instructions ST

Assignment :=

Boolean OR
Boolean AND
Boolean Exclusive OR
Negation
Rising, falling edge
Set to 1, set to 0

OR
AND
XOR
NOT
RE, FE
SET, RESET

Function blocks LD IL

IEC timer
IN Q

%TMi IN
BLK..END_BLK structure

PL7-3 timer
E

C

D

R

%Ti

Up/down counter
E

CD

D

CU

%Ci

F

R

S

R
S
CU
CD
BLK..END_BLK structure

Monostable
S R
%MNi S

BLK..END_BLK structure
Register

F

I E

R
%Ri

O

R
I
O
BLK..END_BLK structure

Drum
F

U

R
%DRi R

U
BLK..END_BLK structure

Function blocks ST

IEC timer START %TMi
DOWN %TMi

PL7-3 timer PRESET %Ti
START %Ti
STOP %Ti

Up/down counter RESET %Ci
PRESET %Ci
UP %Ci, DOWN %Ci

Monostable START %MNi
Register RESET %Ri

PUT %Ri
GET %Ri

Drum RESET %DRi
UP %DRi

7/3

Quick reference guide 7

B
Control structures ST

Conditional action IF...THEN...
ELSIF...THEN...
ELSE...END_IF;

Conditional iterative action WHILE...DO...END_WHILE;
Conditional iterative action REPEAT...UNTIL...END_REPEAT;
Repetitive action FOR...DO...END_FOR;
Loop output instruction EXIT

Arithmetic operations on integers
(single and double length)

LD/IL/ST

Transfer or initialization :=

Comparisons = <> <= < > >=

Addition, subtraction, multiplication,
division, remainder

+ - * / REM

AND, OR, exclusive OR, complement AND OR XOR NOT
Absolute value
Square root

ABS
SQRT

Increment
Decrement

INC
DEC

Shift to the left
Shift to the right
Rotate shift to the left
Rotate shift to the right

SHL
SHR
ROL
ROR

Arithmetic operations on floating
points

LD/IL/ST

Transfer or initialization :=

Comparisons = <> <= < > >=

Addition, subtraction, multiplication,
division

+ - * /

Absolute value
Square root

ABS
SQRT

Numeric conversions LD/IL/ST

Convert BCD to single length integer
Convert GRAY to single length integer
Convert single length integer to BCD
Convert single length integer to floating point
Convert double length integer to floating point
Convert floating point to single length integer
Convert floating point to double length integer
Convert 32-bit BCD to 32-bit integer
Convert 32-bit integer to 32-bit BCD
Convert 32-bit BCD to 16-bit integer
Convert 16-bit integer to 32-bit BCD

BCD_TO_INT
GRAY_TO_INT
INT_TO_BCD
INT_TO_REAL
DINT_TO_REAL
REAL_TO_INT
REAL_TO_DINT
DBCD_TO_DINT
DINT_TO_DBCD
DBCD_TO_INT
INT_TO_DBCD

7/4

B
Bit tables LD/IL/ST

Transfer or initialization :=

Copy a bit table into a bit table
AND between two tables
OR between two tables
Exclusive OR between two tables
Negation on a table
Copy a bit table into a word table
Copy a bit table into a double word table
Copy a word table into a bit table
Copy a double word table into a bit table

COPY_BIT
AND_ARX
OR_ARX
XOR_ARX
NOT_ARX
BIT_W
BIT_D
W_BIT
D_BIT

Instructions on tables LD/IL/ST

Transfer and initialization :=

Arithmetic operations between tables
Logic operations between tables
Arithmetic operations between a table and an
integer
Logic operations between a table and an integer
Complement of the elements of a table

+ - * / REM
AND OR XOR
+ - * / REM

AND OR XOR
NOT

Sum of all the elements of a table
Comparison of two tables
Find 1st element of a table equal to a value
Find 1st element of a table greater than a value
Find 1st element of a table less than a value
Find highest value in a table
Find lowest value in a table
Number of occurrences of a value in a table
Rotate shift a table to the left
Rotate shift a table to the right
Sort a table (ascending or descending)

SUM
EQUAL
FIND_EQW, FIND_EQD
FIND_GTW, FIND_GTD
FIND_LTW, FIND_LTD
MAX_ARW, MAX_ARD
MIN_ARW, MIN_ARD
OCCUR_ARW, OCCUR_ARD
ROL_ARW, ROL_ARD
ROR_ARW, ROL_ARW
SORT_ARW, SORT_ARD

Instructions on floating point tables LD/IL/ST

Transfer and initialization :=

7/5

Quick reference guide 7

B
"Orphee" instructions LD/IL/ST

Shift to the left on word with recovery of shifted bits
Shift to the right on word with sign extension and
recovery of shifted bits
Shift to the right on word with filling with 0 and
recovery of shifted bits
Up/down counting with indication of overshoot

WSHL_RBIT, DSHL_RBIT

WSHR_RBIT, DSHR_RBIT

WSHRZ_C, DSHRZ_C

SCOUNT

Explicit exchanges LD/IL/ST

Read %M parameters of a logic channel
Read status %M of a logic channel
Restore %M parameters of a logic channel
Save %M parameters of a logic channel
Write control %M of a logic channel
Write %M parameters of a logic channel

READ_PARAM
READ_STS
RESTORE_PARAM
SAVE_PARAM
WRITE_CMD
WRITE_PARAM

Time management instructions LD/IL/ST

Comparisons = <> <= < > >=

Transfer :=

Read date and code of last PLC stop
Read system date
Update system date

PTC
RRTC
WRTC

Add a time to a full date
Add a time to a time of day
Convert date to string
Day of the week
Difference between two dates
Difference between two full dates
Difference between two times of day
Convert full date to string
Subtract a time from a full date
Subtract a time from time of day
Convert time to string
Convert time of day to string
Change time to hours-min-sec format

ADD_DT
ADD_TOD
DATE_TO_STRING
DAY_OF_WEEK
DELTA_D
DELTA_DT
DELTA_TOD
DT_TO_STRING
SUB_DT
SUB_TOD
TIME_TO_STRING
TOD_TO_STRING
TRANS_TIME

7/6

B
Instructions on character strings LD/IL/ST

Comparisons = <> <= < > >=

Transfer :=

Convert double integer to string
Convert single integer to string
Convert string to double integer
Convert string to single integer
Convert string to floating point
Convert floating point to string

DINT_TO_STRING
INT_TO_STRING
STRING_TO_DINT
STRING_TO_INT
STRING_TO_REAL
REAL_TO_STRING

Concatenate two strings
Delete substring
Find first different character
Find substring
Insert substring
Extract left part of a string
Length of a string
Extract substring
Replace substring
Extract right part of a string

CONCAT
DELETE
EQUAL_STR
FIND
INSERT
LEFT
LEN
MID
REPLACE
RIGHT

Multitasks and events LD/IL/ST

Task activation / deactivation

Adjust task cycle time

%Si position
%SWi position

Global masking of events
Global unmasking of events

MASKEVT
UNMASKEVT

Communication LD/IL/ST

Request to stop a function in progress
Send and/or receive data
Request to read character string
Send and/or request to receive a character string
Send character string
Receive telegram
Read basic language objects
Send/receive UNI-TE requests
Send telegram
Write basic language objects

CANCEL
DATA_EXCH
INPUT_CHAR
OUT_IN_CHAR
PRINT_CHAR
RCV_TLG
READ_VAR
SEND_REQ
SEND_TLG
WRITE_VAR

7/7

Quick reference guide 7

B
Integrated MMI LD/IL/ST

Blocking entry of a variable on the CCX17
Dynamic assignment of keys on screen border
Command to control LEDs on front panel of CCX17
Multiple entry of a variable on the CCX17
Send command to the CCX17
Display alarm message in PLC memory
Display message in PLC memory

ASK_MSG
ASSIGN_KEYS
CONTROL_LEDS
GET_MSG
PANEL_CMD
SEND_ALARM
SEND_MSG

Basic PID control LD/IL/ST

Mixed PID controller
Management of CCX17 dedicated MMI for controlling
PID loops.
Pulse width modulation of a numeric value
PID output stage for controlling discrete valve

PID
PID_MMI

PWM
SERVO

7/8

B

Section 8

8/1

B
1

8. Performance

8.1 General

This section calculates for TSX 37/57 PLCs :
• the execution time of the application program,
• the memory size of the application program.

Execution time of the application program

The execution time of the program is calculated using the tables on the following
pages, by adding up the time taken for each program instruction.

Note : the time obtained is a maximum time. In fact, an operate block or a
subroutine will only be processed if the execution condition (logic equation
conditioning the execution of the block or subroutine) is true. It may be, therefore,
that the actual time is much less than the maximum time calculated.

Calculating the complete cycle time involves parameters which are specific to the
PLC (overhead time, duration of I/O exchange, etc.). Please refer to the
installation manual of the PLC (performance section) for the complete calculation
procedure.

Application memory size
The size of the application is the sum of the following elements :

Element Calculation method
• Program Add up each of the program instructions, (see

tables in sections 8.2 and 8.3). and multiply by the
coefficient which corresponds to the language used
(see next page)

• Advanced functions See section 8.4.4
• Configured PL7 objects See section 8.4.2
• Configured I/O module See section 8.4.3

8/2

B

In the tables on the following pages, information on sizes refers to the volume of
instruction codes. In order to find out the total size of an instruction or a program,
it is necessary to use a multiplication coefficient which takes account of
information that is typical to a language (for example : graphic information in the
case of Ladder language).

• Ladder language : Total volume = 1.7 x Code volume

• Structured Text language : Total volume = 1.6 x Code volume

• Instruction List language :

- for TSX37 PLCs : Total volume = 1.4 x Code volume
- for TSX57 PLCs : Total volume = 1.6 x Code volume

• Grafcet language :
The volume associated to the chart itself is as follows :

Chart volume (in words) = 214 + 17 * no. of chart steps + 2 * total no. of
configured steps + 4 * no. of programmed actions

NB : program comments occupy 1 byte per character.

Note
The figures shown in the following tables are average estimations obtained from
a typical application. It is not possible to provide exact data, since PL7 optimizes
memory use according to the contents and structure of the application.

Section 8.4.1 describes the various memory zones occupied by the application.

8/3

Performance 8

B8.2 TSX 37 performance

8.2.1 Boolean instructions

LD IL ST Objects Execution time
(µs)

Size
(words)

3710 3720
ram

3720
cart

37xx

0.25 0.13 0.19 1

LD,

LDN

%M1 (1) 0.25 0.13 0.19 1

%M1[%MW2] 13.10 12.85 12.85 7
%MW0:X0 (2) 6.06 5.75 5.75 4
%IWi.j:Xk (3) 77.04 69.25 69.25 8
%MW0[%MW10]:X0 16.29 15.55 15.55 8
%KW0[%MW10]:X0 87.27 79.05 79.05 12

LDR,

LDF

%M1 0.50 0.25 0.38 2

%M1[%MW2] 13.01 12.75 12.75 7

,

, ...

AND,

ANDN , AND (, AND (N , idem OR

idem LD, LDN

,

, ...

