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Abstract— This paper addresses the localization problem
of an Autonomous Underwater Vehicle using relative range
measurements to stationary beacons whose locations are also
unknown. We propose an observer that under observability-
like assumptions drives the estimation errors to a small
neighborhood of zero (whose size depends on the noise and
disturbances). The observer is designed by combining the
concepts of minimum energy estimators applied to continuous
processes with discrete measurements (not necessarily with a
fixed sampling time), adaptive multiple models estimators, and
simultaneous localization and mapping techniques. We also
combine the proposed solution with a projection filter that
significantly improves the performance. Experimental results
with the Medusa robotic vehicle are presented and discussed.

I. INTRODUCTION

Underwater localization using acoustic signals is one of
the key components in a navigation system of an autonomous
underwater vehicle (AUV). Among the localization tech-
niques based on the idea of multiple beacons/transponders,
a not so conventional one but potentially interesting is to
use only one beacon for localization, which is a challenging
problem. One of the first works on single beacon acoustic
navigation was reported in [1] for an AUV moving in
horizontal plane and affected by unknown constant ocean
current. Later in [2], a Synthetic Long Base-Line (SLBL)
navigation algorithm was described, which makes use of a
single LBL in combination with a high performance dead-
reckoning navigation system. See also [3] that design an
extended Kalman filter (EKF) for localization of an AUV
using a single beacon. In [4], by combining the dead-
reckoning information with multiple range measurements
taken at different instants of time, a proved robust estimator
algorithm for AUV localization in the presence of constant
unknown ocean currents is presented.

The authors in [5], [6] propose and design a range only
sub-sea Simultaneous Localization and Mapping (SLAM)
system without prior knowledge of beacons’ locations.

One of the very first results in observability of single
beacon system is described in [7], where a necessary and suf-
ficient condition for local system observability is presented.
The authors in [8], [9] have investigated the observability
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of the linearized single beacon navigation system. Another
important study that reformulates the problem to a linear
time varying (LTV) system is reported in [10], [11] where
necessary and sufficient conditions on the observability are
provided. Lately in [12], the authors exploited the nonlinear
observability concepts of a nonlinear inter-vehicle ranging
system using observability rank conditions and the results
obtained are validated experimentally in an equivalent single
beacon navigation scenario.

In a previous work [13], we addressed the single/multiple
beacon observability analysis of the SLAM for AUV navi-
gation using range measurements to stationary beacons. We
investigated for the case that the motion of the AUV cor-
responds to constant linear and angular velocities expressed
in the body-frame, under which conditions it is possible to
reconstruct the initial state of the resulting SLAM system.
We showed that the unobservable subspace UO restricted to
the assumption that the position of one of the beacons or the
initial position of the AUV is known, contains only the zero
vector with exception of a particular case where the UO is
composed by a finite set of isolated points.

In this paper, motivated by the above properties, we design
a minimum energy observer to solve the localization problem
of an AUV using relative range measurements to stationary
beacons whose locations are also unknown. We show that,
due to the design method, state vector of the resulting SLAM
process satisfies quadratic constraints. To deal with this, we
introduce a projection filter that improves significantly the
performance of the proposed observer. Convergence prop-
erties of the designed observer are presented. Experimental
results with the Medusa robotic vehicle are presented and
discussed.

II. PROCESS MODEL

This section describes the process model of the problem
of computing in real-time an estimate of the position of
an AUV while simultaneously constructing a map of its
surrounding. The map contains an estimate of the location of
stationary acoustic modems (beacons) that provide ranging
measurements to the AUV based on acoustic signal travel
time. we consider two coordinate frames to formulate the
process model : fixed earth or inertial coordinate frame {I},
and body fixed coordinate frame {B} that is attached to the
AUV and moves with respect to the coordinate frame {I}.
Let (IpB,

I
BR) ∈ SE(3) be the configuration of the frame

{B} with respect to {I}, where IpB indicates the position
of the AUV in frame {I}, and IBR its rotation matrix from



{B} to {I}. The equations of motion are

IṗB = IBRν, I
BṘ = IBRS(ω) (1)

where the linear and angular velocities (ν,ω : [0,∞)→ R3)
are viewed as input signals to the system (1). In what follows
we will use the Euler angles η = [φ, θ, ψ] to parametrize the
rotation matrix. In (1), S(.) is a function from R3 to the
space of skew-symmetric matrices S := {M ∈ R3×3 : M =
−M ′} defined for a given a ∈ R3.

