
Automated Pattern-Based Testing of Mobile
Applications

Inês Coimbra Morgado, Ana C. R. Paiva, and João Pascoal Faria
INESC-TEC

Department of Informatics Engineering, Faculty of Engineering, University of Porto,

rua Dr. Roberto Frias, 4200-465 Porto, Portugal

Abstract—This paper presents an approach for testing mobile
applications using reverse engineering and behavioural patterns.
The goal of this research work is to ease the testing of mobile
applications by automatically identifying and testing behaviour
that is common in this type of applications, i.e., behaviour
patterns. The approach includes a tool to automatically explore
an Android application. This tool also identifies patterns in the
behaviour of the application and apply tests previously associated
with those patterns. The final results of this research work will
be a catalogue of behavioural patterns and the tool which will
output a report on the matched patterns and another one on the
testing of those patterns.

Keywords—Reverse engineering; Testing; Android; Patterns

I. INTRODUCTION

Since the release of the iPhone in 2007 [1] and of the first
Android smart phone in 2008 [2], smart phones have started
to greatly increase their mobile sales. In fact, in 2013 both
Android’s Google Play and Apple’s App Store surpassed the
one million available applications and fifty billion downloads
threshold [3]. This market dimension makes it extremely
important to ensure the quality of an application as it generates
a high level of competitiveness and thus for one to get popular
it must be as flawless as possible. Furthermore, there has also
been an increase of business critical mobile applications, such
as mobile banking applications, which makes it even more
important to ensure its functional correctness.

Mobile applications have, as any other type of application,
their own quirks regarding testing, such as the high amount of
different events that need to be tested. An event in a mobile
application can be of two types: an user interface (UI) event,
i.e., an event provoked by an interaction of the user with the
application, such as tapping a widget; or a system event, i.e., an
event provoked by something external to the application, such
as the detection of a new available network, an incoming call
or message and the modification of the orientation of the phone
(from vertical to horizontal, for instance). Each of these events
may or may not have an impact on the application behaviour.
For instance, an incoming call changes the currently running
activity to the stopped state and tapping a widget may modify
the state of data of the currently running activity or even close
it to open a new one.

One of the main focus of mobile testing is user interface
(UI) testing, more precisely Graphical UI (GUI) testing, as
this is the source of interaction with the user and where most
errors occur. Two ways of automating testing are automating
the test case generation process or automating the test case

execution. One of the most popular techniques for automatic
test case generation, which is the focus of this work, is Model-
based Testing (MBT) [4], i.e., a model of the application’s
behaviour is necessary as input and the output is a test suite.
This technique has two main problems: the effort required
in building the model as it is usually not available and the
combinatorial explosion of test cases that are generated [5].
The first problem will be addressed using reverse engineering
techniques and the second by focusing on testing recurring
behaviour, i.e., behaviour patterns. A pattern is a recurring
solution for a recurring problem in a certain context. A
behavioural pattern reproduces a recurring behaviour situation,
for instance, login or master/detail. Examples of behavioural
patterns in Android applications are screen rotation or the
starting of a new activity.

Software reverse engineering was defined in 1990 by
Chikofsky and Cross [6] as “the process of analysing a subject
system to (1) identify the system’s components and interrela-
tionships and (2) to create representations of the system in
another form or at a higher level of abstraction”.

Even though nowadays reverse engineering is considered
helpful in several areas [7], such as testing, it initially surfaced
associated with software maintenance as it eases system com-
prehension. This was considered extremely important as over
50% of a systems development is occupied with maintenance
tasks [8], [9], [10] and over 50% of maintenance is dedicated
to comprehending the system [11], [12]. Reverse engineering
has also proved to be useful, for instance, in coping with the
Y2K problem, with the European currency conversion and
with the migration of information systems to the web and
towards the electronic commerce [13]. With the exploration
of reverse engineering techniques, its usefulness grew from
software maintenance to other fields, such as verification and
validation and security analysis.