ANDR, ANDF, AND (R, AND (F, idem OR Idem LDR LDF

XOR, XORN %M1 1.25 0.63 0.94 5
%M1[%MW2] 26.94 26.08 26.26 13
%MW0:X0 12.86 11.88 12.06 10
%IWi.j:Xk 83.84 75.38 75.56 14
%MW0[%MW10]:X0 33.33 31.48 31.66 14
%KW0[%MW10]:X0 104.3

1
94.98 95.16 18

XORR, XORF %M1 2.25 1.13 1.69 9
%M1[%MW2] 27.28 26.13 26.44 19

,

,

ST, STN,

S, R

%M1 0.50 0.25 0.38 2

%M1[%MW2] 13.10 12.85 12.85 7
%MW0:X0 5.88 5.60 5.60 4
%NW{i}j:Xk (3) 76.86 69.10 69.10 8
%MW0[%MW10]:X0 16.41 15.65 15.65 8

multiple coils in Ladder, "cost" of the 2nd and subsequent coils 0.25 0.13 0.19 1

operation block [action] block executed 0.74 0.75 0.75 1

not executed 5.55 5.40 5.40 1

(1) This concerns all the forceable bit objects : %I, %Q, %X, %M, %S
(2) Other objects of the same type : output bits of function block %TMi.Q ..., system word

extract bits %SWi:Xj
(3) Other objects of the same type: common word extract bits %NW{i}j:Xk, I/O word extract bits

%IWi.j.Xk, %QWi.j.Xk, extract bits of %KW, fault bits %Ii.j.ERR

8/4

B
LD IL ST Objects Execution time

(µs)
Size

(words)
3710 3720

ram
3720
cart

37xx

horizontal
comparison block

LD
[comparison]

time in addition to the
comparison

0.00 0.00 0.00 0

vertical
comparison block

between 2 %MWi 12.38 11.85 11.85 4

convergence)) 0.25 0.13 0.19 1

divergence not followed
by a convergence

ladder, 1 divergence 0.25 0.13 0.19 1

MPS, MPP, list MPS+MPP 0.75 0.38 0.56 3

MRD list MRD 0.25 0.13 0.19 1

8.2.2 Function blocks

LD IL ST objects/conditions Execution time
(µs)

Size
(words)

3710 3720 37xx

IE timer
rising edge on IN IN %TM1

(rising edge)
START %TM1 start timer 43.39 41.11 3

falling edge on IN IN %TM1
(falling edge)

DOWN %TM1 stop timer 17.47 17.01

IN =1 IN %TM1 (=1) timer on 18.74 17.99

IN =0 IN %TM1 (=0) timer off 17.40 16.67

PL7-3 timer
START %T1 enable 3

STOP %T1 freeze 12.63 12.15

E=0 RESET %T1 reset 12.94 12.15

timer on 17.55 17.00

timer off

Up/down counter
reset, R=1 R %C8 (=1) RESET %C8 reset 18.69 17.92 3

preset, S=1 S %C9 (=1) PRESET %C9 preset 20.42 19.73

rising edge on CU CU %C8
(rising edge)

UP %C8 up 19.92 19.10

rising edge on CD CD %C9
(rising edge)

DOWN %C9 down 19.92 19.10

inactive inputs R/S/CU/CD inactive bit no action 13.27 12.81

8/5

Performance 8

BFunction blocks (continued)

LD IL ST objects/conditions Execution time (µs) Size
(words)

3710 3720 37xx

Monostable
rising edge on S S %MN0,

rising edge
START %MN0 start 35.08 33.16 3

S=1 S %MN0,
S=1/0

active monostable 11.64 11.17

Register
edge on I I %R2 (edge) PUT %R2 store 21.90 21.27 3

edge on O O %R2 (edge) GET %R2 retrieve 21.90 21.27

R=1 R %R1 (=1) RESET %R2 reset 16.90 16.02

inactive inputs I/O/R, inactive
bit

no action 12.61 12.19

Drum
edge on U U %DR0 UP %DR1 up, fixed 181.37 169.13 3

by control bit 19.30 19.30

R=1 R %DR1 RESET %DR2 reset, fixed 174.15 162.03

by control bit 19.30 19.30

inactive inputs R/U, inactive
bit

no action, fixed 175.92 164.00

by control bit 19.30 19.30

8/6

B
8.2.3 Integer and floating point arithmetic

Corrections according to object type
The times and volumes on the following pages are given for %MW0, %MD0 or %MF0

Execution time (µs) Size
(words)

3710 3720 37xx

• Value remove for immediate values
16#1234/%MW0 1.20 1.10 0

16#12345678 /
%MD0 or %MF/0

1.21 0.75 1

• Value to add for indexed words/double words/floating points
%MW2[%MW0]

or
%MD2[%MW0]

or
%MF2[%MW0]

object following the := 10.52 10.05 4

1st operation : the 1st
operand not being
indexed, or
assignment

11.20 10.60 5

2nd operand if the 1st

operand is also
indexed

13.37 12.60 5

• Value to add for objects of the following type :

%KWi, %KWi[%MW0], %KDi, %KFi, common words, I/O words
70.98 63.50 2

Correction according to the context of the operation
• Value to add if the operation is in at least the 2nd position in the phrase, example *%MW2 in

:= %MW0 * %MW1 * %MW2, concerns the following operations
%MW0 0.69 0.55 0

%MD0 and
%MF0

0.99 0.75 0

• Value to add for an operation with the result of an operation in parentheses or of a higher
priority, example : %MW0 + %MW2 + (...)

%MW0 2.86 2.55 1

%MD0 and
%MF0

3.60 3.15 1

8/7

Performance 8

B
ST Objects Conditions Execution time

(µs)
Size
(words)

3710 3720 37xx

object after the := %MW0 4.81 4.50 2

%MD0,%MF0 6.45 5.70 2

:= %MW0 4.46 4.30 2

%MD0 and
%MF0

5.15 4.85 2

=, <>, <=, <, >, >= %MW0 8.94 8.50 4

%MD0 10.71 10.26 4

%MF0 29.06 28.39 4

AND, OR, XOR %MW0 7.29 6.90 3

%MD0 9.21 8.55 3

+, - %MW0 7.29 6.90 3

%MD0 9.21 8.55 3

%MF0 62.83 61.20 3

* %MW0 9.75 9.10 3

%MD0 39.63 36.50 3

%MF0 58.26 56.90 3

/, REM %MW0 10.69 10.08 3

%MD0 205.21 201.38 3

/ %MF0 62.47 60.25 3

ABS, -object %MW0 7.20 6.95 3

%MD0 9.97 9.53 3

%MF0 13.01 12.50 3

NOT %MW0 6.69 6.45 3

%MD0 7.80 7.40 3

SQRT %MW0 17.02 16.70 3

%MD0 85.73 85.25 3

%MF0 165.04 158.40 3

INC, DEC %MW0 4.86 4.40 2

%MD0 5.20 4.75 2

SHL, SHR, ROL,
ROR

%MW0 for 1 bit 17.74 17.05 5

%MD0 for 1 bit 20.58 19.15 5

per additional bit 0.063

8/8

B
8.2.4 Program instructions

ST Objects Conditions Execution time
(µs)

Size
(words)

3710 3720 37xx

Jump %Li 41.93 38.20 3

Maskevt 12.21 10.80 1

Unmaskevt 40.27 37.10 1

SRi 48.68 42.88 3

Return 42.18 38.33 3

8.2.5 Command structure

ST Execution time
(µs)

Volume
(words)

3710 3720 37xx

<cond> condition evaluation

forceable bit see Boolean instruction LD %M1

comparison see comparisons =,<,> ...

if <cond > then <action>
end_if;

the times and volumes indicated below
should be added to those of the action
contained in the structure

true condition 3.60 3.30 2

false condition (jump) 5.55 5.40

If <cond> then <action1>
else <action2> end_if;
true condition 9.15 8.70 4

false condition 5.55 5.40

while <cond> do.<action>
end_while
go to loop with loop-back 9.15 8.70 2

exit loop 5.55 5.40

repeat <action> until
<cond> end_repeat
go to loop with loop-back 5.55 5.40 2

last pass 3.60 3.30

for <word1:=word2> to
<word3> do <action>
end_for
entry to the for command,
executed once only

8.58 8.25 15

go to loop with loop-back 29.38 27.35

exit loop 20.42 19.40

8/9

Performance 8

B
8.2.6 Numeric conversions

ST Execution time
(µs)

Volume
(words)

3710 3720 ram 3720 cart 37xx

BCD_TO_INT 25.03 24.55 24.55 3

INT_TO_BCD 21.66 21.15 21.15 3

GRAY_TO_INT 36.98 36.55 36.55 3

INT_TO_REAL 40.90 40.75 40.75 3

DINT_TO_REAL 33.32 32.55 32.55 3

REAL_TO_INT 58.75 58.55 58.55 3

REAL_TO_DINT 44.59 44.05 44.05 3

DBCD_TO_DINT 1 324.85 1 065.15 1 134.70 5

DBCD_TO_INT 1 265.54 925.70 986.15 5

DINT_TO_DBCD 1 124.85 825.15 879.10 5

INT_TO_DBCD 564.85 445.15 474.40 5

8.2.7 Bit string

ST conditions Execution time
(µs)

Volume
(words)

3710 3720 ram 3720 cart 37xx

Initializing a bit table
%M30:8 := 0 8 bits 19.38 18.88 18.88 6

%M30:16 := 1 16 bits 20.38 19.88 19.88 6

%M30:24 := 2 24 bits 24.25 23.35 23.35 6

%M30:32 := 2 32 bits 25.25 24.35 24.35 6

8/10

B

ST conditions Execution time
(µs)

Volume
(words)

3710 3720 ram 3720 cart 37xx

Copying a bit table to a bit table
%M30:8 := %M20:8 8 bits 25.54 24.79 24.79 6

%M30:16 := %M20:16 16 bits 26.16 25.41 25.41 6

%M30:24 := %M20:24 24 bits 33.41 32.26 32.26 6

%M30:32 := %M20:32 32 bits 35.91 34.76 34.76 6

%M30:16 := COPY_BIT(%M20:16) 16 bits 281.63 230.00 244.95 9

32 bits 440.82 360.00 383.40 9

128 bits 1 261.22 1 030.00 1 096.95 9

Logic instructions on bit tables
AND_ARX, OR_ARX, XOR_ARX

%M0:16 := AND_ARX(%M30:16,%M50:16) 16 bits 397.42 320.00 340.80 12

%M0:32 := AND_ARX(%M30:32,%M50:32) 32 620.97 500.00 532.50 12

%M0:128 := AND_ARX(%M30:128,%M50:128) 128 1 887.74 1 520.00 1 618.80 12

NOT_ARX

%M0:16 := NOT_ARX(%M30:16) 16 bits 281.63 230.00 244.95 9

32 440.82 360.00 383.40 9

128 1 261.22 1 030.00 1 096.95 9

Copying a bit table to a word table
%MW1 := %M30:8 8 bits 14.84 14.36 14.36 5

%MW1 := %M30:16 16 bits 16.34 15.86 15.86 5

%MD2 := %M30:24 24 bits 14.54 14.23 14.23 5

%MD2 := %M30:32 32 bits 16.04 15.73 15.73 5

%MW1:4 := BIT_W(%M40:80,0,17,2) 17 bits 501.43 390.00 415.35 16

%MD1:4 := BIT_D(%M30:80,0,33,0) 33 bits 379.53 530.00 564.45 16

Copying a word table to a bit table
%M30:8 := %MW1 8 bits 19.28 18.68 18.68 5

%M30:16 := %MW2 16 bits 20.28 19.68 19.68 5

%M30:24 := %MD1 24 bits 21.20 20.37 20.37 5

%M30:32 := %MD3 32 bits 22.20 21.37 21.37 5

%M30:32 := W_BIT(%MW200:2,0,2,0) 32 bits 488.68 370.00 394.05 16

%M30:32 := D_BIT(%MD0:1,0,2,0) 32 bits 567.33 460.00 489.90 16

8/11

Performance 8

B
8.2.8 Word, double word and floating point tables

ST conditions Execution time
(µs)

volume
(words)