S(a) :=

 0 −a3 a2
a3 0 −a1
−a2 a1 0


Consider now n stationary beacons located at unknown
positions Iqi, that is,

I q̇i = 0 (2)

For each i ∈ {1, 2, ..., n}, let ri(t) be an acoustic ranging
measurement acquired at time t from the ith beacon. The
measurement/output model is given by

ri = ‖Iqi −IpB‖ (3)

zi = [0, 0, 1]Iqi, z0 = [0, 0, 1]IpB (4)

where z0 is the depth of the AUV that is assumed to be
available (we consider the practical situation that the AUV
is equipped with a depth sensor). We also consider that the
location of the beacons qi are only unknown in the horizontal
plane, that is, we assume that we know the depth zi. This
is a reasonable assumption if each beacon is attached to a
buoy that is at the surface or utilizes a depth cell.

Equations (1)-(4) represent the nonlinear process model
of SLAM problem for the AUV-beacon configuration. From
the nonlinear system (1)-(4) we will construct a new linear
time varying system (LTV) with an additional algebraic
condition. Next, a constrained minimum energy observer for
this equivalent LTV system is derived.

The strategy to obtain an LTV system does not follow the
ones described in [14], [15] but it is specifically tailored for
our application. The idea is to view the beacons qi in body
frame {B} and introduce a virtual beacon q0, located at the
origin of {I}. Following this strategy and resorting to some
of the ideas in [16], we first express q0 in {B} as

Bq0 = IBR′ Iq0 − IBR′ IpB

whose dynamical equation is given by

Bq̇0 = −S(ω)Bq0 − ν

where we have used (2). To obtain the dynamics of the
position of the other beacons Bqi, we introduce the vector
pi that connects the virtual beacon q0 to qi. Note that Ipi is
a stationary vector, while Bpi is in general a time dependent
vector (with same magnitude of Ipi but rotated by IBR′).
Therefore,

Bpi = Bqi − Bq0, Bṗi = −S(ω)Bpi (5)

From (3), (5), and using the fact that Iqi = IpB + IBR Bqi,
the measurement model can be written as

ri = ||Iqi −IpB‖ = ||IBR Bqi|| = ‖Bpi + Bq0‖

where we have used the fact that R is an orthogonal matrix.
Introducing the scalar state variable χi = ‖Bpi + Bq0‖,
the output equation (3) becomes ri = χi, and the state χi
satisfies

χ̇i =
−ν′(Bpi + Bq0)

ri

Using the equalities, Iqi = I
BR Bpi, and IpB = −IBR Bq0

we can rewrite the output equations (4) as

zi = [0, 0, 1]IBR Bpi, z0 = −[0, 0, 1]IBR Bq0
In summary we obtain an LTV system described by{

ẋ(t) = A (u(t),y(t))x(t) + b (u(t))
y(t) = C (u(t))x(t)

(6)

where

x :=
[ Bq′0, Bp′1 Bp′2 . . . Bp′n, χ1 χ2 . . . χn

]′
y :=

[
r1 . . . rn, z0, z1 . . . zn

]′
u :=

[
ν′ ω′ η′

]′
s :=

[
1/r1 1/r2 ... 1/rn

]′
A(u,y) :=

 −S(ω) 0 0
0 −In ⊗ S(ω) 0

−s⊗ ν′ −In ⊗ (s⊗ ν′) 0


b(u) :=

[
−ν′ 0 0

]′
C(u) :=

 0 0 0 In
−[0, 0, 1] IBR(η) 0 0 0

0 In⊗
(
[0, 0, 1] IBR(η)

)
0 0


with ω = [ω1, ω2, ω3]′, ν = [ν, 0, 0]′. Here, given two
matrices Mi ∈ Rmi×ni , i ∈ {1, 2}, we denote by M1 ⊗
M2 ∈ Rm1n1×m2n2 the Kronecker product of M1 by M2.
We remark that (6) is not defined when ri = 0, which
corresponds to the particular case that the position of the
AUV coincides with the location of the ith beacon.

