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Abstract

This paper presents an open-source object-oriented MATLAB toolkit for control system design and system simulation.
The objective of the toolkit is to reduce the time required for the design and validation of a control architecture while at the
same time increasing the reliability, modularity, and reusability of each of its components and fostering collaborative design
and sharing of the developed components. To reduce the development time, a set of ready-to-use functions that are commonly
required by control design processes is provided, such as automatic generation of Extended Kalman Filters, discretization, and
many others. Moreover, we define a set of common interfaces to integrate the different standard components. The toolkit is
introduced by means of a practical example, starting from the modeling of a planar Unmanned Aerial Vehicle, implementation
of a two state-feedback controllers (one simple but nonlinear and another more complex using a Model Predictive Control
approach), automatic generation of a state estimator, simulation, and remote network control over a Local Area Network.

I. INTRODUCTION

A common process for the design of model-based control algorithms can be summarized in the following design phases:
first, a dynamic model of the system is designed that explains the evolution of the state and output of the system starting
from an initial condition and subject to an input signal. In standard model-based control design, such model is then used
to design a control input that steers the state, or output, of the system to the desired configuration. Often the controller
requires information about the state of the system, but only output measurements are available. In this case, a state observer
is designed to estimate the state of the system from the input and output signals. At this point, to assess the performance
of the overall architecture via simulation, the closed-loop system is simulated with a more realistic model, e.g., including
state and output disturbances, and with the state observer in order. If the control specifications are met, the controller is
implemented on the real system, otherwise, the different components are re-designed and the overall process is repeated.

A correct implementation of such a process requires a wide set of expertise in many fields, but often, we wish to contribute
to a specific aspect of the overall architecture and rely on experts for the other details. For instance, if we are interested
in testing a novel control algorithm, we would like to relay on pre-existing accurate models, advanced state observers, and
testing routines.

Although, implementing each component using works from the technical literature is often prohibitive in terms of time
and know-how required for implementing algorithms relying on a strong technical background in specific fields. In this
aspect, of great help are the occasional research groups producing toolboxes or making code publicly available online. Some
notable contributions in the field of control are YALMIP [10] with the implementation of unified framework for optimization
and optimization-based control/estimation design with interfaces to numerous software, ACADO [9] for optimization-based
control/estimation design including control strategies for real-time control implementation, FORCES [6] with custom code
generation for deployment of optimization-based controllers on various embedded platforms, MPT [8] with focus on for
parametric optimization and computational geometry. Although, these tools are often specialized in the design of specific
components of a control architecture and the simulation more complex control structure is still a challenge, e.g., multiple
systems with state controllers, observers, measurement systems, etc.. On the other hand, advanced frameworks, e.g., [5] able
to support experimental operations on multi-agent systems, are available. Although necessary for experimental validation,
these frameworks often rely on low-level programming languages and complex architectures that can be unnecessarily
difficult if one is interested in the design and analysis of a control strategy.

Motivated by these observations, the proposed toolkit provides a MATLAB framework for control system design and
simulation. It consists of a set of object classes, defining common interfaces to connect standard components in the control
architecture (such as of dynamical models, controllers, observers, etc.), as well as a set of ready-to-use implementations of
such classes, including discretization methods, auto-generation of Extended Kalman Filters, and many other components.

In the proposed platform, fully exploiting the property of object-oriented design, it is possible to obtain a software
architecture that is modular, easy-to-reuse and maintain, therefore fostering collaborative design of control algorithms, with
multiple operators developing independent and easy-to-connect objects, that eventually results in software that is easy to
extend and share.
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VirtualArena toolkit is available at the Github page [1].
The remainder of the paper is structured as follows: Section II presents an illustrative example starting from the model

definition of an Unmanned Aerial Vehicle (UAV) to the design of a state-feedback controller, a state observer, simulation of
closed-loop with the system subject to noise, and implementation on a remote system using a MATLAB-in-the-loop network
control strategy. Section III illustrates the key benefit and main features of the VirtualArena toolkit, followed by Section IV
with some conclusion and pointing out future developments.