3710 3720 ram 3720 cart 37xx

Initializing a word table with a word
%MW0:10 := %MW100 10 words 47.46 42.15 42.15 7

per word 0.34 0.20 0.20

%MD0:10 := %MD100 10 double words 81.27 74.45 74.45 7

per double word 2.87 2.65 2.65

Copying a word table to a word table
%MW0:10:=%MW20:10; 10 words 95.80 85.35 85.35 9

per word 0.77 0.50 0.50

%MD0:10:=%MD20:10; 10 double words 111.13 97.65 97.65 9

per double word 1.54 1.00 1.00

Arithmetical and logic instructions between two word tables
+, -

%MW0:10 :=%MW10:10 + %MW20:10; 10 words 168.04 151.95 151.95 14

per word 7.13 6.35 6.35

%MD0:10:=%MD10:10+%MD20:10; 10 double words 239.17 214.40 214.40 14

per double word 13.84 12.25 12.25

*

%MW0:10:=%MW10:10 * %MW20:10; 10 words 189.32 175.40 175.40 14

per word 9.27 8.70 8.70

%MD0:10:=%MD10:10 * %MD20:10; 10 double words 710.35 603.80 603.80 14

per double word 61.64 51.20 51.20

/, REM

%MW0:10:=%MW10:10 / %MW20:10; 10 words 224.76 181.40 181.40 14

per word 13.14 9.30 9.30

%MD0:10:=%MD10:10 / %MD20:10; 10 double words 2 192.38 2 157.35 2 157.35 14

per double word 209.16 206.55 206.55

AND, OR, XOR

%MW0:10:=%MW10:10 AND %MW20:10; 10 words 163.69 147.40 147.40 14

per word 6.66 5.85 5.85

%MD0:10:=%MD10:10 AND %MD20:10; 10 double words 240.14 215.90 215.90 14

per double word 13.94 12.40 12.40

8/12

B
ST conditions Execution time

(µs)
Volume
(words)

3710 3720
ram

3720
cart

37xx

Arithmetical and logic instructions between 1 word table and 1 word
+, -

%MW0:10 :=%MW10:10 + %MW20; 10 words 119.12 108.55 108.55 12

or %MW0:10 := %MW20 + %MW10:10 per word 2.87 2.65 2.65

%MD0:10 :=%MD10:10 + %MD20; 10 double words 159.68 147.45 147.45 12

per double word 6.57 6.25 6.25

*

%MW0:10 :=%MW20*%MW10:10; 10 words 166.86 132.45 132.45 12

per word 7.94 5.05 5.05

%MD0:10:=%MD20*%MD10:10; 10 double words 587.01 522.95 522.95 12

per double word 49.18 43.80 43.80

/, REM

%MW0:10 :=%MW10:10 / %MW30; 10 words 196.69 155.85 155.85 12

per word 10.86 7.30 7.30

%MD0:10:=%MD10:10 / %MD30; 10 double words 2 230.17 2 173.95 2 173.95 12

per double word 213.66 208.90 208.90

AND, OR, XOR

%MW0:10 :=%MW10:10 AND %MW20; 10 words 117.20 106.45 106.45 12

per word 2.64 2.40 2.40

%MD0:10:=%MD20*%MD10:10; 10 double words 587.01 522.95 522.95 12

per double word 6.47 6.15 6.15

NOT

%MW0:10 :=NOT(%MW10:10); 10 words 110.28 100.25 100.25 9

per word 2.96 2.75 2.75

%MD0:10:=NOT(%MD10:10); 10 double words 126.39 114.00 114.00 9

per double word 4.50 4.05 4.05

Table summing function
%MW20:=SUM(%MW0:10); 10 words 74.30 69.00 69.00 10

per word 2.44 2.35 2.35

%MD20:=SUM(%MD0:10); 10 double words 83.58 76.90 76.90 10

per double word 3.17 2.95 2.95

8/13

Performance 8

B
ST conditions Execution time

(µs)
Volume
(words)

3710 3720 ram 3720
cart

37xx

Comparison of tables function
%MW20:=EQUAL(%MW0:10;%MW10:10); 10 words 103.78 93.50 93.50 11

per word 1.13 0.90 0.90

%MD20:=EQUAL(%MD0:10;%MD10:10); 10 double words 116.17 103.40 103.40 11

per double word 2.23 1.75 1.75

Search
%MW20 := FIND_EQW(%MW0:10,%KW0) 10 words, max.

instance
340.00 250.00 266.25 15

%MD20 := FIND_EQD(%MD0:10, %KD0) 10 double words,
max. instance

350.00 260.00 276.90 16

Searching for max. and min. values
%MW20 := MAX_ARW(%MW0:10) 10 words 350.00 260.00 276.90 9

%MD20 := MAX_ARD(%MD0:10) 10 double words 410.00 300.00 319.50 9

Number of occurrences
%MW20 := OCCUR_ARW(%MW0:10, %KW0) 10 words 350.00 250.00 266.25 15

%MD20 := OCCUR_ARD(%MD0:10, %KD0) 10 double words 370.00 270.00 287.55 16

Rotate shift
ROL_ARW(word or value,%MWj:10) 10 words 550.00 400.00 426.00 9

ROL_ARD(%MDi,%MDj:10) 10 double words 590.00 430.00 457.95 9

Sort
SORT_ARW(%MWi,%MWj:10) 10 words, max.

instance
970.00 700.00 745.50 9

SORT_ARD(%MDi,%MDj:10) 5 double words, max.
instance

610.00 450.00 479.25 9

8/14

B

8.2.9 Time management

ST Execution time
(µs)

Volume
(words)

3710 3720 ram 3720 cart 37xx

Date, time and duration OF
%MW2:4 := ADD_DT(%MW2:4,%MD8) 4 400.00 3 300.00 3 514.50 13

%MD2 := ADD_TOD(%MD2,%MD8) 2 100.00 1 550.00 1 650.75 9

%MB2:11 := DATE_TO_STRING(%MD40) 1 370.00 900.00 958.50 9

%MW5 := DAY_OF_WEEK() 220.00 280.00 298.20 5

%MD10 := DELTA_D(%MD2, %MD4) 1 520.00 1 130.00 1 203.45 9

%MD10 := DELTA_DT(%MD2:4,%MW6:4) 3 170.00 2 300.00 2 449.50 13

%MD10 := DELTA_TOD(%MD2,%MD4) 2 330.00 1 700.00 1 810.50 9

%MB2:20 := DT_TO_STRING(%MW50:4) 2 050.00 1 450.00 1 544.25 11

%MW2:4 := SUB_DT(%MW2:4,%MD8) 4 750.00 3 500.00 3 727.50 13

%MD2 := SUB_TOD(%MD2,%MD8) 2 330.00 1 700.00 1 810.50 9

%MB2:15 := TIME_TO_STRING(%MD40) 1 560.00 1 200.00 1 278.00 9

%MB2:9 := TOD_TO_STRING(%MD40) 1 270.00 800.00 852.00 9

%MD100 := TRANS_TIME(%MD2) 500.00 500.00 532.50 7

Access real-time clock
RRTC(%MW0:4) 93.60 84.80 84.80 5

WRTC(%MW0:4) 248.61 230.85 230.85 5

PTC(%MW0:5) 97.98 88.60 88.60 5

8/15

Performance 8

B
8.2.10 Character strings

ST Conditions Execution time
(µs)

Volume
(words)

3710 3720 ram 3720 cart 37xx

Character string assignment, feedback
%MB0:8:=%MB10:8 8 characters 105.16 93.80 93.80 9

per character 1.65 1.30 1.30

%MB0:8:='abcdefg' 8 characters 120.72 110.20 110.20 11

per character 4.15 3.85 3.85 0,5

Word <-> character string conversions
%MW1:=STRING_TO_INT(%MB0:7) 97.69 91.95 91.95 7

%MB0:7:=INT_TO_STRING(%MW0) 104.36 96.70 96.70 7

Double word <-> character string conversions
%MD1:=STRING_TO_DINT(%MB0:13) 1 070.53 965.62 965.62 7

%MB0:13:=DINT_TO_STRING(%MD0) 322.29 295.35 295.35 7

Floating point <-> character string conversions
%MF1:=STRING_TO_REAL(%MB0:15) 1 783.70 1 634.53 1 634.53 7

%MB0:15:=REAL_TO_STRING(%MF0) 741.75 681.20 681.20 7

String manipulation OF
%MB10:20 := CONCAT(%MB30:10,%MB50:10) 1 170.00 770.00 820.05 15

%MB10:20 := DELETE(%MB10:22,2,3); 950.00 600.00 639.00 15

%MW0 := EQUAL_STR(%MB10:20,%MB30:20); the 5th character is
different

860.00 520.00 553.80 13

%MW0 := FIND(%MB10:20,%MB30:10); 1 610.00 1 000.00 1 065.00 13

%MB10:20 := INSERT(%MB30:10,%MB50:10,4); 1 270.00 800.00 852.00 17

%MB10:20 := LEFT(%MB30:30,20); 920.00 570.00 607.05 13

%MW0 := LEN(%MB10:20); 770.00 340.00 362.10 9

%MB10:20 := MID(%MB30:30,20,10); 1 080.00 700.00 745.50 15

%MB10:20 :=
REPLACE(%MB30:20,%MB50:10,10,10);

1 450.00 870.00 926.55 19

%MB10:20 := RIGHT(%MB30:30,20); 1 480.00 950.00 1 011.75 13

8/16

B
8.2.11 Application-specific functions and Orphee function

ST Conditions Execution time
(µs)

Volume
(words)

3710 3720
ram

3720
cart

37xx

Communication
SEND_REQ(%KW0:6,15,%MW0:1,%MW10:10,%MW30:4) 2182 1818 1936 21

SEND_TLG(%KW0:6,1,%MW0:5,%MW30:2) 1636 1364 1452 15

Man-machine interface
SEND_MSG(ADR#1.0,%MW0:2,%MW10:2) 2 240 2 000 2208 19

SEND_ALARM(ADR#1.0,%MW0:2,%MW10:2) 2 240 2 000 2208 19

GET_MSG(ADR#1.0,%MW0:2,%MW10:2) 2 240 2 000 2 208 19

GET_VALUE(ADR#1.0,%MW0,%MW10:2) 1 120 1 000 1 104 17

ASK_MSG(ADR#1.0,%MW0:2,%MW10:2,%MW20:2) 2 240 2 000 2 208 23

ASK_VALUE(ADR#1.0,%MW0,%MW10:2,%MW20:2) 2 240 2 000 2 208 21

DISPLAY_ALRM(ADR#1.0,%MW0,%MW10:2) 1 120 1 000 1 104 17

DISPLAY_GRP(ADR#1.0,%MW0,%MW10:2) 1 120 1 000 1 104 17

DISPLAY_MSG(ADR#1.0,%MW0,%MW10:2) 1 120 1 000 1 104 17

CONTROL_LEDS(ADR#1.0,%MW0:2,%MW10:2) 2 240 2 000 2 208 19

ASSIGN_KEYS(ADR#1.0,%MW0:2,%MW10:2) 2 240 2 000 2 208 19

PANEL_CMD(ADR#1.0,%MW0:2,%MW10:2) 2 240 2 000 2 208 19

Process control
PID('PIDS1','Unit',%IW3.5,%MW12,%M16,%MW284:43) deval_mmi=0 1320 1100 1172 24

deval_mmi=1 1080 900 958,5

PWM(%MW11,%Q2.1,%MW385:5) 600 500 532,5 11

SERVO(%MW12,%IW3.6,%Q2.2,%Q2.3,%MW284:43,%MW3
90:10)

