
Pattern Based GUI Testing Modeling Environment

Tiago Monteiro

Departamento de Engenharia Informática
Faculdade de Engenharia, Universidade do Porto

Porto, Portugal
tiago.silva.monteiro@fe.up.pt

Ana C. R. Paiva

Departamento de Engenharia Informática
Faculdade de Engenharia, Universidade do Porto

Porto, Portugal
apaiva@fe.up.pt

Abstract—This paper presents a modeling environment (ME)

developed for a Domain Specific Language (PARADIGM) which

aims to support the construction of models to be used in the

context of Model Based GUI Testing (MBGT). It starts by briefly

presenting PARADIGM which aims to increase the level of

abstraction of the models and promote reuse in order to diminish

the effort in building models for MBGT. Afterwards, it describes

the architecture of the ME, how the constraints of the language

are enforced within the ME to ensure the consistency of the

models built, the test case configuration of the model elements,

the test case generation algorithm and how the ME can be

extended/adapted to include additional features.

Keywords— GUI modeling; DSL; Model based testing; GUI

testing.

I. INTRODUCTION

Contrarily to general purpose languages, such as C and
Java, a domain-specific language (DSL) is “tailored to a
specific application domain” [1].

This paper presents a modeling environment for a DSL
(PARADIGM) tailored to the context of Model Based GUI
Testing (MBGT). The main goal of this language is to increase
the level of abstraction of the GUI models, promote reuse and
reduce the effort in building models to MBGT [2]. There are
other languages for the same context, such as EFG [3] and
VAN4GUIM [4], but we believe they do not foment the same
level of reuse.

This paper is structured as follows: section II presents
briefly the PARADIGM language; section III presents the
analysis performed to choose a framework to support the
development of the modeling environment; section IV
describes the modeling environment functionalities and how
they can be extended; finally, section V presents conclusions
and future work.

II. PARADIGM LANGUAGE

The PARADIGM language (Fig. 1) is comprised by
elements and connectors. The elements can be Init (to mark the
beginning of a GUI model), End (to mark the termination of a
GUI model), Structural (to allow structure the GUI model in
different levels of abstraction) and Behavioral (to describe the
behavior to test).

As models become larger, coping with their growing
complexity forces the use of structuring techniques such as

different hierarchical levels that allow use one entire model A
inside another model B abstracting the details of A when within
B. It is like what happens in programming languages, such as C
and Java, with constructs such as modules. Form is a structural
element that may be used for that purpose. A Form is a model
(or sub-model) with an Init and an End elements.

Group is also a structural element but it does not have Init
and End and, moreover, it has a Boolean attribute named
AnyOrder that, when true, means that all elements inside the
Group may be executed in an arbitrary order.

Fig. 1. PARADIGM language model

GUIs have recurrent behavior that is common and produce
similar results (called UI patterns). A pattern describes a
problem which occurs over and over again in our environment,
and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over,
without ever doing it the same way twice [5]. We took the
notion of UI patterns into the context of GUI testing which led
us to the concept of UI Test Patterns. Those test patterns are
the Behavioral elements within PARADIGM which define test
strategies for testing UI patterns. Test strategies are a set of
configurations (to test the associated behavior) and have to be
mapped to real controls present in the GUI to be tested to allow
the subsequent execution of the generated test cases.

Finally, notice that, except for Init and End, all the other
elements have a Boolean attribute called Optional that, when
true, means that it is possible to bypass the corresponding
behavior in order to achieve a specific goal.

The elements can be combined through connectors. There
are three different kinds of connectors: Sequence,
SequenceWithDataPassing and SequenceWithMovedData.

Two elements connected by Sequence (A Sequence B)
means that interaction (with the modeled GUI) according to
element B can only be performed after interaction according to
A finishes. Connectors SequenceWithDataPassing and
SequenceWithMovedData are similar to Sequence, but,
additionally, the first connector also means that element B
receives data from element A and the second connector means
that element A transfers data to element B (in this particular
case, element A loses data and element B gets data).

Besides connectors, there is also a relation called
Dependency to model the case when the destination element
properties depend on the properties of a set of source elements.

The GUI models constructed with PARADIGM must
follow some rules in order to be considered well-formed. These
rules are imposed by the modeling environment developed and
will be listed in section IV.B.