II. CONTROL SYSTEM DESIGN AND SIMULATION IN VIRTUALARENA

This section introduces VirtualArena toolkit by illustrating all the steps for the implementation a common control
architecture.

A. Model and state feedback controller definition

Let I be an inertial coordinate frame and B be a body coordinate frame attached to an UAV. The pair (p(t), R(t)) ∈ SE(2)1

denote the configuration of the vehicle, position and orientation, where R(t) is the rotation matrix from body to inertial
coordinates. Now, let (v(t),Ω(ω(t))) ∈ SE(2) be the twist that defines the velocity of the vehicle, linear and angular, where

the matrix Ω(ω(t)) is the skew-symmetric matrix associated to the angular velocity ω(t) ∈ R, defined as Ω(ω) :=

(
0 −ω
ω 0

)
.

The kinematic model of the body frame satisfies

ṗ(t) = R(t)v(t), Ṙ(t) = R(t)Ω(ω(t)). (1a)

The underactuation of the UAV is captured by choosing the control input

u(t) :=
(
v1(t) ω(t)

)′
, (1b)

with v(t) =
(
v1(t) 0

)′ ∈ R2, that only consists of forward and angular velocity. The planar model (1) captures the
under-actuated nature of a wide range of vehicles and is often used for the control of a set of UAV moving in at 2-D plane,
i.e., relying on an on-board inner controller for altitude stabilization.

Consider the control point that we wish to control

c(t) := p(t) +R(t)ε (2)

that is a constant point in the body frame placed at a constant distance ε = (ε1, ε2)′ ∈ R2 from the center of rotation of the
body frame B. For a desired trajectory cd : R → R2 for the control point (2), it is possible to show (see [3], [2]) that the
control law

u(t) = ∆−1(R′ċd −Ke) (3)
e(t) = R′(c(t)− cd(t)) (4)

with ∆ =

(
1, −ε2
0, ε1

)
for any ε1 6= 0 stabilizes the origin of the tracking error space e = 0. The following code is used to

simulated the closed-loop (1) with (3) with associated plots displayed in Fig. 1.

1 dt = 0.05;
2
3 %% Unicycle Model
4 sys = ICtSystem(...
5 ’StateEquation’, @(t,x,u,varargin) [
6 u(1)*cos(x(3));
7 u(1)*sin(x(3));
8 u(2)],...
9 ’nx’,3,’nu’,2 ...
10 );
11
12 sys.initialCondition = {[15;15;-pi/2],-[15;15;-pi/2],[15;-15;pi],[-15;15;-pi/2]};
13
14 sys.controller = TrackingController_ECC13(...
15 @(t) 10*[sin(0.1*t); cos(0.1*t)],...% c
16 @(t) [cos(0.1*t);-sin(0.1*t)],...% cDot
17 eye(2) ,...% K
18 [1;0] ); % epsilon
19
20 va = VirtualArena(sys,...
21 ’StoppingCriteria’ , @(t,sysList)t>70,...

1For a given n ∈ N, SE(n) denotes the Cartesian product of Rn with the group SO(n) of n× n rotation matrices and se(n) denotes the Cartesian
product of Rn with the space so(n) of n× n skew-symmetric matrices.



22 ’DiscretizationStep’, dt,...
23 ’PlottingStep’ , 1, ...
24 ’StepPlotFunction’ , @ex01StepPlotFunction);
25
26 log = va.run();

It is worth noticing that the simulation is automatically executed multiple times, one for each initial condition of the system
specified in Line 12. This is generally a desirable feature to test via simulation the behavior of the controller in different
scenarios. The letter I in the name ICtSystem in Line 4, and in many other default classes in VirtualArena, stands for
“inline”, i.e., that can be defined inline without the need of creating a separate file. This is in contrast, for instance, to the
controller TrackingController_ECC13. In fact, due to its complexity, the latter is not declared using the class IController,
available in VirtualArena, but it is defined in the separate file TrackingController_ECC13.m reported next.