960 800 852 19

PID_MMI(ADR#0.0.4,%M1,%M2:5,%MW410:62) EN=1 1140 950 1012 20

8/17

Performance 8

B
ST Conditions Execution time

(µs)
Volume
(words)

3710 3720
ram

3720
cart

37xx

Orphee function
DSHL_RBIT(%MD102,16,%MD204,%MD206) read 10 words 440 320 341 13

DSHR_RBIT(%MD102,16,%MD204,%MD206) write 10 words 660 480 511 13

DSHRZ_C(%MD102,16,%MD204,%MD206) mirror req. 10
words

410 310 330 13

WSHL_RBIT(%MW102,8,%MW204,%MW206) exchange 10
words

300 220 234 13

WSHR_RBIT(%MW102,8,%MW204,%MW206) 20 bytes 390 280 298 13

WSHRZ_C(%MW102,8,%MW204,%MW206) 20 bytes 300 220 234 13

SCOUNT(%M100,%MW100,%M101,%M102,%MW101,%MW
102,%M200,%M201,%MW200,%MW201)

20 bytes 510 410 437 25

8.2.12 Explicit I/O

Read_Sts %CHi.MOD

Any application, except for the processor communication
channel

30 30 32 2

Read_Sts %CHi

Analog input 180 180 216 6

Analog output 90 70 74

CTZ counter module 110 95 104

Write_Param %CHi

Analog input 790 570 790 6

CTZ counter module 1127 1080 1083

Read_Param %CHi

Analog input 260 290 316 6

CTZ counter module 338 295 300

Save_Param %CHi

Analog input 1234 1220 1240 6

CTZ counter module 1370 1220 1240

Restore_Param %CHi

Analog input 550 510 535 6

CTZ counter module 1160 1080 1097

Write_Cmd %CHi

Discrete output 50 47 52 6

8/18

B
8.3 TSX 57 performance

8.3.1 Boolean instructions

LD IL ST Objects Execution time
(µs)

Size
(words)

5710 5720
ram

5720
cart

57xx

0.29 0.12 0.21 1

LD,

LDN

%M1 (1) 0.58 0.25 0.37 1

%M1[%MW2] 2.33 1.00 1.58 6
%MW0:X0 (2) 1.46 0.62 1.00 4
%IWi.j:Xk (3) 2.33 1.00 1.58 6
%MW0[%MW10]:X0 3.50 1.50 2.37 9
%KW0[%MW10]:X0 3.50 1.50 2.37 9

LDR,

LDF

%M1 0.87 0.37 0.58 2

%M1[%MW2] 2.62 1.12 1.79 7

,

, ...

AND,

ANDN , AND (, AND (N , idem OR

idem LD, LDN

,

, ...

ANDR, ANDF, AND (R, AND (F, idem OR idem LDR, LDF

XOR, XORN %M1 2.04 0.87 1.37 5
%M1[%MW2] 5.54 2.37 3.79 13
%MW0:X0 4.08 1.75 2.83 10
%IWi.j:Xk 4.96 2.12 3.42 14
%MW0[%MW10]:X0 7.87 3.37 5.37 14
%KW0[%MW10]:X0 7.87 3.37 5.37 18

XORR, XORF %M1 2.25 1.13 1.69 9
%M1[%MW2] 27.28 26.13 26.44 19

,

,

ST, STN,

S, R

%M1 1.17 0.50 0.75 2

%M1[%MW2] 2.62 1.12 1.75 7
%MW0:X0 1.75 0.75 1.17 4
%NW{i}j:Xk (3) 2.62 1.12 1.75 8
%MW0[%MW10]:X0 3.79 1.25 2.54 8

multiple coils in Ladder, "cost" of 2nd and subsequent coils 0.87 0.37 0.54 1

operation block [action] block executed 0.58 0.25 0.42 1

not executed 0.71 0.37 0.54 1

(1) This refers to all forceable bit objects : %I, %Q, %X, %M, %S
(2) Other objects of the same type : output bits of function block %TMi.Q ..., system word

extract bits %SWi:Xj, extract bits of %KW, fault bits %Ii.j.ERR
(3) Other objects of the same type: common word extract bits %NW{i}j:Xk, I/O word extract bits

%IWi.j.Xk, %QWi.j.Xk

8/19

Performance 8

B
LD IL ST Objects Execution time

(µs)
Size

(words)
5710 5720

ram
5720
cart

57xx

horizontal
comparison block

LD
[comparison]

time in addition to the
comparison

0.00 0.00 0.00 0

vertical
comparison block

between 2 %MWi 2.04 0.87 1.37 5

convergence)) 0.29 0.12 0.21 1

divergence not followed
by a convergence

ladder, 1 divergence 0.29 0.12 0.21 1

MPS, MPP, list MPS+MPP 0.87 0.37 0.62 3

MRD list MRD 0.29 0.12 0.21 1

8.3.2 Function blocks

LD IL ST objects/conditions Execution time
(µs)

Size
(words)

5710 5720 57xx

IE timer
rising edge on IN IN %TM1

(rising edge)
START %TM1 start timer 67.87 46.92 3

falling edge on IN IN %TM1
(falling edge)

DOWN %TM1 stop timer 27.84 19.50

IN =1 IN %TM1 (=1) timer on 32.15 22.66

IN =0 IN %TM1 (=0) timer off 28.60 20.18

PL7-3 timer
START %T1 enable 3

STOP %T1 freeze 23.08 16.16

E=0 RESET %T1 reset 23.46 16.26

timer on 30.40 21.51

timer off

Up/down counter
reset, R=1 R %C8 (=1) RESET %C8 reset 30.38 21.26 3

preset, S=1 S %C9 (=1) PRESET %C9 preset 33.99 23.55

rising edge on CU CU %C8
(rising edge)

UP %C8 up 33.81 23.49

rising edge on CD CD %C9
(rising edge)

DOWN %C9 down 33.81 23.49

inactive steps R/S/CU/CD inactive bit no action 22.37 16.22

8/20

B
Function blocks (continued)

LD IL ST objects/conditions Execution time (µs) Size
(words)

5710 5720 57xx

Monostable
rising edge on S S %MN0,

rising edge
START %MN0 start 57.42 40.65 3

S=1 S %MN0,
S=1/0

active monostable 20.38 14.11

Register
edge on I I %R2 (edge) PUT %R2 store 35.69 24.92 3

edge on O O %R2 (edge) GET %R2 retrieve 35.69 24.92

R=1 R %R1 (=1) RESET %R2 reset 26.83 18.80

inactive inputs I/O/R, inactive
bit

no action 20.71 15.50

Drum
edge on U U %DR0 UP %DR1 up, fixed 268.69 185.41 3

per control bit 25.00 25.00

R=1 R %DR1 RESET %DR2 reset, fixed 257.01 176.06

per control bit 25.00 25.00

inactive inputs R/U, inactive
bit

no action, fixed 259.07 179.06

per control bit 25.00 25.00

8/21

Performance 8

B8.3.3 Integer and floating point arithmetic

Corrections according to object type
The times and volumes on the following pages are given for %MW0, %MD0 or %MF0

Execution time
(µs)

Volume
(words)

5710 5720 ram 5720 cart 57xx

• Value to remove for immediate values
16#1234 / %MW0 0.29 0.12 0.17 0

16#12345678 / %MD0 or %MF0 0.29 0.12 0.12 1

• Value to add for indexed words/double words/floating points
%MW2[%MW0] or
%MD2[%MW0] or
%MF2[%MW0]

object following the := 2.04 0.87 1.37 5

1st operation,
assignment

2.04 0.87 1.37 5

2nd operation (or 1st
indexed operand)

2.04 0.87 1.37 5

• Value to add for objects of the following type :
Common words, I/O words 0.87 0.37 0.58 2

Correction according to the context of the operation
• Value to add if the operation is in at least the 2nd position in the phrase, example *%MW2 in

:= %MW0 * %MW1 * %MW2, concerns the following operations: *,/,REM on words and
double words, or all operations on floating points

%MW0 0.58 0.25 0.37 1

%MD0 and %MF0 0.87 0.37 0.54 1

• Value to add for an operation with the result of an operation in parentheses, or of a higher
priority, example : %MW0 + %MW2 + (...)

%MW0 0.29 0.12 0.17 1

%MD0 and %MF0 0.58 0.25 0.33 1

8/22

B
ST objects conditions Execution time (µs) Volume

(words)
5710 5720 ram 5720 cart 57xx

object after the := %MW0 0.87 0.37 0.58 2

%MW0+(..., or before *, /,
REM

1.17 0.50 0.75 2

%MD0 1.17 0.50 0.75 2

%MD0(..., or before *, /,
REM

1.75 0.75 1.08 2

%MF0 1.75 0.75 1.08 2

:= %MW0 0.87 0.37 0.58 2

%MD0 et %MF0 1.17 0.50 0.75 2

=, <>, <=, <, >, >= %MW0 1.17 0.50 0.79 4

%MD0 1.46 0.62 1.04 4

%MF0 48.36 33.88 34.13 4

AND, OR, XOR %MW0 0.87 0.37 0.58 3

%MD0 1.17 0.50 0.75 3

+, - %MW0 0.87 0.37 0.58 3

%MD0 1.17 0.50 0.75 3

%MF0 99.42 71.51 71.76 3

* %MW0 10.83 9.14 9.35 3

%MD0 55.31 42.71 42.96 3

%MF0 87.60 63.61 63.86 3

/, REM %MW0 11.93 9.99 10.20 3

%MD0 333.15 226.54 226.79 3

/ %MF0 95.83 68.51 68.76 3

ABS, -object %MW0 0.87 0.37 0.58 2

%MD0 1.17 0.54 0.75 2

%MF0 18.82 13.01 13.26 2

NOT %MW0 0.87 0.37 0.58 2

%MD0 1.17 0.54 0.75 2

SQRT %MW0 22.20 16.24 16.45 3

%MD0 111.29 89.66 89.91 3

%MF0 233.62 173.01 173.26 3

INC, DEC %MW0 1.17 0.50 0.75 2

%MD0 1.75 0.75 1.08 2

SHL, SHR, ROL,
ROR

%MW0 for 1 bit 2.92 1.25 1.96 10

%MD0 for 1 bit 3.21 1.37 2.12 10

per additional bit 0.042

8/23

Performance 8

B8.3.4 Program instructions

ST Objects Conditions Execution time
(µs)