III. FRAMEWORK ANALYSIS

The PARADIGM modeling environment aims to provide
support for constructing well-formed GUI models, configure
those models with test input data, generate test cases from
those models and execute them on a real GUI.

Nowadays, there are several frameworks that easy the
process to build a DSL and corresponding modeling
environment. The choice of which framework to use in the
present work was performed by evaluating several features of a
set of available frameworks. Those characteristics were:
possibility to extend or create new functionalities; possibility to
define properties to configure language elements; possibility to
define rules to ensure model integrity; possibility to integrate
the tool with other development environments; possibility to
save the created models in XML and being an active project.
The frameworks evaluated according to these characteristics
were: Eclipse Graphical Modeling Framework [6][7];
StarUML [8], Open Modelsphere [9][10] and ArgoUML [11].
This analysis was conducted considering the documentation
freely available and hands-on experiments.

StartUML was discarded because, as far as we know, it is a
discontinuous project. ArgoUML seems to be in an incipient
state (version 0.34) and may be subject of updates that can
cause problems for those developing on top of it. Open
Modelsphere forces to change the core of the application to
reach the objective of creating a new notation which does not
seem a good solution for our purposes.

For these reasons, Eclipse Graphical Modeling Framework
seemed to be the best option. This framework allows for easy
creation of a fully-featured modeling environment, is an active
project and presents a rather active community of support.

A. Eclipse Graphical Modeling Framework

Launched in 2006, Eclipse Graphical Modeling Framework
(GMF) [6] (Fig. 2) is used to create graphical editors for
modeling languages.

Fig. 2. DSL creation process in Eclipse Graphical Modeling Framework

This process of constructing a DSL based on GMF
comprises the definition of the Domain Model (to define the
elements, connections and their properties); the definition of
the graphical representation of each element of the DSL
(within the Graphical Definition Model); and the definition of
the menus, the actions and toolbars within the Tooling
Definition. Afterwards, one needs to develop the Mapping
Model, whose purpose is to specify the relationships among the
elements in each of the previous models, linking each domain
element with a graphical representation and proper tooling.
After setting some generation properties, it is possible to build
the modeling environment as a plug-in for Eclipse.

IV. PARADIGM MODELING ENVIRONMENT

The PARADIGM Modeling Environment (Fig. 3) allows
the creation of models with all elements and connectors present
in the PARADIGM language. On the right-side is the palette
with all the elements and connectors of the language. On the
left is the modeling area and below the properties tab.

A. Elements and connectors

As stated before, the current version of PARADIGM
Modeling Environment presents all elements and connectors
described in the PARADIGM language. However, in the
future, it may be necessary to add elements (or connectors) to
extend/adapt the language. For instance, imagine that we want
to add the Call element to the language. For that purpose, the
programmer has to edit the models referred in III.A.

1. Create the new element in the Domain model, name it
(Call) and state that its ESuper Type is Behavioral
(because Call descends from Behavioral). Add attributes
to hold the configurations (entries) and to hold the
mapping between the element of the model and the
controls in the GUI (callMapping) which implement the
behavior described. This mapping is useful during test case
execution [12].

2. Create a graphical design for the added element in the
Graphical Definition Model. If the graphical representation
of an element is a figure, create a rectangle in the graphical
definition model; and add a class extending ImageFigure
in the plugin figures with the path to the image in the
constructor (for example, “images/call.png”).

3. Create the tool for the added element in the modeling
environment. Add a new Creation Tool with the name of
the element (in this example Call) in the Tooling
Definition Model.

4. Create a new Top Node Reference (or a Link Mapping in
case of connector) in the Mapping Model and specify the
relationship among domain, graphical and tooling
elements.
After this, one just needs to generate the modeling

environment code all over again.