As far as we know, none of the reverse engineering ap-
proaches applied on mobile applications tries to take advantage
of the existence of behavioral patterns on the application to
facilitate their task. Mobile applications present behavioural
patterns which can ease the modelling and, thus, the testing
task. As such, this approach explores a mobile application
in order to identify behaviour patterns and to test these
patterns. During the exploration, whenever an occurance of
a behavioural pattern is detected a pre-defined test strategy
will be applied to test it. Even though it is necessary to
manually specify a catalogue of behavioural patterns and the
corresponding test strategies, the catalogue is common to every
application and so this effort is only necessary once. This will

2014 9th International Conference on the Quality of Information and Communications Technology

978-1-4799-6133-7/14 $31.00 © 2014 IEEE

DOI 10.1109/QUATIC.2014.47

293

2014 9th International Conference on the Quality of Information and Communications Technology

978-1-4799-6133-7/14 $31.00 © 2014 IEEE

DOI 10.1109/QUATIC.2014.47

294

be one of the results of this work.

There have already been some studies that show that
patterns can be useful for testing mobile applications. In 2009,
Erik Nilsson [14] identified some recurring problems when
developing an Android application and the UI design patterns
that could help solve them. If these patterns have an associated
behaviour then it is possible to identify the pattern by the
automatic detection of the behaviour. In 2013, Sahami Shirazi
et al. studied the layout of Android applications trying, among
other goals, to verify if these layouts presented any patterns.
They concluded that 75.8% of unique combinations of ele-
ments appeared only once in the application. Nevertheless, this
study was conducted taking into consideration a static analysis
of the layout and its elements while different combination of
elements may represent the same behaviour and, thus, the same
pattern.

The remaining of this document is structured as follows.
Section II presents the state of the art on reverse engineer-
ing and patterns applied to mobile applications. Section III
presents the approach and research methodology. Section IV
presents the past work and preliminary results. Section V
presents the work to be developed along with the results that
are expected. Section VI presents the drawn conclusions.

II. STATE-OF-THE-ART

This Section presents a research on the state of the art
on mobile reverse engineering. In order to ease the analysis
of the approaches, an ontology based on the one presented by
Cornelissen et al. [15] was defined with the top-level concepts:

• goal: what is the main purpose of the approach? This
corresponds to activity from Cornelissen et al.;

• target: what is the target platform in which the ap-
proach works? This corresponds to target from Cor-
nelissen et al.;

• method: does it use a static, dynamic, or hybrid
method? Cornelissen et al. only consider dynamic
approaches so this aspect was not considered;

• technique: what are the techniques applied? This cor-
responds to method from Cornelissen et al.;

• extracted information: what type of information is ex-
tracted? This aspect did not appear in the Cornelissen
et al.’s ontology;

• output: how is the obtained information represented to
the user? This aspect did not appear in the Cornelissen
et al.’s ontology;

• validation: how is the proposed approach validated?
This corresponds to Evaluation from Cornelissen et
al..

Table I presents the result of the classification of the
approaches according to the ontology. Further details on the
definition of this ontology can be found in [16].

Goal

Joorabchi et al. [22] and Yang et al. [23] are the only
ones who claim their goal is to obtain a model of the

application’s user interface. Naturally other approaches also
have this purpose, like Amalfitano et al.’s [18], but Joorabchi
et al. and Yang et al. make no effort of trying to test the
application or to generate event sequences. Their main goal
is to obtain a finite state machine representing the behaviour
of the application. According to Yang et al. [23] the main
difference between their approach and Joorabchi et al.’s [22] is
that the latter has no means of identifying which GUI elements
are actionable and which events these elements support.

Target

Joorabchi et al. [22] are the only ones who target iOS
applications, while the remaining approaches target Android
applications.

Method

Table I shows a clear predominance of dynamic and hybrid
approaches, which is to be expected given the event-based
nature of mobile applications. In fact, only Batyuk et al. [20]
follow a static approach, trying to identify possible security
vulnerabilities, such as unwanted access of user data.