Volume
(words)

5710 5720
ram

5720
cart

57xx

Jump %Li 2.58 1.25 1.71 3

Maskevt 33.98 23.96 23.96 1

Unmaskevt 34.54 24.41 24.41 1

SRi 3.92 1.75 2.42 2

Return 1.00 0.50 0.71 2

8.3.5 Command structure

ST Execution time
(µs)

Volume
(words)

5710 5720
ram

5720
cart

57xx

<cond> condition evaluation

forceable bit see Boolean instruction LD %M1

comparison see comparisons =,<,> ...

if <cond > then <action>
end_if;

the times and volumes indicated
below should be added to those of
the action contained in the
structure

true condition 0.58 0.25 0.42 2

false condition (jump) 0.71 0.37 0.54

If <cond> then <action1>
else <action2> end_if;
true condition 1.29 0.62 0.96 4

false condition 0.71 0.37 0.54

while <cond> do.<action>
end_while
go to loop with loop-back 1.29 0.62 0.96 2

exit loop 0.71 0.37 0.54

repeat <action> until
<cond> end_repeat
go to loop with loop-back 0.71 0.37 0.54 2

last pass 0.58 0.25 0.42

for <word1:=word2> to
<word3> do <action>
end_for
entry to the for command,
execute once only

1.75 0.75 1.17 15

go to loop with loop-back 5.08 2.12 3.29

exit loop 2.46 1.12 1.71

8/24

B
8.3.6 Numeric conversions

ST Execution time
(µs)

Volume
(words)

5710 5720 ram 5720 cart 57xx

BCD_TO_INT 30.33 24.44 24.65 3

INT_TO_BCD 24.48 20.19 20.40 3

GRAY_TO_INT 59.73 40.79 41.00 3

INT_TO_REAL 60.35 40.64 40.85 3

DINT_TO_REAL 49.14 34.76 35.01 3

REAL_TO_INT 91.59 60.86 61.11 3

REAL_TO_DINT 68.84 48.31 48.56 3

DBCD_TO_DINT 1 625.73 1 069.50 1 192.30 5

DBCD_TO_INT 1 379.53 909.63 1 014.07 5

DINT_TO_DBCD 1 251.05 819.50 913.55 5

INT_TO_DBCD 620.01 439.50 489.85 5

8.3.7 Bit string

ST conditions Execution time
(µs)

Volume
(words)

5710 5720 ram 5720 cart 57xx

Initializing a bit table
%M30:8 := 0 8 bits 6.71 2.87 4.12 7

%M30:16 := 1 16 bits 11.37 4.87 6.79 7

%M30:24 := 2 24 bits 24.47 15.31 16.81 12

%M30:32 := 2 32 bits 29.13 17.31 19.48 12

Copying a bit table to a bit table
%M30:8 := %M20:8 8 bits 13.71 5.87 8.17 8

%M30:16 := %M20:16 16 bits 16.62 7.12 9.83 8

%M30:24 := %M20:24 24 bits 45.46 24.31 28.85 13

%M30:32 := %M20:32 32 bits 57.13 29.31 35.52 13

%M30:16 := COPY_BIT(%M20:16) 16 bits 322.00 230.00 256.45 17

32 bits 490.00 350.00 390.25 17

128 bits 1 526.00 1 090.00 1 215.35 17

8/25

Performance 8

B
ST conditions Execution time

(µs)
Volume
(words)

5710 5720 ram 5720 cart 57xx

Logic instructions on bit tables
AND_ARX, OR_ARX, XOR_ARX

%M0:16 := AND_ARX(%M30:16,%M50:16) 16 bits 434.00 310.00 345.65 24

%M0:32 := AND_ARX(%M30:32,%M50:32) 32 686.00 490.00 546.35 24

%M0:128 :=
AND_ARX(%M30:128,%M50:128)

128 2 198.00 1 570.00 1 750.55 24

NOT_ARX

%M0:16 := NOT_ARX(%M30:16) 16 bits 322.00 230.00 256.45 17

32 490.00 350.00 390.25 17

128 1 526.00 1 090.00 1 215.35 17

Copying a bit table to a word table
%MW1 := %M30:8 8 bits 8.75 3.75 5.25 6

%MW1 := %M30:16 16 bits 15.75 6.75 9.25 6

%MD2 := %M30:24 24 bits 23.04 10.54 13.83 6

%MD2 := %M30:32 32 bits 30.04 13.54 17.83 6

%MW1:2 := BIT_W(%M40:17,0,17,0) 17 bits 518.00 370.00 412.55 23

%MD1:2 := BIT_D(%M30:33,0,33,0) 33 bits 728.00 520.00 579.80 23

Copying a word or a word table to a bit table
%M30:8 := %MW1 8 bits 6.71 2.87 4.08 6

%M30:16 := %MW2 16 bits 11.37 4.87 6.75 6

%M30:24 := %MD1 24 bits 24.76 16.11 17.36 11

%M30:32 := %MD3 32 bits 29.42 18.11 20.02 11

%M30:32 := W_BIT(%MW0:2,0,2,0) 32 bits 518.00 370.00 412.55 23

%M30:32 := D_BIT(%MD0:1,0,2,0) 32 bits 616.00 440.00 490.60 23

8/26

B
8.3.8 Word, double word and floating point tables

ST conditions Execution time
(µs)

Volume
(words)

5710 5720 ram 5720 cart 57xx

Initializing a word table with a word
%MW0:10 := %MW100 10 words 74.48 50.16 51.12 10

per word 0.47 0.25 0.25

%MD0:10 := %MD100 10 words 115.45 78.29 79.29 10

per word 4.41 2.95 2.95

Copying a word table to a word table
%MW0:10:=%MW20:10; 10 words 139.71 93.76 95.26 15

per word 0.95 0.50 0.50

%MD0:10:=%MD20:10; 10 words 151.18 102.46 103.96 15

per word 2.02 1.30 1.30

Arithmetical and logic instructions between 2 word tables
+, -

%MW0:10 :=%MW10:10 + %MW20:10; 10 words 236.81 162.54 164.79 23

per word 10.05 7.15 7.15

%MD0:10:=%MD10:10+%MD20:10; 10 words 325.79 229.79 232.04 23

per word 18.41 13.55 13.55

*

%MW0:10:=%MW10:10 * %MW20:10; 10 words 246.52 184.99 187.24 23

per word 11.03 9.40 9.40

%MD0:10:=%MD10:10 * %MD20:10; 10 words 881.77 658.44 660.69 23

per word 74.04 56.40 56.40

/, REM

%MW0:10:=%MW10:10 / %MW20:10; 10 words 249.44 192.64 194.89 23

per word 11.35 10.15 10.15

%MD0:10:=%MD10:10 / %MD20:10; 10 words 3 669.10 2 501.99 2 504.24 23

per word 352.83 240.75 240.75

AND, OR, XOR

%MW0:10:=%MW10:10 AND %MW20:10; 10 words 235.38 160.14 162.39 23

per word 9.94 6.90 6.90

%MD0:10:=%MD10:10 AND %MD20:10; 10 words 322.35 231.09 233.34 23

per word 18.05 13.65 13.65

8/27

Performance 8

B
ST conditions Execution time

(µs)
Volume
(words)

5710 5720 ram 5720 cart 57xx

Arithmetical and logic instructions between 1 word table and 1 word
+, -

%MW0:10 :=%MW10:10 + %MW20; 10 words 170.69 115.14 116.85 18

or %MW0:10 := %MW20 + %MW10:10 per word 4.37 2.85 2.85

%MD0:10 :=%MD10:10 + %MD20; 10 double words 230.52 156.91 158.66 18

per double word 9.92 6.75 6.75

*

%MW0:10 :=%MW20*%MW10:10; 10 words 180.13 137.04 138.75 18

per word 5.31 5.05 5.05

%MD0:10:=%MD20*%MD10:10; 10 double words 747.33 568.16 569.91 18

per double word 61.59 47.85 47.85

/, REM

%MW0:10 :=%MW10:10 / %MW30; 10 words 212.87 166.39 168.10 18

per word 8.48 7.90 7.90

%MD0:10:=%MD10:10 / %MD30; 10 double words 3 536.66 2 418.56 2 420.31 18

per double word 340.51 232.90 232.90

AND, OR, XOR

%MW0:10 :=%MW10:10 AND %MW20; 10 words 170.89 115.59 117.30 18

per word 4.39 2.90 2.90

%MD0:10:=%MD20*%MD10:10; 10 double words 747.33 568.16 569.91 18

per double word 9.81 6.50 6.50

NOT

%MW0:10 :=NOT(%MW10:10); 10 words 161.71 109.06 110.56 15

per word 4.37 2.85 2.85

%MD0:10:=NOT(%MD10:10); 10 double words 184.14 125.51 127.01 15

per double word 6.61 4.50 4.50

Table summing function
%MW20:=SUM(%MW0:10); 10 words 111.87 76.61 77.57 16

per word 3.40 2.40 2.40

%MD20:=SUM(%MD0:10); 10 double words 130.74 87.74 88.74 16

per double word 4.96 3.30 3.30

8/28

B

ST conditions Execution time
(µs)

Volume
(words)

5710 5720 ram 5720 cart 57xx

Comparison of tables function
%MW20:=EQUAL(%MW0:10;%MW10:10); 10 words 142.90 99.14 100.85 17

per word 1.14 0.95 0.95

%MD20:=EQUAL(%MD0:10;%MD10:10); 10 double words 155.56 110.06 111.81 17

per double word 2.33 2.00 2.00

Search
%MW20 := FIND_EQW(%MW0:10,%KW0) 10 words 374.68 240.00 267.60 14

%MD20 := FIND_EQD(%MD0:10, %KD0) 10 double words 394.40 260.00 289.90 15

Searching for max. and min. values
%MW20 := MAX_ARW(%MW0:10) 10 words 404.26 260.00 289.90 12

%MD20 := MAX_ARD(%MD0:10) 10 double words 483.14 310.00 345.65 12

Number of occurences
%MW20 := OCCUR_ARW(%MW0:10, %KW0) 10 words 394.40 260.00 289.90 14

%MD20 := OCCUR_ARD(%MD0:10, %KD0) 10 double words 423.98 280.00 312.20 15

Rotate shift
ROL_ARW(word or value,%MWj:10) 10 words 621.18 400.00 446.00 12

ROL_ARD(%MDi,%MDj:10) 10 double words 670.48 430.00 479.45 12

Sort
SORT_ARW(%MWi,%MWj:10) 10 words 1 133.90 720.00 802.80 12

SORT_ARD(%MDi,%MDj:10) 10 double words 700.06 440.00 490.60 12

8/29

Performance 8

B8.3.9 Time management

ST Execution time
(µs)

Volume
(words)

5710 5720 ram 5720 cart 57xx

Date, time and duration OF
%MW2:4 := ADD_DT(%MW2:4,%MD8) 5 176.50 3 500.00 3 902.50 19

