GUI Reverse Engineering with Machine Learning

Inês Coimbra Morgado∗, Ana C. R. Paiva∗, João Pascoal Faria∗†, and Rui Camacho∗
∗Department of Informatics Engineering, Faculty of Engineering, University of Porto,
rua Dr. Roberto Frias, 4200-465 Porto, Portugal
†INESC Porto

Abstract—This paper proposes a new approach to reduce the
effort of building formal models representative of the structure
and behaviour of Graphical User Interfaces (GUI). The main
goal is to automatically extract the GUI model with a dynamic
reverse engineering process, consisting in an exploration phase,
that extracts information by interacting with the GUI, and in a
model generation phase that, making use of machine learning
techniques, uses the extracted information of the first step to
generate a state-machine model of the GUI, including guard
conditions to remove ambiguity in transitions.

Keywords—Reverse Engineering; Model-Based Testing; Ma-
icine Learning; Inductive Logic Programming

I. INTRODUCTION

Developers seldom provide formal models of the applica-
tions and building one is a very time consuming, error
prone process. However, these enable several activities, such
as code or test generation, migration to new platforms,
documenting and easing the understanding of the application
and are, thus, extremely important. This paper proposes a
new reverse engineering approach to reduce the effort of
building the formal model of the Graphical User Interface
(GUI) of an existent System Under Analysis (SUA).

Reverse engineering was initially defined by Rekoff [16],
in 1985, as “the process of developing a set of specifications
for a complex hardware system by an orderly examination
of specimens of that system”. This notion was later applied to
software systems by Chikofsky and Cross [3], who defined
reverse engineering as “the process of analysing a subject
system to identify the system’s components and interre-
lationships” (exploration of the system) “and to create
representations of the system in another form or at a higher
level of abstraction” (representation of the information).

There are three main approaches for reverse engineering:
static, in which information is extracted from the source or
byte codes; dynamic, in which information is extracted in
run time, without accessing the source code; and hybrid,
which mixes both static and dynamic approaches, trying to
maximise the amount of extracted information.

There are already some works on reverse engineering,
such as [15], [12], [11], [19] and [6] with testing purposes
and [7] and [21] for migration between platforms. In general,
every work on reverse engineering intends to understand the
SUA.

In [6], the authors proposed an approach to reduce the
effort of constructing formal models. The main idea was to
automatically extract structural and behavioural information
from the interaction with the GUI and to apply this inform-
ation in the generation of a formal model, which would
be, afterwards, manually validated in order to guarantee its
consistency and completeness. However, the approach had
some limitations as it was not able to extract and represent
all types of information.

This paper describes a reverse engineering process with
two phases: i) an exploration process to extract structural
and behavioural information; ii) and an Inductive Logic
Programming (ILP) [13], [14] based process, to help solving
problems that may surface while generating the formal
model.

Machine Learning stands as a sub-field of artificial intel-
ligence [17] with focus on the development of new methods
and techniques to improve the automatic construction of
models for data.

ILP is a major field in Machine Learning with impor-
tant applications in (Relational) Data Mining. The main
ingredients for ILP are: background knowledge, B, and
observations (usually called examples in the ILP literature), E.

It is usual to have two kinds of examples: positive (E+)
(instances of the target concept) and negative (E−) (used to
avoid overgeneralisations). A characteristic of ILP is that
both data and models are expressed in a subset of First
Order Logic providing a formal model for induction and
an expressive language to encode both data and models.
Background knowledge consists in a set of predicates en-
coding all the information that domain experts find relevant
for constructing the models.

The major advantages of ILP that make it adequate for
this work include its facility to encode data with structure,
the facility of using data from diverse sources encoded in
different formats and the induction of comprehensible mod-
els. It is also usual for an ILP system to combine numerical
reasoning with symbolic relations within the same model.
Moreover, there are off-the-shelf open-source systems, like
Aleph [20], that are ready to use.