Technique

All the dynamic approaches apply instrumentation, even
if it is to the Android SDK framework [27], like Machiry et
al. [26], or to the virtual machine where the application is
being run, like Hu et al. [25]. Unlike their work in [28], in
which Amalfitano et al. targeted rich internet applications, in
[17] and [18] they apply instrumentation to the application
under analysis itself. Anand et al. [24] apply instrumentation
both to the application under analysis and to the Android SDK
framework. It is also verifiable that most approaches, specially
the most recent ones, opt for an hybrid approach in order to
benefit from both worlds. Amalfitano et al.’s work in 2011
[17] aimed at automatically generating test cases and detecting
crashes by crawling the application. In 2011 Amalfitano et al.
[17] used the instrumentation to obtain analysable logs in order
to detect the origin of a crash. In 2012 [18], with the same
idea in mind, they applied Memon’s GUI Ripper [29], [30]
to Android applications, which rips the application and then
analyses each part separately simulating user events. The main
difference in the results was their new capability of detecting
some bugs besides crashes. In 2013 [19] they decided to add
an analysis of the behaviour of the application in the presence
of system events. To do so they opted again to crawl the
application and replaced the Android Sensor framework with
an ad hoc version to ease the task of injecting this new type
of events.

Extracted Information

Both Anand et al. [24] and Jensen et al. [21] obtain event
sequences to test the application with a hybrid approach. How-
ever, Anand et al. aim at obtaining a set of event sequences
with the higher coverage percentage possible and Jensen et
al.’s idea is to find a feasible path that enables the testing of
a given code statement that has not yet been reached by other
testing techniques, i.e., Jensen et al.’s approach complements
other approaches which do not present 100% coverage.

Output

As most approaches focus on verifying and validating
applications it would be expected to find a tendency of the

294295

TABLE I. CLASSIFICATION OF THE MOBILE REVERSE ENGINEERING APPROACHES ACCORDING TO THE ONTOLOGY

Papers
Aspect Classification [17] [18] [19] [20] [21] [22] [23] [24] [25] [26]

Goal
V&V x x x x x x x x
Model Recovery x x

Target
Android x x x x x x x x x
iOS x

Method
Static x
Dynamic x x x x
Hybrid x x x x x

Technique

Crawling x x x x x
Ripping x
Instrumentation x x x x x x
Parsing x
Event Handling x x
Event Simulation x x x x x x x
Pattern Identification x x
Clustering x
Test Generation x x x x
Code Injection x
Code Replacement x x
Reflection x x
Comparison of Interface x x
Data Mining x
Concolic Execution x x

Extracted
Information

Crash Detection x x x
Bugs (not only crashes) x x x
Event Sequence x x
Runtime Behaviour x x
Inputs x
Malicious Functionalities x

Output

Test Suit x x x
Call Graph x x
Finite State Machine x x
Report x x x

Validation
Case Study x x x x x x x x x x
Comparison With Other
Approaches/Tools

x x x x x

Evaluation x x x x

type of output towards test suites. However, this does not
happen. In fact, there is no tendency towards any of the
types. Nevertheless, it is important to note the model recovery
approaches opt by modelling their applications with a finite
state machine.

Validation

All approaches do case studies with at least one application,
half of them compare their results with the ones from other
approaches [23], existing tools [18], [26], with data obtained
by manual analysis [25], [26] or even their own previous
work [19] and almost half the approaches do some kind of
evaluation, with coverage analysis begin the most popular.

There are only two mobile reverse engineering approaches
dealing with patterns: Amalfitano et al. [19] and Batyuk et
al. [20]. Amalfitano et al. define a set of event sequences
to test situations like an incoming call. The term pattern is
used because these event sequences can be applied to any
application. Batyuk et al. [20] apply pattern identification to
detect malicious intents of the application. However, none of
these approaches try to take advantage of the existence of
behavioural patterns in the application to facilitate their task,
which is one of the goals of the approach described in this
document. In fact, none of the software reverse engineering
approaches who aimed at pattern identification focus on be-
havioural patterns.

Moreover, only Amalfitano et al. [19] and Machiry et al.
[26] consider the effect of system events. However, Amalfitano
et al.’s goal is to generate a test suite and to detect crashes
and Machiry et al. attempt at recovering input data to enable
testing, while the approach in this document will output a
report on matched patterns and where they are found as well
as a testing report.

A. Conclusions

The approach here presented aims at using reverse engi-
neering to ease the behavioural patterns identification process
and to use these patterns to ease the automation of the testing
process. This will enable the testing of part of the application
without the effort of building a model and without the risk of
having a test case explosion as the test case generation will
only be focused on the patterns found during the exploration
and each pattern has a well-defined test strategy associated
with it.