1 classdef TrackingController_ECC13 < Controller
2
3 properties
4 epsilon,cdes,cdesDot,K,PinvE
5 end
6
7 methods
8 function obj = TrackingController_ECC13(cdes,cdesDot,K,epsilon)
9
10 obj = obj@Controller();
11
12 obj.cdes = cdes;
13 obj.cdesDot = cdesDot;
14 obj.K = K;
15 obj.epsilon = epsilon;
16
17 E = [[1;0],[-epsilon(2);epsilon(1)]];
18
19 if not(rank(E)==size(E,1))
20 error(’System not controllable, try a different epsilon’);
21 end
22
23 obj.PinvE = inv(E);
24 end
25
26 function u = computeInput(obj,t,x)
27 R = [cos(x(3)),-sin(x(3));
28 sin(x(3)),cos(x(3))];
29 e = obj.computeError(t,x);
30 u = -obj.PinvE*(obj.K*e-R’*obj.cdesDot(t));
31 end
32
33 function e = computeError(obj,t,x)
34 p = x(1:2);
35 R = [cos(x(3)),-sin(x(3));
36 sin(x(3)),cos(x(3))];
37 e = R’*(p-obj.cdes(t))+obj.epsilon;
38 end end end

The StepPlotFunction is defined in the separate file ex01StepPlotFunction.m.

1 function h = ex01StepPlotFunction(sysList,log,plot_handles,k)
2 logX = log{1}.stateTrajectory(:,1:k);hold on;
3 h = plot(logX(1,:),logX(2,:));grid on;
4 end

By default, VirtualArena logs time, state trajectories, input trajectories, and whenever applicable, the trajectories associated
with the internal state of the controller and state observer. Each log is associated with an object subclass of Log, e.g., by
default VirtualArena loads the loggers, TimeLog(), StateLog(), InputLog(),ControllerStateLog(), and ObserverStateLog

(), all subclass of Log. Custom logs can be defined for specific applications, e.g., to log tracking error, Lyapunov function
value, etc.

B. Output feedback and EKF design

The previous example considers the state feedback case. This section assumes that the state of the vehicle is observed with
the observation model y(t) = p(t), i.e., that captures, for instance, the case where only the position, and not the heading, is
available for control design. An Extended Kalman Filter (EKF, see, e.g., [4]) is designed on the vehicle model to estimate
the state of the system, and then the same state feedback controller of the previous section is adopted for the motion control.



Fig. 1. Plot of simulation in Section II-A. Closed-loop state trajectories for the system simulated from four different initial conditions.

One way to define an output of the system in VirtualArena is to add the OutputEquation in the inline definition of the
system as follows.

1 ...
2 sys = ICtSystem(...
3 ...
4 ’OutputEquation’,@(t,x,varargin)x(1:2),...
5 ’ny’,2,...
6 ...
7 );
8 ...

The automatic generation of the EKF with initial covariance matrix P0 = 10I3×3, state noise covariance matrix Q =
diag(([0.1, 0.1, π/4])/3)2, and output noise covariance matrix R = diag(([0.1, 0.1])/3)2, where D = diag(v) denotes a
diagonal matrix D with Dij = vi and In×n represents the identity matrix of size n, is obtained as follows.

1 ...
2 % System with state and input noise covariance matrices
3 Q = diag(([0.1,0.1,pi/4])/3)ˆ2;
4 R = diag(([0.1,0.1])/3)ˆ2;
5
6 % Model with additive noise
7 realSystem = ICtSystem(...
8 ’StateEquation’,@(t,x,u,varargin) sys.f(t,x,u,varargin{:})+chol(Q)*randn(3,1),...
9 ’OutputEquation’, @(t,x,varargin) sys.h(t,x,varargin{:})+chol(R)*randn(2,1),...
10 ’ny’, 2,’nx’,3,’nu’,2);
11
12 % Initial conditions for the system ...
13 realSystem.initialCondition = repmat({[15;15;-pi/2],-[15;15;-pi/2], [15;-15;-pi],[-15;15;-pi

/2]},1,10);
14
15 % ... and associated initial conditions for the observer
16 for ii = 1:length(realSystem.initialCondition)
17 x0Filter{ii} = [
18 realSystem.initialCondition{ii} +5*randn(3,1); %xHat(0)
19 10*reshape(eye(3),9,1) ]; %P(0)
20 end
21
22 realSystem.stateObserver = EkfFilter(...
23 DiscretizedSystem(sys,dt),...
24 ’StateNoiseMatrix’ , dt*Q,...
25 ’OutputNoiseMatrix’, R,...
26 ’InitialCondition’ , x0Filter);



Fig. 2. Plot of simulation in Section II-B.Closed-loop state trajectories for the system with disturbance simulated from forty different initial conditions.
Each simulation is associated with a different realization of the noise signal. The continuous line denotes the state of the system and the dashed line its
estimate.