%MD2 := ADD_TOD(%MD2,%MD8) 2 435.42 1 640.00 1 828.60 9

%MB2:11 := DATE_TO_STRING(%MD40) 1 429.70 970.00 1 081.55 12

%MW5 := DAY_OF_WEEK() 552.16 390.00 434.85 5

%MD10 := DELTA_D(%MD2, %MD4) 1 725.50 1 170.00 1 304.55 9

%MD10 := DELTA_DT(%MD2:4,%MW6:4) 3 549.60 2 410.00 2 687.15 19

%MD10 := DELTA_TOD(%MD2,%MD4) 2 632.62 1 780.00 1 984.70 9

%MB2:20 := DT_TO_STRING(%MW50:4) 2 297.38 1 550.00 1 728.25 17

%MW2:4 := SUB_DT(%MW2:4,%MD8) 5 492.02 3 750.00 4 181.25 19

%MD2 := SUB_TOD(%MD2,%MD8) 2 622.76 1 780.00 1 984.70 9

%MB2:15 := TIME_TO_STRING(%MD40) 1 922.70 1 270.00 1 416.05 12

%MB2:9 := TOD_TO_STRING(%MD40) 1 281.80 830.00 925.45 12

%MD100 := TRANS_TIME(%MD2) 788.80 530.00 590.95 7

Access real-time clock
RRTC(%MW0:4) 164.81 111.44 112.19 8

WRTC(%MW0:4) 152.94 103.79 104.54 8

PTC(%MW0:5) 165.36 111.79 112.54 8

8/30

B
8.3.10 Character strings

ST conditions Execution time
(µs)

Volume
(words)

5710 5720 ram 5720 cart 57xx

Character string assignment, feedback
%MB0:8:=%MB10:8 8 characters 147.75 103.56 103.56 15

per character 1.64 1.25 1.25

%MB0:8:='abcdefg' 8 characters 193.86 136.88 136.88 14

per character 5.94 4.35 4.35 0,5

Word <-> character string conversions
%MW1:=STRING_TO_INT(%MB0:7) 145.69 104.31 104.52 10

%MB0:7:=INT_TO_STRING(%MW0) 149.67 109.21 109.42 10

Double word <-> character string conversions
%MD1:=STRING_TO_DINT(%MB0:13) 1 408.43 1 061.01 1 061.01 10

%MB0:13:=DINT_TO_STRING(%MD0) 411.64 317.69 317.94 10

Floating point <-> character string conversions
%MF1:=STRING_TO_REAL(%MB0:15) 2 606.63 1 815.08 1 815.33 10

%MB0:15:=REAL_TO_STRING(%MF0) 1 084.46 752.94 753.27 10

String manipulation OF
%MB10:20 := CONCAT(%MB30:10,%MB50:10) 1 106.00 790.00 880.85 24

%MB10:20 := DELETE(%MB10:22,2,3); 896.00 640.00 713.60 21

%MW0 := EQUAL_STR(%MB10:20,%MB30:20); 756.00 540.00 602.10 19

%MW0 := FIND(%MB10:20,%MB30:10); 1 456.00 1 040.00 1 159.60 19

%MB10:20 := INSERT(%MB30:10,%MB50:10,4); 1 162.00 830.00 925.45 26

%MB10:20 := LEFT(%MB30:30,20); 826.00 590.00 657.85 19

%MW0 := LEN(%MB10:20); 490.00 350.00 390.25 12

%MB10:20 := MID(%MB30:30,20,10); 994.00 710.00 791.65 21

%MB10:20 :=
REPLACE(%MB30:20,%MB50:10,10,10);

1 246.00 890.00 992.35 28

%MB10:20 := RIGHT(%MB30:30,20); 1 358.00 970.00 1 081.55 19

8/31

Performance 8

B8.3.11 Application-specific functions and Orphee function

ST Conditions Execution time
(µs)

Volume
(words)

5710 5720
ram

5720
cart

57xx

Communication
SEND_REQ(%KW0:6,15,%MW0:1,%MW10:10,%MW30:4) 2 800 2 000 2 230 33

SEND_TLG(%KW0:6,1,%MW0:5,%MW30:2) 2 100 1 500 1 673 24

Man-machine interface
SEND_MSG(ADR#1.0,%MW0:2,%MW10:2) 2 800 2 000 2 230 25

SEND_ALARM(ADR#1.0,%MW0:2,%MW10:2) 2 800 2 000 2 230 25

GET_MSG(ADR#1.0,%MW0:2,%MW10:2) 2 800 2 000 2 230 25

GET_VALUE(ADR#1.0,%MW0,%MW10:2) 1 400 1 000 1 115 20

ASK_MSG(ADR#1.0,%MW0:2,%MW10:2,%MW20:2) 2 800 2 000 2 230 32

ASK_VALUE(ADR#1.0,%MW0,%MW10:2,%MW20:2) 2 800 2 000 2 230 27

DISPLAY_ALRM(ADR#1.0,%MW0,%MW10:2) 1 400 1 000 1 115 20

DISPLAY_GRP(ADR#1.0,%MW0,%MW10:2) 1 400 1 000 1 115 20

DISPLAY_MSG(ADR#1.0,%MW0,%MW10:2) 1 400 1 000 1 115 20

CONTROL_LEDS(ADR#1.0,%MW0:2,%MW10:2) 2 800 2 000 2 230 25

ASSIGN_KEYS(ADR#1.0,%MW0:2,%MW10:2) 2 800 2 000 2 230 25

PANEL_CMD(ADR#1.0,%MW0:2,%MW10:2) 2 800 2 000 2 230 25

Process control
PID('PIDS1','Unit',%IW3.5,%MW12,%M16,%MW284:43) deval_mmi=0 1700 1100 1227 32

deval_mmi=1 1500 900 1004

PWM(%MW11,%Q2.1,%MW385:5) 700 500 557,5 17

SERVO(%MW12,%IW3.6,%Q2.2,%Q2.3,%MW284:43,%MW3
90:10)

1000 800 892 31

PID_MMI(ADR#0.0.4,%M1,%M2:5,%MW410:62) EN=1 1400 1000 1115 30

8/32

B
ST Conditions Execution time

(µs)
Volume
(words)

5710 5720
ram

5720
cart

57xx

Orphee function
DSHL_RBIT(%MD102,16,%MD204,%MD206) read 10 words 493 320 357 17

DSHR_RBIT(%MD102,16,%MD204,%MD206) write 10 words 749 510 569 17

DSHRZ_C(%MD102,16,%MD204,%MD206) mirror req. 10
words

493 310 346 17

WSHL_RBIT(%MW102,8,%MW204,%MW206) exchange 10
words

365 220 245 17

WSHR_RBIT(%MW102,8,%MW204,%MW206) 20 bytes 424 290 323 17

WSHRZ_C(%MW102,8,%MW204,%MW206) 20 bytes 365 220 245 17

SCOUNT(%M100,%MW100,%M101,%M102,%MW101,%MW
102,%M200,%M201,%MW200,%MW201)

20 bytes 670 420 468 38

8.3.12 Explicit I/O

ST Conditions Execution time
(µs)

Volume
(words)

5710 5720
ram

5720
cart

57xx

Read_Sts %CHi.MOD

Whatever the application, except for the processor
communication channel

997 712 748 2

Read_Sts %CHi

Discrete input 462 330 347 6

Discrete output 630 450 473

Analog input 510 380 390

Analog output 500 370 380

CTY 510 380 390

CFY 500 370 380

CAY 518 370 389

Write_Param %CHi

Analog input 860 620 630 6

Analog output 810 580 600

CTY 532 380 399

CFY 0 0 0

CAY 860 620 630

8/33

Performance 8

B
ST Conditions Execution time

(µs)
Volume
(words)

5710 5720
ram

5720
cart

57xx

Read_Param %CHi

Analog input 180 120 130 6

Analog output 180 120 130

CTY 1 134 810 851

CFY 1 064 760 798

CAY 784 560 588

Save_Param %CHi

Analog input 1 300 880 890 6

Analog output 1 300 890 900

CTY 180 120 130

CFY 180 120 130

CAY 532 380 399

Restore_Param %CHi

Analog input 800 570 590 6

Analog output 800 570 590

CTY 630 450 473

CFY 0 0 0

CAY 1 300 880 890

Write_Cmd %CHi

Discrete output 1 722 1 230 1 292 6

Analog input

. input forcing 200 140 150

. input forcing 1 390 1 020 1 040

Analog output : output forcing

Discrete output 210 150 150

Smove %CHi

CFY 700 500 525 19

CAY 820 580 610

8/34

B
8.4 Size of the application

8.4.1 Description of the memory zones

The application is divided into several memory zones :

• bit memory zone :
- this zone is specific to TSX 37 PLCs and is limited to 1280 bits,
- this zone is part of the data memory zone for TSX 57 PLCs,

• data memory zone (words)

• application memory zone, comprising :
- configuration
- program,
- constants

The bit and data memory zones are always stored in the internal RAM, the
application memory zone can be stored in the internal RAM or on a memory card.
The memory structure is described in section 1.3. part A.

8/35

Performance 8

B8.4.2 Memory size of PL7 objects

Bit
memory

(in words)

Data
(in words)

Application
(in words)

Grafcet steps (%Xi, %Xi.T) 0.5 1
%Mi 0.5
Numerics (%MWi) 1
Constants (%KWi) 1.25
%NWi 1
%Ti 4 2
%TMi 5 2
%MNi 4 2
%Ci 3 1
%Ri (length lg) 6+lg 2
%DRi 6 49

Grafcet interpreter data = 355 + 2 x No active steps configured + (No. of valid transitions
configured) / 2

8.4.3 Module memory size

Note
This information is given for a particular processor version. It may be subject to
slight variations as the product develops.

For each module type, the following tables provide the size occupied in each of the
zones as well as a fixed size which should be added to the power consumption
table the first time an application-specific function is used.

Module memory power consumption table, on TSX 37

Processors Bit memory
(words)

Data
(words)

Application
Zone (words)

TSX 37-10 70 1560 920

TSX 37-21 70 1570 930

TSX 37-22 70 2110 1280

Use of FAST task (TSX 37) 260

First use of event (TSX 37) 520

8/36

B
Discrete family Bit memory

(words)
Data

(words)
Application

Zone (words)
8 discrete inputs 4 12 40

16 discrete inputs 8 12 50

4 discrete outputs 2 12 40

8 discrete outputs 4 12 40

16 discrete inputs / 12 discrete outputs 16 20 100

32 discrete inputs / 32 discrete outputs 32 20 142

4 ANA input family Bit memory
(words)

Data
(words)

Application
Zone (words)

AEZ414 0 156 56

Add. amount 1st module in 4 ANA input family 120

8 ANA input family Bit memory
(words)

Data
(words)

Application
Zone (words)

AEZ801/AEZ802 0 212 72

Add. amount 1st module in 8 ANA input family 120

ANA output family Bit memory
(words)

Data
(words)

Application
Zone (words)

ASZ200 0 52 40

ASZ401 0 100 59

Add. amount 1st module in ANA output family 120

Counter family Bit memory
(words)

Data
(words)

Application
Zone (words)

CTY1A 16 108 64

CTY2A 32 212 106

Add. amount 1st Upcounter channel 144

Add. amount 1st Downcounter channel 144

Add. amount 1st Up/Down counter channel 144

Communication family Bit memory
(words)

Data
(words)

Application
Zone (words)