Fig. 3. Modeling Environment

B. Rules

The environment enforces a set of rules in order to
guarantee that the models are well-formed. These rules are
implemented in OCL [13] as follows:

Each model (or Form) can have only one Init and one End

not (self.nodes->select(oclIsTypeOf(Init))->size() > 1)

not (self.nodes->select(oclIsTypeOf(End))->size() > 1)

Init cannot be the destination of a connector and End
cannot be the source of a connector

not self.destination.oclIsTypeOf(Init)

not self.source.oclIsTypeOf(End)

Init and End cannot be directly connected by a connector

self.source.oclIsTypeOf(Init) implies

 not self.destination.oclIsTypeOf(End)

An element cannot be connected to itself

self.source <> self.destination

Two elements cannot be connected (twice) by two different
connectors of the same type

self.relations->forAll(c1, c2 |

 c1<>c2 and c1.source = c2.source implies

 c1.destination<>c2.destination

One element cannot belong to two different group elements

Group.allInstances()->forAll(g1, g2 | g1<>g2 implies

 (g1.nodes->intersection(g2.nodes) = g1.nodes) or

 (g1.nodes->intersection(g2.nodes) = g2.nodes) or

 ((g1.nodes->intersection(g2.nodes))->size() = 0))

The modeling environment allows adding new rules. For
that, it is necessary to:

1. Within the Mapping Model, add a new Audit Rule in the
Audit Container, name it, define the message to show
when the rule is broken, set its severity (“Info”, “Warning”
or “Error”) and define live mode of the rule (if the rule is
verified while modeling; or if the rule is only verified
when the user specifically asks for model validation).

2. Inside the Audit Rule, add a Constraint with the rule
implementation (in OCL or Java), and add the context of
this rule (it may be a domain element, or domain attribute).

C. Test Case Configuration

After constructing a GUI model describing the
functionality to test, it is possible to generate test cases. For
that, the tester needs configure each behavioral element of the
model in order to provide test data and specify the checks to
be performed during test execution.

To demonstrate this functionality, consider the model in
Fig. 3 and particularly node “AdjustSearch [2.1.2]”. This is a
Find element that will test if the GUI is capable of finding the
correct answer for a given input.

ME allows the tester to define a particular input for a
particular field, the expected result and also the check to
perform. Fig. 4 sums up the test configuration for this element.
In this case, the test will check if the cardinality of the results’
set obtained by the search is 22 (in the first line) and 14 (in the
second line).

Fig. 4. “Find Entries” dialog

When a new element is added to the supported language
(in this case PARADIGM), the programmer has also to define
a test configuration. For that, he has to use the ability of
Eclipse to be extended by components (plug-ins). To build
such plug-in, the programmer must:

1. Extend the class CorePlugin and implement the method
run.

2. Create a new class that extends PropertyDescriptor and
call the necessary dialog to interact with for the test
configuration purposes.

3. Create a JAR file with the project created and the project
pluginLoader and place it in the lib folder in the
Paradigm.edit.ui project.

D. Path Generation

The test case generation is performed in two steps. Firstly,
test paths are generated by a recursive algorithm. In general,
the algorithm calculates all the possible paths traversing the
model starting in element Init until reaching the End element,
both mandatory elements within a model. Secondly, the
concrete test cases are generated from those paths. An
approach to do so can be found in [14].

Nevertheless, it is important to highlight the special
treatment of some elements during path generation. When a
specific path has an optional element (the Optional attribute is
set to true) the generator introduces paths without the presence
of that optional element. For instance, consider a path A-B-C
in which B is optional. In this case, the path generator will add
the path A-C to the set of possible paths. Forms and Groups
also deserve special treatment. In case of a model structured
into levels of abstraction (with Forms within it), the generator
calculates all test paths of that Form, stores them and
continues generating the test paths for the model. Afterwards,
the paths generated for a Form are inserted in the test paths
generated for the model substituting the Form element by such
paths. In case of Groups, it generates all paths for the Group
generating also all possible combinations of these paths if the
AnyOrder attribute is true for that Group. As what happens
with Forms, it stores these paths, so they can be later
introduced in their proper place.

After test paths are generated, the concrete test cases are
built replacing each behavioral element within each path by its
specific test strategy. If wanted, it is also possible to add other
test case generation algorithms to the modeling environment.
To use a different algorithm, the programmer must create a
new plug-in project. In the XML file of the project, he has to
create a new command, a new command handler and a context
menu entry. Afterwards, implement the class referenced in the
command handler and as an extension of AbstractHandler.
The execute method of such class must implement the desired
test case generation algorithm.

E. Test case execution

Right now, the ME just provides an execution module for
web applications. However, it allows the addition of new
modules to execute the test cases generated over different
platforms, such as, desktop. The execution module works on
top of Selenium [15] and Sikuli [16]. That allows us to
identify GUI objects either by their properties or by their
bitmap. During configuration time, the tester needs to point
out the objects (to capture their properties and their bitmap) in
order to act upon them during test case execution time.