There have been some ILP previous works related to soft-
ware engineering. Shapiro [18] presented an approach for
interactive model construction with an oracle, which verified
the correctness of the model and provided counter-examples when necessary; Bratko and Grobelnik [2] presented an approach to use ILP techniques for learning specifications; Cohen and Devanbu [5] studied the usefulness of ILP in software fault prediction systems. In a more broader note, Dzeroski and Lavrac present, in [8], other approaches that follow ILP and the corresponding applications and, in [9], Dzeroski presented the applications of ILP in relational data mining.

The remaining of this paper is organised as follows. Section II provides an overview of the proposed approach. Section III describes the machine learning process. Section IV provides some conclusions and future work.

II. A GENERAL OVERVIEW

In this section, an overview of the proposed approach is provided, explaining the intended model and how to solve a non-determinacy problem.

A. An Overview of the Process

In this paper, an approach to bring closer the advantages of reverse engineering and machine learning, in order to decrease the effort of building the formal model of a GUI application, is proposed. Figure 1 depicts an overview of the proposed approach.

The approach is divided in two phases: exploration and model generation. The process starts with the exploration: while an Explorer (automatic or manual) explores the GUI of the SUA, an Observer extracts structural and behavioural information, keeping a record of the execution traces. This process is dynamic (analysis of the system in run-time) and iterative, stopping when the GUI is considered to be explored. An approach to automate the exploration phase is presented in [6], even though the models extracted in the previous work differ from the ones of this work. Afterwards, a FSM Generator generates a Finite State Machine (FSM) [10] from the execution traces, which is used as input, together with the execution traces, for the ILP Engine, which solves eventual ambiguous situations. An ambiguity occurs when, from one source state, the same event may lead to different target states. This process is described in more detail in section III. In order to ensure the model is consistent and complete, the generated model goes through a process of manual validation and completion (Verifier).

B. Running Example

Along the paper, a sample application is used to better explain the approach. This application’s main window (AppWnd) has three controls: an input text box, a Find button, which is initially disabled, and an Exit button. When text is inserted in the input text box, the Find button becomes enabled. Clicking on the Find button opens a new dialog (FindDlg), which contains an input text box (FindWhat) and an initially disabled button Find. Inserting in FindWhat sets the Find as enabled. Clicking on Find may have one of two results: either the text in FindWhat is found in AppWnd, closing the FindDlg, or the text cannot be found and a new dialog (NotFoundDlg) is opened, containing an OK button. Clicking on this button closes both the NotFound and the Find dialogs, returning to the AppWnd window.

C. The Execution Traces

Along the exploration, the execution traces are recorded. An execution trace is defined by a sequence of user actions along with the state of the GUI after each of those actions: the enabled/disabled actions and the content of the GUI controls. The first user action in any execution trace is start.

Table I presents three recorded execution traces on the application described in Section II-B: one in which the application is started and immediately exited (execution trace 0), one in which some text to be found (“a”) is actually found (execution trace 1) and another in which it is not found (execution trace 2). The difference in the result of the last two traces lays on the value of the input text box. The first column (TraceId,StepId) identifies the current execution trace and step, the second one (Event) indicates the user action and corresponding parameters that took place in each step and all the remaining columns, apart from the last one, indicate both the status (E for enabled and D for disabled) of the different actions and the content of the GUI controls. The last column is explained in Section II-D. W1, W2 and W3 correspond to the different windows/dialogs that are opened during the different executions (AppWnd, FindDlg and NotFoundDlg, respectively).

D. The FSM Model Generation

In this approach, a FSM is generated, representing the dynamic behaviour of the GUI. In the FSM, states are defined by the set of enabled user actions, i.e., there is a transition between states when one of the GUI controls of the enabled windows change from enabled to disabled (or vice versa) or when a new window is opened. A transition is labelled by the event that triggered the state evolution. The FSM is represented using UML 2.0 [1].
Table I

<table>
<thead>
<tr>
<th>TraceId/StepId</th>
<th>Event (User Action)</th>
<th>ActionInfo/4</th>
<th>Next FSM State</th>
<th>Event (User Action)</th>
<th>ActionInfo/4</th>
<th>Next FSM State</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>EnterText(X)</td>
<td></td>
<td>S1</td>
<td>Exit</td>
<td></td>
<td>S4</td>
</tr>
<tr>
<td>S1</td>
<td>Event (User Action)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>Find</td>
<td></td>
<td>S3</td>
<td></td>
<td></td>
<td>S4</td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In table I, the last column (Next GUI State) maps each step of each transition to the corresponding FSM state, being each state identifier automatically generated for each set of enabled/disabled actions: state S0 corresponds to the AppWnd window with the EnterText and Exit actions enabled. When the EnterText action takes place, a transition is triggered to state S1 as the Find actions became available, etc. Figure 2 depicts the generated FSM.