III. RESEARCH OBJECTIVES AND METHODOLOGICAL

APPROACH

This Section presents the research objectives and the
methodological approach as well as the research hypothesis
and the how it will be validated.

295296

A. Research Objectives

The main research objectives of this work are to construct
a catalogue of behavioural patterns and to develop a tool that
automatically explores a mobile application and identifies and
tests behavioural patterns during the exploration.

B. Methodological Approach

The main steps of this approach consist in: 1) defining
a catalogue of mobile GUI patterns to identify and the corre-
sponding test strategy; 2) applying a hybrid reverse engineering
approach to automatically explore mobile applications; 3)
identifying patterns on the fly and applying the predefined test;
4) storing the information regarding all the explored behaviour;
5) producing a test report and a matched patterns report.

The reverse engineering process to be applied is based
on Yang et al.’s approach [23], i.e., static analysis will be
used to identify which event handlers are associated with each
widget in order to dynamically exercise them. A deep study on
which frameworks or tools are best is still being undertaken.
A possible static analysis tool is WALA [31], which is the
one used by Yang et al. [23] and extracts a call graph of the
application, and possible solutions for the dynamic exploration
and exercising of widgets are Robotium [32] and Monkey
Runner [33].

Finally, after each step of the exploration in which a
pattern (from the previously defined catalogue) is identified,
the corresponding test strategy is applied and a report is
produced. The testing phase consists in injecting the events
defined in the test strategy associated with the behavioural
pattern matched and in analysing the responses of the system,
comparing them with the ones defined in the test strategy.
Figure 1 depicts the approach.

Fig. 1. Block Diagram of the Architecture of the Approach

C. Research Hypothesis

Mobile applications have generic recurrent behaviour, inde-
pendent of their specific domain, that may be tested automati-
cally by combining reverse engineering with testing within an
iterative process.

D. Validation

The validation of the approach is divided in three main
aspects. Firstly, as the goal of the approach is to test the appli-
cation, some errors will be introduced in a set of applications
in order to verify if the approach detects them. Secondly, an
analysis of the percentage of the code explored and tested will
be undertaken. Finally, the results will be compared with the
ones from other approaches, such as the ones of Yang et al.
[23] and Amalfitano et al. [19]. This comparison will mainly
be on the reverse engineering results.

In order to do so, a case study will be conducted preferably
on applications also used to validate other mobile reverse engi-
neering approaches. Thus, the implementation of the approach
will focus Android smartphones applications.

IV. PAST WORK AND PRELIMINARY RESULTS

A. Catalogue of Behavioural Patterns

One of the most important aspects of this approach is
the definition of the patterns catalogue. Even though it is
always possible to improve the catalogue, at this moment
some behaviour patterns have already been identified. These
are some examples:

• screen rotation - when the screen is rotated, the
information on the screen should remain unaltered
even thoug its placement may change

• menu appearance - the information on the screen
should remain unaltered except for the new menu (the
menu itself also provides new exploration and test
paths);

• incoming call - when the call ends the application
should go back to the same state it was in upon the
incoming call;

• appearance of a keyboard - when pressing the keys,
the content of the selected text box should change
accordingly.

B. GUI Reverse Engineering for Visual and Formal Models

Previous work on reverse engineering has already been
conducted in Desktop applications. In [34], [35] an approach
for recovering part of a formal model of a Desktop application
was presented. This approach automatically explored the appli-
cation using the Microsoft Windows accessibility framework
UI automation [36] and following a depth-first exploration
algorithm. It was able to successfully extract GraphML models
on the navigation and on properties changes of the application,
as well as part of a formal Spec# model.

C. Patterns to disambiguate extracted models

Often the behaviour of applications is modelled as a finite
state machine (FSM), which may arise an ambiguity problem,
i.e., when from the same state, the same event leads to two
different states.