STZ010 0 36 168

SCP111/ SCP112/ SCP114 on UC UTW) 0 40 763

FPP 20 on UC (Channel 0 UTW) 0 40 755

8/37

Performance 8

BModule memory power consumption table, on TSX 57
Processors Bit memory

(words)
Data

(words)
Application

Zone (words)
TSX 57-10 70 3852 1164

TSX 57-20 70 4125 1227

Use of FAST task (TSX 57) 520

Add. amount 1st module 600

Single discrete input family Bit memory
(words)

Data
(words)

Application
Zone (words)

8 discrete inputs 4 100 100

16 discrete inputs 8 130 110

32 discrete inputs 16 230 120

64 discrete inputs 32 430 190

Add. amount 1st single discrete input family
module

610

Single discrete output family Bit memory
(words)

Data
(words)

Application
Zone (words)

8 discrete outputs 4 110 100

16 discrete outputs 8 160 110

32 discrete outputs 16 280 120

64 discrete outputs 32 550 190

Add. amount 1st single discrete output family
module

570

Event-triggered discrete input family Bit memory
(words)

Data
(words)

Application
Zone (words)

16 discrete inputs (DEY 16FK) 8 220 130

Add. amount 1st EVT discrete input family
module

680

Analog input family Bit memory
(words)

Data
(words)

Application
Zone (words)

AEY414 4 430 160

AEY800 8 840 240

AEY1600 16 1670 430

Add. amount 1st analog input family module 2990

8/38

B

Analog output family Bit memory
(words)

Data
(words)

Application
Zone (words)

ASY410 4 430 160

Add. amount 1st analog output family module 1700

Counter family Bit memory
(words)

Data
(words)

Application
Zone (words)

CTY2A module 32 410 170

CTY4A module 64 800 250

Add. amount 1st configured counter channel 1740

Servo-Motor family Bit memory
(words)

Data
(words)

Application
Zone (words)

CAY21 78 1050 280

CAY41 156 2090 480

Add. amount 1st configured servo-motor
channel

2150

Communication module family Bit memory
(words)

Data
(words)

Application
Zone (words)

SCY21600 (Channel 0 UTW) 1 230 80

SCP111/ SCP112 / SCP114 (UTW) on
SCY21600 (Channel 1 UTW)

1 450 40

Add. amount 1st configure channel UTW 1280

UC communication sub-module family Bit memory
(words)

Data
(words)

Application
Zone (words)

SCP111/ SCP112/ SCP114 (UTW) on UC
(Channel 0 UTW)

1 60 580

FPP 20 on UC (Channel 0 UTW) 1 60 580

FPP 10 on UC (Channel 0 UTW) 1 40 870

Weighing family Bit memory
(words)

Data
(words)

Application
Zone (words)

AWY001 1 170 120

Add. cost 1st configured weighing channel 3920

8/39

Performance 8

B8.4.4 Memory size of advanced functions

The following tables show for each advanced function (OF), the size of the code
embedded in the application (application zone) when an advanced function is
called.
The functions in the same family share the code (common code). This common
code is embedded in the PLC on the first call of a function for that family. The
code specific to a function is embedded on the first call for that function.

Example :
• First call of a function of the Numeric conversions family, ie DBCD_TO_DINT

Code embedded in the application zone :
- Common code = 154 words
- OF code DBCD_TO_INT = 149 words

• Call of another function of the Numeric conversions family, ie DINT_TO_DBCD
Code engaged in the application zone :
- OF code DINT_TO_DBCD = 203 words
Call of a function of the Numeric conversions family which has already been
called (DBCD_TO_DINT or DINT_TO_DBCD) : no code embedded

Numeric conversions OF code size
(in words)

Conversion of a 32-bit BCD number to 32-bit integer
Conversion of a 32-bit BCD number to 16-bit integer
Conversion of a 32-bit integer to a 32-bit BCD number
Conversion of a 16-bit integer to a 32-bit BCD number

DBCD_TO_DINT
DBCD_TO_INT
DINT_TO_DBCD
INT_TO_DBCD

145
149
203

75
common code 154

8/40

B

Bit strings OF code size
(in words)

Logic AND between two tables
Copy of a bit table to a double word table
Copy of a bit table to a word table
Copy of a bit table to a bit table
Copy of a double word table to a bit table
One’s complement in a table
Logic OR between two tables
Copy a word table to a bit table
Exclusive OR between two tables

AND_ARX
BIT_D
BIT_W
COPY_BIT
D_BIT
NOT_ARX
OR_ARX
W_BIT
XOR_ARX

209
248
205
146
196
157
209
195
209

common code 427

Word table instructions OF code size
(in words)

Search in a table for 1st element equal to a value
Search in a table for 1st element greater than a value
Search in a table for 1st element less than a value
Search for the greatest value in a table
Search for the smallest value in a table
Number of occurrences of a value in a table
Left rotate a table
Right rotate a table
Sort a table (ascending or descending)

FIND_EQW
FIND_GTW
FIND_LTW
MAX_ARW
MIN_ARW
OCCUR_ARW
ROL_ARW
ROR_ARW
SORT_ARW

75
75
75
78
78
74

145
150
144

common code 162

Double word table instructions OF code size
(in words)

Search in a table for 1st element equal to a value
Search in a table for 1st element greater than a value
Search in a table for 1st element less than a value
Search for the greatest value in a table
Search for the smallest value in a table
Number of occurrences of a value in a table
Left rotate a table
Right rotate a table
Sort a table (ascending or descending)

FIND_EQD
FIND_GTD
FIND_LTD
MAX_ARD
MIN_ARD
OCCUR_ARD
ROL_ARD
ROL_ARW
SORT_ARD

79
80
80
95
95
78

163
170
178

common code 162

8/41

Performance 8

B
Date, time and time periods OF code size

(words)

Add a duration to a complete date
Add a duration to a time of day
Convert a date to a string
Day of the week
Difference between two dates
Difference between two complete dates
Difference between two times of day
Convert a complete date to a string
Remove a time period from a complete date
Remove a time period from a time of day
Convert a time period to a string
Convert a time of day to a string
Format a time period as hours-minutes-seconds

ADD_DT
ADD_TOD
DATE_TO_STRING
DAY_OF_WEEK
DELTA_D
DELTA_DT
DELTA_TOD
DT_TO_STRING
SUB_DT
SUB_TOD
TIME_TO_STRING
TOD_TO_STRING
TRANS_TIME

519
188
150

99
374
547
110
266
548
186
413
156
211

common code 1703

Character string instructions OF code size
(words)

Concatenation of two strings
Delete a substring
Search for first different character
Search for a substring
Insert a substring
Extract from the left part of the string
Length of a string
Extract a substring
Replace a substring
Extract from the right part of the string

CONCAT
DELETE
EQUAL_STR
FIND
INSERT
LEFT
LEN
MID
REPLACE
RIGHT

224
279
212
225
287

38
70
44

365
55

common code 418

Orphee functions OF code
size

(words)

Shift to left on 32 with retrieval of shifted bits
Shift to right on 32 with sign extension, retrieval of shifted bits
Shift to right on 32 with filling of spaces by 0, retr. of shifted bits
Shift to left on 16 with retrieval of shifted bits
Shift to right on 16 with sign extension, retrieval of shifted bits
Shift to right on 16 with filling of spaces by 0, retr. of shifted bits

DSHL_RBIT
DSHR_RBIT
DSHRZ_C
WSHL_RBIT
WSHR_RBIT
WSHRZ_C

152
152
133

91
103

90
common code 173

Up/down counting with indication of an under/overflow SCOUNT 617

8/42

B
Application-specific functions

Process control functions OF code size
(in words)

Mixed PID controller
Pulse width modulation of a numeric value
PID output stage for control of discrete valve
Management of CCX17 dedicated MMI for controlling PID
loops

PID
PWM
SERVO
PID_MMI

1800
600

1200
4400

common code 400

Man-Machine Interface Functions OF code size
(in words)

Blocking entry of a variable on CCX17
Blocking entry of a variable on message contained in CCX17
Dynamic assignment of keys
LED control command
Display an alarm contained in CCX17
Display a group of messages contained in CCX17
Display a message contained in CCX17
Multiple entry of a variable on CCX17
Multiple entry of a variable on message contained in CCX17
Send a command to CCX17
Display an alarm message contained in the PLC memory
Display a message contained in the PLC memory

ASK_MSG,
ASK_VALUE,
ASSIGN_KEYS,
CONTROL_LEDS,
DISPLAY_ALARM,
DISPLAY_GRP,
DISPLAY_MSG,
GET_MSG,
GET_VALUE,
PANEL_CMD,
SEND_ALARM,
SEND_MSG

46.5
46.5
46.5
46.5
46.5
46.5
46.5
46.5
46.5
46.5
46.5
46.5

common code 573

Communication Functions OF code size
(in words)

Read base language objects
Write base language objects
Send/receive UNI-TE requests
Send and/or receive data
Send a character string
Request read of a character string
Send and/or receive a character string
Send a telegram
Receive a telegram
Request to stop a communication function in progress

READ_VAR
WRITE_VAR
SEND_REQ
DATA_EXCH
PRINT_CHAR
INPUT_CHAR
OUT_IN_CHAR
SEND_TLG
RCV_TLG
CANCEL

617
500
438
375
476
625
531
219
172
133

common code 506
Shift 1 byte to the right of a byte table ROR1_ARB 235

8/43

Performance 8

B

Axis Control Functions (1) OF code size
(in words)

Automatic motion command SMOVE 0

Explicit Exchange Functions (1) OF code size
(in words)

Read status parameters
Read adjust parameters
Update adjust parameters
Save adjust parameters
Restore adjust parameters
Update command parameters

READ_STS
READ_PARAM
WRITE_PARAM
SAVE_PARAM
RESTORE_PARA
M
WRITE_CMD

0
0
0
0
0
0

(1) Specific OF, the code is included in the volume of the I/O module.

8/44

B
8.5 Appendix : method of calculating the number of instructions

This method is used to calculate the number of basic Boolean or numerical
instructions (assembler code).

Note : this is the method which was used to calculate the performance information
given in section 1.3 part A.

Calculating the number of Boolean instructions
The number of each of the following elements is taken into account :
• Boolean operations : load (LD), AND, OR, XOR,ST, etc
• closing parentheses (or ladder convergences : vertical convergence links)
• comparison (AND[...], OR[...], etc) and operate ([...]) blocks

Do not count the NOT, RE and FE operators as Boolean instructions.

Example :
LD %M0
AND(%M1
OR %M2
)
ST %M3
= 5 Boolean instructions

Calculating the number of numerical instructions
The number of each of the following elements is taken into account :
• assignments (:=)
• loading of first value after :=
• arithmetic instructions (+, -, *, /, <, =, etc), operations on words or word tables,

double words, floating point values
• logic instructions on words
• (OF, EQUAL, etc) functions regardless of the number of parameters
• function blocks (or function block instruction)

Example : %MW0:=(%MW1+%MW2)*%MW3;
instructions counted :

:=
%MW1 (corresponds to the load instruction in the accumulator)
+
*

ie. 4 instructions.