V. CONCLUSIONS

This paper presented a modeling environment for the
PARADIGM language to be used in the context of MBGT. A
demonstration video can be found in
www.fe.up.pt/~apaiva/tools/paradigmME.wmv. The goal of
this ME is to support modeling GUIs, test case configuration,
test case generation and test case execution. In addition, the
ME provides extension points that allow adding new elements

to the supported language and adding new test case generation
algorithms.

In spite of some experiment realized in laboratory that
make us confident in the usability and usefulness of the ME,
we intent to realize a set of experiments in industry to evaluate
the real benefit of the overall approach to increase the quality
of GUIs. The result of these experiments will be useful, not
only to improve the ME functionalities, but also to improve
the PARADIGM language providing, for instance, new
behavioral elements that contribute to increase the level of
abstraction of the constructed models.

ACKNOWLEDGMENT

This work is financed by the ERDF – European Regional
Development Fund through the COMPETE Programme
(operational programme for competitiveness) and by National
Funds through the FCT – Fundação para a Ciência e a
Tecnologia (Portuguese Foundation for Science and
Technology) within project FCOMP-01-0124-FEDER-
020554.

REFERENCES

[1] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop

domain-specific languages,” ACM Computing Surveys, vol. 37, no. 4, pp.

316–344, Dec. 2005.

[2] M. Cunha, A. C. R. Paiva, H. S. Ferreira, and R. Abreu, “PETTool: A

pattern-based GUI testing tool,” in Software Technology and Engineering

(ICSTE), 2010 2nd International Conference on, 2010, vol. 1, pp. V1–

202.

[3] A. M. Memon, M. Lou Soffa, and M. E. Pollack, “Coverage criteria for

GUI testing,” Proceedings of the 8th European software engineering

conference held jointly with 9th ACM SIGSOFT international symposium

on Foundations of software engineering ESECFSE9, vol. 26, no. 5, p.

256, 2001.

[4] R. M. L. M. Moreira and A. C. R. Paiva, “Visual Abstract Notation for

Gui Modelling and Testing - VAN4GUIM,” in ICSOFT

(SE/MUSE/GSDCA), 2008, pp. 104–111.

[5] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language:

Towns, Buildings, Construction, vol. 2, no. 0. Oxford University Press,

1977, p. 1171.

[6] R. C. Gronback, ECLIPSE MODELING PROJECT - A Domain-Specific

Language Toolkit. Addison-Wesley, 2009.

[7] A. Shatalin and A. Tikhomirov, “Graphical modeling framework

architecture overview,” in Eclipse Modeling Symposium, 2006.

[8] M. Lee, H. Kim, J. Kim, and J. Lee, StarUML 5 . 0 - Developer Guide.

2005.

[9] Grandite, “Open Modelsphere - User Guide,” 2009. [Online]. Available:

http://www.modelsphere.org/help/User_Guide.html.

[10] Grandite, Open ModelSphere 3.0 - Developer Guide, no. September.

2008.

[11] A. Ramirez, L. Tolke, M. Wulp, J. Benett, K. Odutola, A. Rueckert, and

P. Vanpeperstraete, ArgoUML User Manual A tutorial and reference

description. 2011.

[12] A. R. Paiva, J. P. Faria, and R. A. M. Vidal, “Specification-Based Testing

of User Interfaces,” in Interactive Systems. Design, Specification, and

Verification, vol. 2844, J. Jorge, N. Jardim Nunes, and J. e Cunha, Eds.

Springer Berlin Heidelberg, 2003, pp. 139–153.

[13] “OCL specification,” 2006. [Online]. Available: http://www.omg.org/cgi-

bin/doc?formal/06-05-01.

[14] C. D. Nguyen, A. Marchetto, and P. Tonella, “Combining model-based

and combinatorial testing for effective test case generation,” in

Proceedings of the 2012 International Symposium on Software Testing

and Analysis, 2012, pp. 100–110.
[15] “Selenium.” [Online]. Available: http://seleniumhq.org/.

[16] “Sikuli.” [Online]. Available: http://www.sikuli.org/.