The observability analysis of the described system is
investigated in a previous work by the authors in [13]. In
summary, for constant linear and angular velocities, system
(6) is observable with only range measurements if ω1 6= 0
and (ω2 6= 0 or ω3 6= 0). Combining the depth and
range measurements we obtain a less conservative condition:
ω3 6= −ω2 tan(φ). If none of these conditions are satisfied
then the system is only locally observable. Notice that, due
to the constraints

χ2
i = ‖Bpi + Bq0‖2 (7)

it can be concluded that the initial position of each beacon
(assuming a prior knowledge about initial location of AUV)
can be any of the elements of the unobservable subspace

UO =
{Bpi(0) + αi[0, cφ0, sφ0]′

: α ∈ {0,−2(ȳicφ0 + z̄isφ0)}
}

(8)
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Fig. 1. Block diagram of the designed CME

where [x̄i, ȳi, z̄i]
′ = Bq0(0) +B pi(0) and φ0 denotes the

initial heading angle. For convenience, we let s(·), c(·), and
t(·) denote sin(·), cos(·), and tan(·) respectively.

III. OBSERVER DESIGN

Consider the continuous time system (6) corrupted with
additive state disturbance d(t) and measurement noise n(t).
Notice that due to practical limitations only discrete samples
of observations are available.{

ẋ(t)=A(u(t),y(t))x(t)+B(u(t))+G(u(t))d(t)
y(tk) = C(u(t))x(tk) + n(tk)

(9)

Given an initial estimate x̄0 and the past control inputs{
u(τ) : 0 ≤ τ ≤ t

}
and observations

{
y(tk) : tk ∈

{t1, ..., tk∗}
}

, where tk∗ is the maximum discrete time which
is strictly less than t, the goal is to obtain an estimate of the
state vector x(t) while satisfying the equality algebraic con-
straint (7). To this end, we propose the observer architecture
depicted in Fig. 1, which will be denominated as Constrained
Minimum Energy Estimator (CME). The CME is composed
of the following sub-systems:

• A Minimum Energy Estimator (ME) which its role is
to solve an unconstrained optimization problem (will be
defined in the next subsection).

• A Projection filter (PF) which maps the unconstrained
solution x̄(t) to the constrained solution x̂(t).

• An Inter-sample Output Predictor (IOP) which provides
a continuous estimate of range data to be used by the
ME estimator.

We will combine SLAM based approach in the CME
design to deal with the problem of multiple but unknown
number of beacons. Moreover, by taking into account the
isolated elements of unobservable subspace presented in (8),
we include the concept of multiple models to improve the
convergence time of the proposed observer.

A. Minimum Energy Estimator (ME)

The ME estimator is formulated as an unconstrained op-
timization problem in a deterministic H2 filtering setting by
computing the value of the state that minimizes the induced
L2-gain from the disturbances and noise to estimation error.
More precisely, the state estimate x̄ ∈ Rns is obtained from
the solution of the unconstrained optimization problem

x̄(t) = arg min
z∈Rns

J(z, t)

where the cost function J(z, t) is given by

J(z, t)= min
d:[0,t],n(tk)
k=1,2,...,k∗

{(x(0)− x̂0)′Q0(x(0)− x̂0)

+

∫ t

0

‖d(τ)‖2
R−1

d

dτ +

k∗∑
k=1

‖n(tk)‖2
R−1

n
:

x(t) = z, ẋ = A(u,y)x+G(u)d,

y(tk) = C(u)x(tk) + n(tk)} (10)

with Rd > 0 and Rn > 0 being weighting parameters on dis-
turbance and measurement noises. Using the results of [16],
[17], it can be concluded that the formulated unconstrained
state estimation problem has the following exact solution
• For tk−1 ≤ t < tk, k = 1, ..., k∗

Q̇(t) =−A(u,y)′Q(t)−Q(t)A(u,y)

−Q(t)G(u)RdG(u)′Q(t) (11)
˙̄x(t) =A(u,y)x̄(t) +B(u) (12)

• At t = tk, k = 1, ..., k∗

Q(tk)=Q(t−k)+C(u)′R−1n C(u)

x̄(tk)=x̄(t−k)−Q(tk)
−1C(u)′R−1n

(
C(u)x̄(t−k )−y(tk)

)
while satisfying initial conditionsQ(0)=Q0>0, x̄(0)=x̄0.