8/45

Performance 8

BExample of application which is 65% de boolean and 35% numerical :

8/46

B

8/47

Performance 8

B

8/48

B

(1) : %MW0:=%MW1+%MW2+%MW3+%MW4+%MW5+%MW6+%MW7+%MW8+%MW9+%MW10+1

Result
Number of
instructions

%

Boolean without edge 187 54,05% 64,16%
Boolean with edge 4 1,16%
Operation Block 31 8,96%
Function Block 3 0,87% 35,84%
Single arithmetic (+,-,:=,AND,...) 111 32,08%
Indexed arithmetic 4 1,16%
*,/ 6 1,73%
Immediates values 24
Total number 346 100,00%

(1)

Index 9

9 / 1

B

B

Section 9
9 Index

9.1 Index

Symbols
%Ci B 1/14
%DRi B 2/9
%Li B 1/30
%MNi B 2/2
%Ri B 2/5
%Ti B 2/13
%TMi B 1/10
* B 1/23
+ B 1/23
- A 1/10, B 1/23
/ B 1/23
:= B 1/20
< B 1/19
<= B 1/19
<> B 1/19
= B 1/19
> B 1/19
>= B 1/19

A
ABS B 1/23
Absolute value B 1/23
Action zone A 2/1
Actions A 5/11
Add B 1/23
ADD_DT B 2/69
ADD_TOD B 2/70
Addressing A 1/7
Addressing TSX 37 objects A 1/7
Addressing TSX 57 objects A 1/9
Alphanumeric comparisons B 2/44
AND B 1/6, B 1/25
AND convergences A 5/2
AND divergences A 5/2
AND_ARX B 2/82
ANDF B 1/6
ANDN B 1/6
ANDR B 1/6
Arithmetic on integers B 1/23
ASCII ---> Binary conversion B 2/47
ASCII --> Floating point conversion B 2/49
Assignment B 1/20

B
BCD <--> Binary conversion B 2/24
Binary --->ASCII conversion B 2/45
Bit memory A 1/20, A 1/22
Bit table B 2/81
Bit tables A 1/16
BIT_D B 2/83
BIT_W B 2/83
Bits A 1/6
BLK A 3/8
Boolean instructions B 1/2
Byte A 1/11

C
CALL A 2/3
Character string A 1/16, B 2/42
Cold restart A 1/31
Comments A 2/5, A 3/4, A 4/6, A 5/10
Common words A 1/13
Comparison B 1/19
Complement B 1/25
CONCAT B 2/50
Concatenation of two strings B 2/50
Conditions A 5/14
Constant A 1/11
Control structures A 4/8
Conversion B 2/24
COPY_BIT B 2/81
Cyclic execution A 1/33

9 / 2

B

D
D_BIT B 2/85
Date B 2/63
DATE_TO_STRING B 2/75
DAY_OF_WEEK B 2/68
DEC B 1/23
Decrement B 1/23
DELETE B 2/51
DELTA_D B 2/72
DELTA_DT B 2/73
DELTA_TOD B 2/74
Destination connector A 5/3
DINT_TO_REAL B 2/27
DINT_TO_STRING B 2/45
Direct coils B 1/5
Directed links A 5/3, A 5/9
Divide B 1/23
Double length A 1/12
DOWN B 1/12
Downcounter B 1/14
Drum controller B 2/9
DSHL_RBIT B 2/87
DSHR_RBIT B 2/87
DSHRZ_C B 2/87
DT_TO_STRING B 2/76

E
Edges A 1/22, B 1/2
END B 1/32
END_BLK A 3/8
ENDC B 1/32
ENDCN B 1/32
EQUAL B 2/35
EQUAL_STR B 2/60
Event masking/unmasking B 1/34
Event-triggered tasks A 1/40
Exclusive OR B 1/8
EXIT A 4/13

F
Falling edge contacts B 1/4
FAST A 1/38
Fast task A 1/38
FIFO stack B 2/5
FIND B 2/61
Find functions on tables B 2/36

FIND_EQD B 2/36
FIND_EQW B 2/36
FIND_GTD B 2/36
FIND_GTW B 2/36
FIND_LTD B 2/36
FIND_LTW B 2/36
Floating point A 1/12, B 2/20
Floating point ---> ASCII conversion B 2/48
FOR ... END_FOR A 4/12
Forcing A 1/23
Freezing the Grafcet chart A 5/20
Function block objects A 1/15
Function blocks B 1/9

G
GET B 2/8
Grafcet language A 5/1
Grafcet objects A 1/18, A 5/4
Graphic elements, Grafcet A 5/2
Graphic elements, Ladder language A 2/2
Gray --> Integer conversion B 2/28
GRAY_TO_INT B 2/28

H
HALT B 1/33

I
IF ... END_IF A 4/8
Immediate values A 1/13
INC B 1/23
Increment B 1/23
Index overrun A 1/18
Indexation A 1/17
Indexed objects A 1/17
INSERT B 2/52
Instruction list language A 3/1
INT_TO_REAL B 2/27
INT_TO_STRING B 2/45
Integer <--> Floating point conversion B 2/26
Internal words A 1/11
Inverse coils B 1/5

Index 9

9 / 3

B

B

J
JMP B 1/30
JMPC B 1/30
JMPCN B 1/30
Jump B 1/30

L
Label A 2/5, A 3/4, A 4/7
Ladder language A 2/1
LD B 1/4
LDF B 1/4
LDN B 1/4
LDR B 1/4
LEFT B 2/58
LEN B 2/62
LIFO stack B 2/5
Logic AND B 1/6
Logic OR B 1/7, B 1/25
Logic shift B 2/19

M
MASKEVT B 1/34
Master task A 1/38
MAX_ARD B 2/38
MAX_ARW B 2/38
Memory card A 1/20
MID B 2/56
MIN_ARD B 2/38
MIN_ARW B 2/38
Monostable B 1/11, B 2/2
MPP A 3/7
MPS A 3/7
MRD A 3/7
Multiply B 1/23
Multitask A 1/37

N
N/C contacts B 1/4
N/O contacts B 1/4
NOT B 1/25
NOT_ARX B 2/82
Numerical expression B 1/27

O
Objects which can be symbolized A 1/19
OCCUR_ARD B 2/39
OCCUR_ARW B 2/39
Operating modes A 1/29, A 5/1
OR B 1/7, B 1/25
OR convergences A 5/2
OR divergences A 5/2
OR_ARX B 2/82
ORF B 1/7
ORN B 1/7
ORR B 1/7
OUT_BLK A 3/8
Overflow B 1/24

P
Parentheses A 3/5
Periodic execution A 1/34
Post-processing A 5/23
Power outage A 1/29
Pre-processing A 5/18
Program instructions B 1/28
PTC B 2/67
PUT B 2/8

R
R B 1/5
Read day of the week B 2/68
Read system date B 2/66
REAL_TO_DINT B 2/27
REAL_TO_INT B 2/27
Register B 2/5
REM B 1/23
REPEAT ... END_REPEAT A 4/11
REPLACE B 2/54
RESET B 2/8, B 2/11
Reset coils B 1/5
RET B 1/29
RETCN B 1/29
RIGHT B 2/58
Rising edge contacts B 1/4
ROL_ARD B 2/40
ROL_ARW B 2/40
ROR_ARD B 2/40

9 / 4

B

ROR_ARW B 2/40
Rotate shift B 2/19
RRTC B 2/66
Rung A 2/4
Rungs, execution A 2/11

S
S B 1/5
SCOUNT B 2/90
Sequence A 3/4
Sequence selection A 5/6
Sequential processing A 5/21
Set coils B 1/5
Simultaneous step activation A 5/6
Single task A 1/32
Sort function on tables B 2/41
SORT_ARD B 2/41
SORT_ARW B 2/41
Source connector A 5/3
SQRT B 1/23
Square root B 1/23
SRi A 1/32
ST B 1/5
START B 1/12, B 2/3
Steps A 5/2
STN B 1/5
Stop code B 2/67
STRING_TO_DINT B 2/47
STRING_TO_INT B 2/47
STRING_TO_REAL B 2/49
Structured data B 4/4
Structured Text language A 4/1
SUB_DT B 2/69
SUB_TOD B 2/70
Subroutine A 1/32, B 1/28
Subroutine return B 1/29
Subtract B 1/23
SUM B 2/34
Symbol A 1/4, A 1/19
System bits B 3/1
System words B 3/7

T
Table comparison B 2/35
Test zone A 2/1
Time B 2/63

Time of day B 2/63
Time period B 2/63
TIME_TO_STRING B 2/77
Timer B 1/10, B 2/13
TOD_TO_STRING B 2/78
TRANS_TIME B 2/80
Transitions A 5/2
TSX 37-10 memory A 1/25
TSX 37-21/22 memory A 1/26
TSX 57-10 memory A 1/27
TSX 57-20 memory A 1/28

U
UNMASKEVT B 1/34
UP B 2/11
Upcounter B 1/14
Update system date B 2/66
User memory A 1/20

V
Vertical comparison B 2/17

W
W_BIT B 2/85
Warm restart A 1/30
Watchdog A 1/36
WHILE ... END_WHILE A 4/10
Word extract bits A 1/13
Word memory A 1/20, A 1/24
Word tables A 1/16, B 2/29
WRTC B 2/67
WSHL_RBIT B 2/87
WSHR_RBIT B 2/87
WSHRZ_C B 2/87

X
XOR B 1/8, B 1/25
XOR_ARX B 2/82
XORF B 1/8
XORN B 1/8
XORR B 1/8

	PL7 Micro/Junior
	Reference manual
	A - Description of PL7 software
	Contents
	1 General
	1.1 Presentation of PL7 software
	1.2 Addressable objects
	1.3 User memory
	1.4 Operating modes
	1.5 Single task software structure
	1.6 Multitask software structure

	2 Ladder language
	2.1 Presentation of Ladder language
	2.2 Structure of a rung
	2.3 Rules for executing rungs

	3 Instruction list language
	3.1 Presentaiton of Instruction list language
	3.2 Program structure
	3.3 Rules for executing instruction list programs

	4 Structured Text language
	4.1 Presentation of Structured Text language
	4.2 Program structure
	4.3 Rules for executing a Structured Text program

	5 Grafcet language
	5.1 Presentation of Grafcet language
	5.2 Organization of the master task

	B - Detailed description of instructions and functions
	Contents
	1 Description of basic instructions
	1.1 Presentaiton of basic instructions
	1.2 Boolean instructions
	1.3 Predefined function blocks
	1.4 Numerical processing on integers
	1.5 Program instructions

	2 Description of advanced instructions
	2.1 Presentation of advanced instructions
	2.2 Advanced predefined function blocks
	2.3 Vertical comparison blocks
	2.4 Shift instructions
	2.5 Floating point instructions
	2.6 Numeric conversion instructions
	2.7 Word table instructions
	2.8 Character string instructions
	2.9 Time management instructions : Date, Time of day, Duration
	2.10 Bit table instructions
	2.11 "Orphee" functions : shift, counter

	3 System bits and words
	3.1 System bits
	3.2 System words

	4 Differences between PL7-2/3 and PL7 Micro/Junior
	4.1 Differences between PL7-2/3 and PL7-Micro/Junior

	5 List of reserved words
	5.1 Reserved words

	6 Conformity to IEC standard 1131-1
	6.1 Conformity to the IEC 1131-3 standard

	7 Quick reference guide
	7.1 Quick reference guide

	8 Performance
	8.1 General
	8.2 TSX 37 performance
	8.3 TSX 57 performance
	8.4 Size of the application
	8.5 Appendix : method of calculating the number of instructions

	9 Index
	9.1 Index
	Symbols
	A to C
	D to I
	J to R
	S to X
	A to C
	D to I
	J to R
	S to X