27
28 ...
29
30 realSystem.controller = TrackingController_ECC13(... % <<< attached to the realSystem
31 ...
32 va = VirtualArena(realSystem,... % <<< simulate realSystem

Since the Extended Kalman Filter is defined for discrete-time system, in Line 23 DiscretizedSystem(sys,dt) is used to
discretized the system using Runge-Kutta 4, which is the default discretization method. Different, and possibly custom,
discretization methods can be specified, e.g., DiscretizedSystem(sys,dt,EulerForward()). The object EkfFilter auto-
matically computes the linearization of the system that will be evaluated by VirtuaArena around the closed-loop state and
input trajectory. The processes of system discretization, linearization, and observer design for nonlinear systems are often
involving and time-consuming steps toward the validation of control law. In this example, VirtualArena aims to minimize
the associated effort to directly target the analysis of the control law.

In order to observe the effect of the noise the system is initialized utilizing the same set of initial conditions from the
previous example repeated ten times with added noise, leading to a total of forty simulations.

C. Model Predictive Control implementation

Building on the previous examples, the controller TrackingController_ECC13 is replaced with an Model Predictive Control
(MPC) control law designed to drive the error vector (4) to the origin. Specifically, we consider the MPC tracking controller
from [3] where the terminal cost and terminal set is re-designed as in [2] to obtain global convergence. The following
definition of open-loop MPC problem is considered in the definition of the MPC controller.

Definition 1 (Open-Loop MPC Problem): Given a pair (k, z) ∈ R≥k0 × X (k) and an integer horizon length N > 1,
the open-loop MPC optimization problem P(k, z) consists of finding the optimal control sequence ū∗ := {u∗(k), u∗(k +
1), . . . , u∗(k +N − 1)} that solves

J∗N (k, z) = min
ū
JN (k, z, ū)

s.t. x̄(i+ 1) = f(i, x̄(i), ū(i), 0), i ∈ Zk:k+N−1

(x̄(i), ū(i)) ∈ X (i)× U(i), i ∈ Zk:k+N−1

x̄(k) = z,

x̄(k +N) ∈ Xaux(k +N)



with, ū = {ū(k), ū(k + 1), . . . , ū(k +N − 1)} and

JN (k, z, ū) :=

k+N−1∑
i=k

l(i, x̄(i), ū(i))

+m(k +N, x̄(k +N)), (5a)

where the finite horizon cost JN (·), which corresponds to the performance index of the MPC controller, is composed of the
stage cost l : Z≥k0

× Rn × Rm → R and the terminal cost m : Z≥k0
× Rn → R, where the last is defined over

the time-varying terminal set Xaux : Z≥k0
⇒ Rn. �

In order to make explicit the dependence of the optimal solution to the parameters of the MPC open-loop optimization
problem, the term ū∗(i; k̂, x̂) denotes the i-th input of the optimal input sequence ū∗ computed by solving P(k̂, x̂).

A standard MPC controller is obtained by solving at every time step k ≥ k0 the open-loop MPC problem and applying
the first input of the optimal input trajectory to the system as follows

u(k) = kMPC(k, x(k)) := ū∗(k; k, x(k)). (6)

Following [2], choosing the performance index with

l(k, x, u) = ‖e(t)‖2, m(k, x, u) = 0.3333‖e(t)‖3, (7)

the input constraint set

U(t) =

{
u :
−1.1 ≤ v1 ≤ 1.1
−1.1 ≤ ω ≤ 1.1

}
and the state constraint sets X (t) = Xaux(t) = R3 satisfies the sufficient conditions for global convergence of the error
vector to the origin. In VirtualArena, this MPC controller can be defined as follows:

1 ...
2 auxiliaryControlLaw=TrackingController_ECC13( ... )
3
4 e=@(t,x)auxiliaryControlLaw.computeError(t,x);
5
6 mpcOp = ICtMpcOp( ...
7 ’System’ , sys,...
8 ’HorizonLength’ , 2*dt,...
9 ’StageConstraints’ , BoxSet( -[1.1;1.1],4:5,[1.1;1.1],4:5,5),... % on the variable z=[x;u];
10 ’StageCost’ , @(t,x,u,varargin) e(t,x)’* e(t,x),...
11 ’TerminalCost’ , @(t,x,varargin) 0.3333*(e(t,x)’* e(t,x))ˆ(3/2)...
12 );
13
14 dtMpcOp = DiscretizedMpcOp(mpcOp,dt);
15
16 dtRealSystem=DiscretizedSystem(realSystem,dt);
17
18 dtRealSystem.controller = MpcController(...
19 ’MpcOp’ , dtMpcOp ,...
20 ’MpcOpSolver’ , FminconMpcOpSolver(...
21 ’MpcOp’, dtMpcOp,...
22 ’UseSymbolicEvaluation’,1...
23 ) ...
24 );
25 ...
26
27 va = VirtualArena(dtRealSystem,... % <<< Discrete time simulation
28 ’StoppingCriteria’ , @(t,sysList)t>70/dt,...
29 ’PlottingStep’ , 1/dt, ...
30 ’StepPlotFunction’ , @ex02StepPlotFunction ...
31 );

The MpcOpSolver utilizes in this simulation is the FminconMpcOpSolver that is designed, building on the fmincon function
of MATLAB, to solve discrete time MPC optimization problems. Because of this, in Line 14 the MPC optimization problem
is discretized before being assigned as parameter to the MpcController in charge of implementing the receding horizon
strategy (6).

It is worth noticing that the implementation of MPC scheme is generally a complex task that motivated a wide set of
tools from the technical literature. In this example, VirtualArena is used to design in few lines of code an MPC controller
for a constrained nonlinear system. Whereas in this implementation considers the FminconMpcOpSolver object to solve the
MPC problem, VirtualArena defines the general interface MpcOpSolver that can be used to interface existing MPC solver
from the literature, such as ACADO [9] and FORCES [6], or to custom ones.



Fig. 3. Plot of simulation in Section II-C. Closed-loop state trajectories for the system with disturbance simulated from four different initial conditions,
ten times each. Each simulation is associated with a different realization of the noise signal. The continuous line denotes the state of the system and the
dashed line its estimate.

D. Controlling remote system via UDP over LAN network

In the previous sections, we were able with a small effort to start from a model of a UAV, generate an Extended Kalman
Filter able to estimate the full state of the vehicle only using position measurements, and design and simulate an MPC
controller to steer the position of the control point to a desired trajectory. In this section, we use the same code developed
in the previous section to control a remote system over an Internet connection.

A basic network control strategy (NCS) consists of reading the measurements received from a remote sensor on board
of the vehicle, computing the control input, sending the control input to a remote actuator, and iterating the process. Since
VirtualArena captures the dynamics of the vehicle in a dedicated object, in order to implement a MATLAB-in-the-loop
NCS strategy it is enough to replace the realSystemin the previous example with an object that, instead of simulating the
dynamical model of the system, communicate with the real one.

This is done in the system ex04RemoteUnicycle.m available at the GitHub page of the toolbox that measures the position
of the remote vehicle once every 0.2 sec with the 80% probability of measurement loss. Thus, it is enough to attach the
previously designed controllers and observer to the ex04RemoteUnicycle as follows.

1 realSystem = ex04RemoteUnicycle(...
2 ’RemoteIp’,’127.0.0.1’,’RemotePort’,20001,...
3 ’LocalIp’ ,’127.0.0.1’,’LocalPort’,20002);
4
5 realSystem.stateObserver = EkfFilter(DtSystem(sys,dt),...
6 ...
7 realSystem.controller = MpcController(...