E. The Ambiguity Issue

One of the problems of this approach is the possibility of ambiguity, e.g., situations where, from the same source state (Sx), an event (user action, E) reaches different target states (Sy and Sz), as depicted in (a) of Figure 3. In Figure 2, this ambiguity is present as, from state S3, the event FindDlg.Find may lead back to state S1 or forward to state S4.

Ambiguities can happen because states have only the set of enabled actions and the transitions may depend on other factors besides that set. In the context of this work, factors that may determine the target state (for the same source state and event) are:

- The parameters of the event (e.g., the result of Find("a") and Find("b") may be different, even though the event itself is the same (Find));
- The values of the properties of GUI controls (e.g., the effect of an event occurring when a text box is empty may differ from when the same event occurs when the text box contains some text);
- External data (e.g., the content of the clipboard may enable the Paste event).

In these situations, it is necessary to identify the actual cause and update the FSM accordingly, adding a guard condition over the relevant variables (parameters of the event, values of the GUI controls’ properties and external data) to each transition of the event. These conditions will define the situations when the different target states are reached, as illustrated in Figure 3.

III. THE LEARNING PROCESS

ILP was chosen as an adequate inductive method to identify and solve the conditions in which ambiguous situations occur and classify them accordingly. In order to better understand this problem, the situation depicted in Figure 2 was explored and the Aleph ILP system was applied to that case. As stated in Section I, an ILP system must be provided with background knowledge and examples, which are written in Prolog [4], so that guard conditions that discriminate the two situations and determine which state to go next (see Figure 3 b) may be inferred. As such, the facts transition/5 are provided as positive examples and both the facts stateVariable/4 and the predicates actionInfo/4 are provided to the background knowledge.

A. Encoding of Execution Traces

The transition/5 facts encode the different transitions of the FSM, having the following signature:

transition(Source, Action, Target, TraceId, StepId).

meaning that there is a transition from the Source state to the Target state, labelled with Action in the step StepId of the execution trace TraceId. For example, the transition from S0 to S1 in the execution trace 1, step 1 is encoded as:

transition(s0, enterText, s1, trace1, step1).
On the other hand, the stateVariable/4 facts encode information on the GUI controls’ properties on each trace and corresponding step, with the following signature:

\[
\text{stateVariable}(\text{Control}, \text{TraceId}, \text{StepId}, \text{Value}).
\]

meaning that, at step \text{StepId} of the execution trace \text{TraceId}, the GUI control \text{Control} has the value \text{Value}. For the execution traces described in this paper, the state variables for the steps corresponding to state S3 (execution trace 1, step 3 and execution trace 2, step 3) are encoded as:

\[
\begin{align*}
\text{stateVariable}(&\text{text}, \text{trace1}, \text{step3}, [a]). \\
\text{stateVariable}(&\text{findWhat}, \text{trace1}, \text{step3}, [a]).
\end{align*}
\]

for the execution trace 1 and

\[
\begin{align*}
\text{stateVariable}(&\text{text}, \text{trace2}, \text{step3}, [b]). \\
\text{stateVariable}(&\text{findWhat}, \text{trace2}, \text{step3}, [a]).
\end{align*}
\]

for execution trace 2.

Both the transition/5 and stateVariable/4 facts can be automatically generated from the execution traces of Table I.