B. Projection Filter (PF)

The solution obtained from the unconstrained state estima-
tion problem, x̄(t), does not necessarily satisfy the equality
algebraic constraint (7). Notice that (7) can be rewritten in
a quadratic constraint form z′Siz = 0. Thus, the idea is to
compute x̂ such that

x̂(t) = arg min
z∈Rns : z′Siz=0

∀i∈{1,...,n}

(z − x̄)′Q(z − x̄) (13)

Since (13) does not have a closed-form expression, follow-
ing the ideas in [17], [18] we propose to solve the related
sufficient Karush-Kuhn-Tucker (KKT) conditions asymptoti-
cally. More precisely, consider the corresponding Lagrangian
function

L(x̂,λ) = (x̂− x̄)′Q(x̂− x̄) +

n∑
i=1

λix̂
′Six̂

where λ∈Rn is the Lagrange multiplier vector. This leads
to the following sufficient KKT conditions for optimality

e2(t) =Q̄x̂−Qx̄ = 0, e3(t) = S̄(x̂)′x̂ = 0 (14)

where Q̄ = Q +
∑n
i=1 λiSi and S̄(x̂) = [S1x̂, . . . , Snx̂].

Now defining a positive scalar constant µ, given initial
condition x̂(0) = x̄0, and suppose that along trajectories
of the system we have Q̄ > 0 and S̄(x̂) remains full column
rank, the following proposed solution guaranties that the
sufficient KKT conditions (14) would hold at sampling times
t = tk and asymptotically in [tk−1, tk), (i.e., e2, e3 → 0 as
tk →∞).
• For tk−1 ≤ t < tk, j = 1, ..., k∗



[
˙̂x

λ̇

]
=

[
Q̄ S̄(x̂)

S̄(x̂)′ 0

]−1
([
−Q̇x̂+Q ˙̄x+ Q̇x̄

0

]
−µ
[
Q(x̂− x̄) + S̄(x̂)λ

1
2 S̄(x̂)′x̂

])
• At t = tk, k = 1, ..., k∗[

x̂(tk)
λ(tk)

]
=

[
Q̄−1(tk)Q(tk)x̄(tk)
λ∗(tk)

]
where λ∗(tk) is given by solving f(λ, tk) = 0 using iterative
generalized Newton’s method, with

fi(λ, tk) = x̄′QQ̄−1SiQ̄
−1Qx̄, i ∈ {1, 2, ..., n}

C. Inter-sample Output Predictor (IOP)

The observation y(t) used in (11)-(12) requires the as-
sumption that the output of the system is a piecewise
continuous signal in time, which is not (it is a discrete
signal). To solve this, we could just hold y(t) between the
two consecutive sample times (tk−1,tk), however, it may
introduce significant model mismatch if the inter-arrival time
tk+1 − tk is not small enough. To minimized this model
mismatch, we suggest the use of an inter-sample output
predictor, e.g., as the one pointed out in [19], where for a
general nonlinear system

ẋ = f(x,u), y = h(x,u)

the idea consists of using the predicted output given by

˙̂y(t) = Lfh(x̂(t),u) ∀t ∈ [tj−1, tj), ŷ(tj) = y(tj)

Here, the signals ri(t) in A(u,y) will be replaced by r̂i(t)
(shown in Fig. 1), which according to (9) is governed by

˙̂ri(t) = −
ν′
(Bpi + Bq0

)
r̂i(t)

∀t ∈ [tk−1, tk), r̂i(tk) = ri(tk)

D. SLAM Adaption

In the standard ME formulation, it is considered that
the size of the state x is fixed. This is not the case in
SLAM where new state estimates x̂ (and corresponding Q
matrix) are augmented as new features (beacons here) are
discovered. Standard procedure of a SLAM algorithm can
be decomposed in the following steps:

1) Predict the state estimate x̂ and corresponding Q
matrix using the process model, the input signal u,
and the predicted ranges r̂.

2) Augment new beacons’ states to the state vector fol-
lowed by augmenting new terms to the Q matrix.

3) Update current state estimate and Q matrix using
measurements available from features (beacons here).