At this point, before running the file ex04runme_UnicycleWithEKFandMPCRealSystem.m we can run the python script
ex04RealSystem.py that emulates the real system.

Fig. 4 shows the associated closed-loop trajectory. Notice that, in contrast to the previous examples, the real state of the
vehicle is not displayed, since not available, and only the measurements the state estimate is shown.

This section only presents an illustrative example of a basic NCS. Although, for the control of a real system with fast
dynamics, delays, and dropouts in the communication link, it is opportune to design robust NCS schemes.

Model Predictive Control, with its ability to generate future state and input prediction, is particularly suitable for this
kind of applications. In fact, instead of sending only the input associated with the current time, it is possible to send the
whole state and input predicted trajectory to a “smart” actuator that will apply open-loop the input trajectory to the system
(or track the associated state trajectory) till a new state-input trajectory pair is received. We refer the reader to, e.g., [7] for
more insight on the topic.
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Fig. 4. Plot of simulation in Section II-D. The dashed line denote the state trajectory estimate and the circles denote the measurements received from the
remote system.

E. Distributed control: a consensus algorithm

In this section, we deviate from the previous example of vehicle control to illustrate the design of a distributed controller
where, in contrast to what discussed above, the control input is computed as a function of the local state and of the state of
the neighbouring systems according to a pre-defined network topology.

Consider a set of N > 0 single integrator systems

ẋ(t) = u(t), x(t0) = x0, i = 1, . . . , N. (8)

where x(t) ∈ R and u(t) ∈ R are the state and the input vectors at time t ≥ t0, respectively, and x0 is the initial state vector
x(t0) evaluated at the initial time t0 ∈ R of the generic agent i. The agents communicate among each others according to
a communication graph G := (V, E), where the vertex set V collects all the indexes of the agents, that is, V = 1, . . . , N ,
and the edge set E ⊆ V × V is such that (i, j) ∈ E if and only if the system i can access γ[j](t). Therefore, agent i can
access from their neighborhoods j ∈ N := {j : (i, j) ∈ E} at time t the coordination vectors xN (t) := {x[j](t) : j ∈ N}.
Moreover, let A := [aij ] be the adjacency matrix of the communication graph G, such that aij = 1 for all j ∈ N and
aij = 0 otherwise. Applying the consensus control law

u(t) =
∑
j∈N

(x[j](t)− x(t)) (9)

it is possible to show that the state of all the system will converge to a common value, i.e., to consensus [11].

1 N = 5;
2
3 for i = 1:N
4
5 v{i} = ICtSystem(’StateEquation’,@(t,x,u,varargin)u,’nx’,1,’nu’,1);
6 v{i}.controller = ex05BasicConsensusController();
7 v{i}.initialCondition = i;
8
9 end
10
11 %% Network
12 % Adjacency matrix - loop
13 A = zeros(N);
14 A(1,4) = 1;
15 A(2:N,1:N-1) = eye(N-1);
16
17 s1 = IAgentSensor(@(t,agentId,agent,sensedAgentIds,sensedAgents)sensedAgent.x);



18
19 Ah = @(t) A;
20
21 %% VirtualArena
22 a = VirtualArena(v,...
23 ’StoppingCriteria’ , @(t,as)t>10,...
24 ’SensorsNetwork’ , {s1,Ah},...
25 ’DiscretizationStep’, 0.1,...
26 ’PlottingStep’ , 1);
27
28 ret = a.run();

Specifically, this class specifies the measurements that the agent, with associated agentId, obtains from the neighbouring
agents sensedAgents, with the associated sensedAgentIds, obtained by VirtualArena from the, possibly time varying,
adjacency matrix A. In the specific example of ex5StateSensor, each agent reads the state of the detectableAgentsList.
Using this network measurement model, the controller (9) is implemented as follows.

1 classdef ex05BasicConsensusController < Controller
2 methods
3 function u = computeInput(obj,t,x,readings)
4 nNeigh = length(readings{1});
5 u = 0;
6 for i =1:nNeigh
7 u = u+(readings{1}{i} - x)/nNeigh;
8 end
9 end
10 end
11 end

In general, is possible to specify multiple network sensors. In the latter case, readings{i}{j} refers to the j-th measurament
provided by the i-th sensor.