In [35], a machine learning technique called Inductive
Logic Programming [37], [38] was used in order to solve these
ambiguities. The main idea was to identify ambiguities in the

296297

model and match them to previously defined patterns which in-
dicate how to solve that same ambiguity and would modify the
model accordingly. In order to apply ILP, all states, transitions
and patterns were expressed in a declarative language, Prolog
[39]. Even though the Prolog code representing the states and
the transitions can be automatically derived from the model,
the patterns, alike every pattern identification approach, have
to be manually defined. Nevertheless, they are reusable. The
approach followed is summarised in Figure 2.

Fig. 2. UML Activity Diagram of the Architecture of the ILP approach to
disambiguate FSM models

This experiment shows a succesfull application of a pattern-
matching technique, which could be used in the work presented
in this document. However, due to scalability issues, other
options are being analysed.

V. FUTURE WORK AND EXPECTED RESULTS

It is possible to divide the future work in near future
and otherwise. For the near future, the most important steps
to take are: 1) explore and decide the best framework to
ease the application exploration and data collection; 2) select
applications which are known to have at least one of the
patterns; 3) manually explore the application in order to ease
the development of the tool and to test the identification of that
pattern; 4) apply the test pattern when the behaviour pattern
is found.

At this point, it is expected to have a tool that extracts
information along a manual exploration of an application. This
manual exploration is stopped when a pattern is found and the
test pattern is applied. The tool will produce a report whenever
the pattern is found stating the result of the test.

Once these steps are concluded, it is important to: 1) test
with other applications adding errors on the patterns to fully
test the approach; 2) develop the automatic exploration of the
application; 3) identify other patterns.

At the end of the development, the tool is expected to
automatically explore the application and to identify several
behaviour patterns. The case study to be conducted should

verify that the tool identifies the patterns, testing them and
producing the correct report.

VI. CONCLUSIONS

This document presents the current state of the art on
reverse engineering and, more specifically, on mobile reverse
engineering. Furthermore, it describes the approach to be
followed in this PhD work as well as the research methodol-
ogy associated with it. The approach described automatically
explores and tests a mobile application. The testing process
will be based on the identification of behavioural patterns
on its GUI. In order to achieve this, a reverse engineering
approach will be followed. The process will be based on an
automatic and dynamic exploration of the applications GUI.
However, in order to ease this exploration, a static analysis
will identify the widgets that can be exercised and how they
can be exercised, i.e., it identifies the widgets which have event
handlers associated. Furthermore, behavioural patterns are to
be identified in order to enable the testing of the corresponding
behaviour on the fly. In summary, the contributions of the
work will be: 1) a reverse engineering approach to identify
occurrences of behavioral patterns in mobile applications, 2)
an on-the-fly testing approach based on the application of test
patterns associated with behavioral patterns identified in the
mobile application. In this approach the effort is associated
with the assembly of the patterns catalogue, which is common
to every application, i.e., once defined it can simply be reused.
As such, it has a better cost-benefit ratio than MBT approaches
and it enables the detection of more (and different) errors than
monkey testing tools.

ACKNOWLEDGMENTS

This work is financed by the ERDF - European Regional
Development Fund through the COMPETE Programme (oper-
ational programme for competitiveness) and by National Funds
through the FCT - Fundação para a Ciência e a Tecnologia
(Portuguese Foundation for Science and Technology) within
the project FCOMP-01-0124-FEDER-020554 and the PhD
scholarship SFRH/BD/81075/2011.

REFERENCES

[1] CrunchBase, “iPhone,” Jan. 2014. [Online]. Available:
http://www.crunchbase.com/product/iphone

[2] M. Wilson, “T-Mobile G1: Full Details of the HTC Dream Android
Phone,” Jan. 2014. [Online]. Available: http://goo.gl/6vqI4E

[3] N. Ingraham, “Apple announces 1 million apps in the App Store, more
than 1 billion songs played on iTunes radio,” Dec. 2013. [Online].
Available: http://goo.gl/z3RprB

[4] M. Utting and B. Legeard, Practical Model-Based Testing:
A Tools Approach. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., Nov. 2006. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1200168

[5] A. C. R. Paiva and R. M. Vidal, “Automated specification-based
testing of graphical user interfaces,” Ph.D. dissertation, Faculdade
de Engenharia da Universidade do Porto, 2006. [Online]. Available:
http://sigarra.up.pt/feup/pt/publs pesquisa.FormView?P ID=23628

[6] E. Chikofsky and J. Cross, “Reverse Engineering and Design Recovery:
a Taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13–17, 1990. [Online].
Available: http://dx.doi.org/10.1109/52.43044

[7] G. Canfora and M. Di Penta, “New Frontiers of Reverse Engineering,”
in Future of Software Engineering, Minneapolis, 2007, pp. 326 – 341.