At initial time, the states x̄, x̂ are initialized by x̂(t0) =
x̄(t0) = [0, 0, 0]′, which is the local initial position of
the AUV if we assume that we set an anchor based on
initial location of the AUV. As soon as a new beacon
qi ∈ R3 at time tk is detected, a new pair of state variables
(Bp̄i(tk), χ̄i(tk)) is constructed as follows

Bp̄i(tk) =− Bq̄0(tk) +R(0, α2, α3)[ri(tk), 0, 0]′ (15)
χ̄i(tk) =ri(tk) (16)
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Fig. 2. Block diagram of the designed MMAE.

where α2 ∈ [−π2 ,
π
2 ] and α3 ∈ [−π, π] are unknown

parameters rotating the vector [ri(tk), 0, 0]′, and at this stage
they can be chosen arbitrarily. The new pair of state variables
(15)-(16) is then augmented into the state vectors x̄ and x̂.
The matrix Q is updated with new terms according to

Q(tk) :=

 Q(tk) 0 0

0
(
r2i (tk)I3 +Q−1v (tk)

)−1
0

0 0 σ−2ri


where the term Qv(tk) can be interpreted as the information
matrix (if the problem was stochastic) of the position Bq̄0(tk)
and σ2

ri describes the uncertainty of range measurement of
beacon i. Notice that if the system (9) is observable in [t0, tf ]
then initializing the CME with arbitrary chosen α, β will
result in the solution x̂(t) that converges to x(t).

E. Multiple Model Aided SLAM

The process model (6) constrained by (7) is locally ob-
servable in [t0, tf ] for some classes of inputs [13]. In this
case, the proposed CME initialized with x̄(0) converges to
the closest element of UO (8). This motivates the need to
use a multiple model approach. The fact is that as long as
the system is locally observable, both elements of (8) are
valid solutions. However, as soon as the system becomes
observable, the set of possible solutions shrinks to only one
of them. This means that the observer initialized with any
initial condition converges (as will be shown in the next
section) to the true solution, but notice that the time of
convergence depends on how far is the initial condition
from the true solution (‖x̂(0) − x(0)‖). In this case, to
reduce the convergence time we propose to use a Multiple
Model Adaptive Estimator (MMAE) scheme as shown in
Fig. 2. Each CME is an observer initialized with a different
initial condition and a weight signal ps(t) assigned to it. The
weights are evaluated and updated according to

ps(tk) =
ps(tk−1)βs(tk)e−

1
2ws(tk)

nm∑
l=1

pl(tk−1)βl(tk)e−
1
2wl(tk)

, s∈{1, ..., nm}



where ps(tk) is weight of the sth model at time tk, and

βs(tk) = det (Ss(tk))
− 1

2

ws(tk) =
∥∥ŷs(t−k )− y(tk)

∥∥2
Ss(tk)−1

Ss(tk) =C(u(tk))Q−1(tk)C ′(u(tk)) +Rn

Given the range measurement from newly observed bea-
con i at time tk, we generate two initial conditions Bp̄i(tk)
which satisfy constraint (7), using (8) and an arbitrary chosen
[x̄i, ȳi, z̄i]

′ (typically set to [0, ri(tk), 0]′ + Bq̄0(tk)). Two
new sets of models are created and each initial condition is
augmented to the states vector of the model. Then, we apply a
MMAE scheme with nm models with the weights ps(·) ≥ 0
initialized equally, such that the sum of all equals to 1 [20].
Whenever one of the models’ weights ps has reached some
threshold near 1, the corresponding model will be kept and
all the other models are discarded.

IV. OBSERVER CONVERGENCE

In what follows we present required conditions for the
convergence of the designed observer’s estimation error to a
neighborhood around zero (or zero without presence of the
noise and disturbances). Due to space limitations, the proofs
are omitted. Consider the following assumptions:

Assumption 1: The matrix Q̄ introduced in (14) is positive
definite along trajectories of the CME and S̄(x̂) remains full
column rank. �

Assumption 2: Let Num(t, σ), 0 ≤ σ < t denote the
number of time instants at which measurement arrive in
the open interval (σ, t). There exist finite positive constants
τD and N0, for which Num(t, σ) ≤ N0 + t−σ

τD
holds. The

constant τD is called the average dwell-time and N0 the
chatter bound. �
Notice that Q is always positive definite but it is bounded
below (implying λmin(Q)>0) only as long as the system is
observable, that is, at least one of the observability conditions
in [13] must hold. This implies that for λ sufficiently small
Q̄ > 0. Also, the rank condition on S̄(x̂) is the standard
condition in Lagrange multiplier theory for constraints inde-
pendence which is true here since each constraint is imposed
on a different beacon. Assumption 2 guarantees that the
summation of ‖n‖2 in (10) will not grow unbounded due
to too frequent measurements. This assumption is purely
technical and is need to simplify the analysis. In practice
it always holds.