B. Encoding of Patterns

The background knowledge also requires the patterns the Aleph system may use to disambiguate the FSM. The patterns currently under consideration are patterns of GUI behaviour, which are encoded through a set of predicates that capture the commonalities of the behaviour. In this example, the useful pattern is a TextSearch pattern. In this pattern, there is always a GUI object storing the string to be searched in another GUI object, an user action that actually triggers the search, and two possible results: found or notFound. In each instantiation of this pattern, the names of the GUI elements may vary, as well as what happens when the search is successful or not. The signature of these predicates is:

\[
\text{actionInfo}(\text{Action}, \text{TraceId}, \text{StepId}, \text{Result}).
\]

which indicates the Result of the Action on the execution trace TraceId, step StepId. The encoding of the instantiation of the TextSearch pattern for this example, (i.e., for the names of GUI objects and user action in this example) is as follows:

\[
\begin{align*}
\text{actionInfo}(&\text{find2}, \text{TraceId}, \text{StepId}, \text{found}) \leftarrow \\
&\text{stateVariable}(\text{text}, \text{TraceId}, \text{StepId}, \text{Text}) \land \\
&\text{stateVariable}(\text{findWhat}, \text{TraceId}, \text{StepId}, \text{FindWhat}) \land \\
&\text{member}(\text{FindWhat}, \text{Text}).
\end{align*}
\]

\[
\begin{align*}
\text{actionInfo}(&\text{find2}, \text{TraceId}, \text{StepId}, \text{notFound}) \leftarrow \\
&\text{stateVariable}(\text{text}, \text{TraceId}, \text{StepId}, \text{Text}) \land \\
&\text{stateVariable}(\text{findWhat}, \text{TraceId}, \text{StepId}, \text{FindWhat}) \land \\
&\text{not member}(\text{FindWhat}, \text{Text}).
\end{align*}
\]

Other examples of GUI patterns are Login, RangeValidation, and MandatoryField. Even though the predicates that describe these patterns must be encoded manually, they can be reused for other applications, by automatically instantiating them (i.e., the names of objects and actions involved) for each case.

C. Inferring Transition Rules and Guard Conditions

For this example, the Aleph system found five rules. Three of those rules encode the deterministic transitions between states before S3. The disambiguation of the transition departing from state S3 is encoded in the following two rules:

\[
\begin{align*}
\text{transition}(\text{Source}, \text{Action}, \text{Target}, \text{TraceId}, \text{StepId}) \leftarrow \\
&\text{stateName}(\text{Target}, s1) \land \\
&\text{actionInfo}(\text{Action}, \text{TraceId}, \text{StepId}, \text{found}).
\end{align*}
\]

when FindWhat was found in Text (transition from S3 to S1) and

\[
\begin{align*}
\text{transition}(\text{Source}, \text{Action}, \text{Target}, \text{TraceId}, \text{StepId}) \leftarrow \\
&\text{stateName}(\text{Source}, s3) \land \\
&\text{stateName}(\text{Target}, s4) \land \\
&\text{actionInfo}(\text{Action}, \text{TraceId}, \text{StepId}, \text{notFound}).
\end{align*}
\]

when FindWhat was not found in Text, transition from S3 to S4.

With all this information, it is possible to infer that it is necessary to add a condition to transitions S3-S1 (cond1) and S3-S4 (cond2):

\[
\begin{align*}
\text{cond1} &= \text{member}(\text{FindWhat}, \text{Text}) \\
\text{cond2} &= \text{not member}(\text{FindWhat}, \text{Text}).
\end{align*}
\]

Figure 4 summarises all the process described in this Section, depicting the dataflow of the learning process.

IV. Conclusions and Future Work

This paper proposed a new approach to extract a model of a GUI by an exploration process complemented with machine learning. The exploration process extracts data that is used as examples and background knowledge for ILP, which will solve ambiguous situations that cannot be solved solely by the exploration process. It is yet necessary to explore the encoding of more complex ambiguities on the Aleph system.
As future work, the whole process will be transformed into an iterative one, with the model being complemented at each iteration. In each iteration, the exploration would be guided by the already extracted information so that it could provide more information to the ILP and, consequently, more knowledge may be produced. This would result in a more complete and intelligent exploration.

ACKNOWLEDGMENTS

This work is financed by the ERDF - European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within the project FCOMP-01-0124-FEDER-020554 and the PhD scholarship SFRH/BD/81075/2011.

REFERENCES