297298

[8] B. P. Lientz, E. B. Swanson, and G. E. Tompkins, “Characteristics
of application software maintenance,” Communications of the ACM,
vol. 21, no. 6, pp. 466–471, Jun. 1978. [Online]. Available:
http://dl.acm.org/citation.cfm?id=359511.359522

[9] I. Sommerville, Software Engineering, 5th ed. Addison-Wesley, 1995.

[10] L. Erlikh, “Leveraging legacy system dollars for e-business,” IT
Professional, vol. 2, no. 3, pp. 17–23, 2000. [Online]. Available:
http://dl.acm.org/citation.cfm?id=612986.613032

[11] T. A. Standish, “An Essay on Software Reuse,”
IEEE Transactions on Software Engineering, vol. SE-
10, no. 5, pp. 494–497, Sep. 1984. [Online]. Available:
http://ieeexplore.ieee.org/xpl/freeabs all.jsp?arnumber=5010272

[12] T. A. Corbi, “Program understanding: Challenge for the 1990s,” IBM
Systems Journal, vol. 28, no. 2, pp. 294–306, Jun. 1989. [Online].
Available: http://dl.acm.org/citation.cfm?id=97118.97124

[13] H. A. Muller, J. H. Jahnke, D. B. Smith, and M.-A. Storey,
“Reverse engineering: a roadmap,” in Proceedings of the conference
on The future of Software engineering - ICSE ’00. New York, New
York, USA: ACM Press, May 2000, pp. 47–60. [Online]. Available:
http://dl.acm.org/citation.cfm?id=336512.336526

[14] E. G. Nilsson, “Design patterns for user interface for mobile
applications,” Advances in Engineering Software, vol. 40,
no. 12, pp. 1318–1328, Dec. 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0965997809000428

[15] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke, “A Systematic Survey of Program Comprehension through
Dynamic Analysis,” IEEE Transactions on Software Engineering,
vol. 35, no. 5, pp. 684–702, Sep. 2009. [Online]. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4815280

[16] I. Coimbra Morgado, “Automated Pattern-Based Testing of
Mobile Applications [Thesis Proposal],” Faculdade Engenharia
Universidade Porto, Tech. Rep. April, 2014. [Online]. Available:
http://paginas.fe.up.pt/%7epro11016/files/PhDThesisProposal.pdf

[17] D. Amalfitano, A. Fasolino, and P. Tramontana, “A GUI
Crawling-Based Technique for Android Mobile Application
Testing,” in Software Testing, Verification and Validation
Workshops (ICSTW), 2011 IEEE Fourth International Con-
ference on. IEEE, 2011, pp. 252–261. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5954416

[18] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, “Using GUI ripping for automated testing of Android
applications,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2012). New
York, New York, USA: ACM Press, Sep. 2012, p. 258. [Online].
Available: http://dl.acm.org/citation.cfm?id=2351676.2351717

[19] D. Amalfitano, A. R. Fasolino, P. Tramontana, and N. Amatucci,
“Considering Context Events in Event-Based Testing of
Mobile Applications,” in 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation
Workshops. IEEE, Mar. 2013, pp. 126–133. [Online]. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6571621

[20] L. Batyuk, M. Herpich, S. A. Camtepe, K. Raddatz, A.-D. Schmidt,
and S. Albayrak, “Using static analysis for automatic assessment
and mitigation of unwanted and malicious activities within Android
applications,” in 2011 6th International Conference on Malicious and
Unwanted Software. IEEE, Oct. 2011, pp. 66–72. [Online]. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6112328

[21] C. S. Jensen, M. R. Prasad, and A. Mø ller, “Automated testing
with targeted event sequence generation,” in Proceedings of the 2013
International Symposium on Software Testing and Analysis - ISSTA
2013. New York, New York, USA: ACM Press, Jul. 2013, p. 67.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2483760.2483777