The next result shows the convergence properties of the
proposed CME observer.

Theorem 1: Suppose that Assumptions 1-2 hold, then
given input/output pair u(t)/y(tk) of the system (9), there
exist a class KL function β and class K functions γd, γn
such that

3∑
l=1

‖el(t)‖≤
3∑
l=1

βl(‖el(0)‖, t)+

γd( sup
τ∈[0.t]

‖d(τ)‖)+γn( sup
τ∈[0.t]

‖n(τ)‖)

Fig. 3. The three Medusa marine robotic vehicles.
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holds with e1(t) = x̄(t)− x(t) and e2, e3 defined in (14).
Moreover the sufficient KKT conditions (14) hold pointwise
at tk and asymptotically in [tk−1, tk) (in the sense that they
hold when tk → ∞), which implies that x̂(t) satisfies the
equality algebraic constraint (7). �

Remark 1: Consider system (9) without disturbance d(t)
and noise n(t). In this case it can be concluded that as t→∞
the functions V1(t), V2(t)→ 0 implying that x̄(t)→ x(t),
S̄(x̂(t))′x̂(t)→ 0 and it follows that ‖x̂− x̄‖2Q → 0. Since
Q is a positive definite matrix, this implies that x̂(t)→ x̄(t)
which concludes that x̂(t)→ x(t). �

V. EXPERIMENTAL RESULTS

In this section we describe experimental results that were
done with the three autonomous surface vehicles (Medusas)
which are developed at the Laboratory of Robotics and
Systems in Engineering and Science (LARSyS) of the In-
stituto Superior Técnico (IST), Lisbon (see Fig. 3). Each
vehicle has two side thrusters that can be independently
controlled, equipped with IMU, GPS, and compass. The
communications with other devices are done via wifi or an
underwater acoustic modem (Tritech Micron Data Modem).
In this scenario, two of the Medusa vehicles have been
in hold position mode to act only as stationary beacons
and third one was required to follow a lawn mowing type
trajectory where the condition ω3 = −ω2 tan(φ) holds
except when the AUV is turning. The inter-arrival time of
range/depth measurements from each beacon was fixed to 4
seconds. Notice that the proposed observer requires Q̄ > 0
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in Assumption 1. Since each CME is initialized such that
equality constraints (7) hold, this assumption is satisfied
initially and verified along time.

Fig. 4 shows the constrained estimate x̂(t) and the true
trajectory of the moving Medusa obtained by GPS. The lo-
cation of the beacons are shown by (o). The moving Medusa
starts from the initial position (�) on a straight line. As soon
as the Medusa turns, the observability condition holds and
the estimation errors converge to a small neighborhood of
zero. Models’ weights ps are shown in Fig. 5 where the
weight corresponding to the observer with the closest initial
condition converges to 1 as soon as the required observability
condition is met.

In Fig. 6 we compare the affect of disabling one or
some of the designed blocks. We consider 5 observers: i)
Full designed observer consisting of the ME, IOP, PF, and
MMAE; ii) Observer without the IOP module; iii) Observer
without using the PF module, which solves the unconstrained
problem. iv) Observer with only the ME and the MMAE
module; v) Plain ME observer. As expected, the fact of taking
into account the quadratic constraint together with the IOP
and the MMAE along with the minimum energy observer
improves significantly the convergence and behavior of the
estimation error during the transient time when compared
with the unconstrained ME observer.

VI. CONCLUSIONS

We have addressed the observer design for the SLAM
problem of an AUV equipped with inertial sensors, an acous-
tic ranging device to obtain relative range measurements to
stationary beacons and with the possibility of using also
depth sensors. We have derived an observer to reconstruct the
initial state of the resulting SLAM system (and in particular
the position of the AUV). The convergence properties of
the designed observer showed that we can achieve global
convergence to a bounded error while without presence
of disturbance and noise the estimation error converges to
zero. Experimental results with the Medusa robotic vehicle
validated the theoretical results.
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