[22] M. E. Joorabchi and A. Mesbah, “Reverse Engineering iOS
Mobile Applications,” in 2012 19th Working Conference on Reverse
Engineering. IEEE, Oct. 2012, pp. 177–186. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6385113

[23] W. Yang, M. R. Prasad, and T. Xie, “A Grey-Box Approach
for Automated GUI-Model Generation of Mobile Applications,”
in 16th International Conference on Fundamental Approaches to
Software Engineering (FASE’13), Rome, Italy, 2013, pp. 250–

265. [Online]. Available: http://link.springer.com/chapter/10.1007/978-
3-642-37057-1 19

[24] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering
- FSE ’12. New York, New York, USA: ACM Press, Nov. 2012, p. 1.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2393596.2393666

[25] C. Hu and I. Neamtiu, “Automated GUI Testing on the
Android Platform,” in The 22nd International Conference on
Testing Software and Systems (ICTSS ’10). Natal, Brazil:
ACM Press, May 2010, pp. 67–72. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1982595.1982612

[26] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: an input generation
system for Android apps,” in Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering - ESEC/FSE 2013.
New York, New York, USA: ACM Press, Aug. 2013, p. 224. [Online].
Available: http://dl.acm.org/citation.cfm?id=2491411.2491450

[27] G. Android, “Get the Android SDK,” 2014. [Online]. Available:
http://developer.android.com/sdk/index.html

[28] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “Reverse
Engineering Finite State Machines from Rich Internet Applications,”
in The 15th Working Conference on Reverse Engineering
(WCRE ’08). IEEE, Oct. 2008, pp. 69–73. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4656395

[29] A. M. Memon, I. Banerjee, and A. Nagarajan, “GUI
Ripping: Reverse Engineering of Graphical User Interfaces
for Testing,” in The 10th Working Conference on Re-
verse Engineering (WCRE ’03), 2003. [Online]. Available:
http://www.cs.umd.edu/ atif/papers/MemonWCRE2003.pdf

[30] D. R. Hackner and A. M. Memon, “Test case generator for
GUITAR,” in Companion of the 13th international conference on
Software engineering (ICSE Companion ’08), ser. ICSE Companion
’08. New York, New York, USA: ACM Press, 2008, p. 959.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1370175.1370207
http://doi.acm.org/10.1145/1370175.1370207

[31] T. J. Watsoon, “Wala,” Jan. 2014. [Online]. Available:
http://wala.sourceforge.net/wiki/index.php/Main Page

[32] Google, “robotium,” Jan. 2014. [Online]. Available:
https://code.google.com/p/robotium/

[33] G. Android, “Monkey Runner,” Jan. 2014. [Online]. Available:
http://developer.android.com/tools/help/monkeyrunner concepts.html

[34] I. Coimbra Morgado, A. C. R. Paiva, and J. a. Pascoal Faria, “Reverse
Engineering of Graphical User Interfaces,” in The Sixth International
Conference on Software Engineering Advances (ICSEA ’11), no. c,
Barcelona, 2011, pp. 293–298.

[35] I. Coimbra Morgado, A. C. R. Paiva, J. Pascoal Faria, and R. Camacho,
“GUI Reverse Engineering with Machine Learning,” in Workshop
on Realizing Artificial Intelligence Synergies in Software Engineering
(RAISE’12), Zurich, Switzerland, 2012, pp. 27–31.

[36] R. Haverty, “New accessibility model for Microsoft Win-
dows and cross platform development,” SIGACCESS Access.
Comput., no. 82, pp. 11–17, 2005. [Online]. Available:
http://doi.acm.org/10.1145/1077238.1077240

[37] S. Muggleton, “Inductive logic programming,” in Proceedings of the
1st Conference on Algorithmic Learning Theory, 1990, pp. 43–62.

[38] S. H. Muggleton and L. D. Raedt, “Inductive Logic Programming:
Theory and Methods,” Journal of Logic Programming, vol. 19,20, pp.
629–679, 1994.

[39] W. F. Clocksin and C. S. Mellish, Programming in Prolog, 4th ed.
Berlin, Germany: Springer-Verlag New York Berlin Heidelberg, 2003.

298299