III. KEY BENEFITS AND MAIN FEATURES

From the previous examples, it is possible to identify the main features and benefits of the proposed platform.

A. Modularity, reusability, and maintenance

VirtualArena promotes the development of a modular structure, where each component (e.g., a controller, a dynamical
model...) is self-contained and satisfies pre-defined interfaces. Therefore, it is easy to switch among different components of
the same kind, e.g., as illustrated in Section II-C, it is easy to switch among controllers. To give an example, each (state-less)
controller in VirtualArena is defined as a subclass of the class Controller with abstract method u = computeInput(t,x). In
this case, each controller needs to implement the abstract method u = computeInput(t,x) which will be used by VirtualArena
in the simulation phase, independently from the specific controller in hand. As a consequence, once an object is developed,
the knowledge of its implementation is not necessary for its use. This abstraction allows to reuse/share components and
easily maintain the architecture by simply replacing selected blocks. Fig. 5 shows a simplified class-diagram of the main
classes of the toolbox.

B. Collaborative design and test

When multiple developers are involved in the design of a control architecture, the formalization of common interfaces
is required to connect the different components of the architecture. VirtualArena defines such interfaces, facilitating the
assignment of the design of modules to different developers.

C. Dissemination and extensibility

The effort and the technological and theoretical background required for the implementation of advanced control strategies
are two of the main obstacles inhibiting the dissemination of new research results in industrial applications. VirtualArena,
allowing the development of modular controllers, promotes the sharing of new algorithms among the users and provides
functions to install external modules from third-party repositories. For instance, the following code will automatically retrieve
a code from a third party archive located at the remote URL and import specific folders to the MATLAB path for future use.

1 vaInstall(URL)



D. Implemented control-oriented common functions

There are many common components/procedures required in the simulation/design of control systems (e.g., discretization
procedures, linearization procedures, EKF design, data logging architecture, etc.). VirtualaArena comes with an increasing
number of predefined functionalities devoted to making the development process easier. Next, a list the main functionalities
currently available in VirtualArena are presented. We refer to the on-line/function documentation for the use of specific
functions.

1) Simulation: The first set of features regards tools for the simulation of the control architecture.
• Time discretization methods. VirtualArena comes with different time discretization methods build-in such as EulerForward

, RK4, MatlabSolver, that build on the ode solvers of MATLAB. Each discretization methods is defined as a subclass
of Integrator. Other, and possible custom, discretisation methods can be created extending the latter class.

• Logging management system. Easy-to-use logging management system with custom logging modules subclass of
the abstract class Log. Implemented logs are TimeLog, StateLog, ObserverStateLog, MeasurementsLog, InputLog,
ControllerStateLog, ILog.

• Multiple simulations. Easy-to-use system to run multiple simulations with different initial conditions and initial settings
(e.g., different initial conditions, different controller parameters, etc.) implementing the abstract class MultiRun.

• Multi-agent systems. Simulation of a communication/sensor network for multi-agent systems implementing the abstract
class Sensor: RangeFinder, AgentSensor, IAgentSensor.

• Simultaneous simulation of a network of multiple vehicles.
2) System definition and manipulation: VirtualArena contains a set of interfaces to define dynamical systems provides a

set of methods to manipulate these systems.
• Definition. Each system is defined as subclass of GenericSystem. The two main implementations of the dynamical

systems are CtSystem and DtSystem.
• A CtSystem can be automatically discretized to create a DtSystem.
• A DynamicalSystem, either CtSystem or DtSystem, can be automatically linearized, where the computation of the

jacobian matrices required for the linearization are automatically computed via Symbolic MATLAB or via sampling.
3) State estimation: As illustrated in Section II-B and using the linearization methods described above, VirtualArena

provides automatic generation and simulations of state observers.
• Automatic generation of Extended Kalman Filter for discrete-time dynamical systems in EkfFilter.
• Automatic generation of Extended Kalman-Bucy Filter for continuous-time dynamical systems in EkbfFilter

• Support for custom observers.
4) Model predictive control: A set of functionalities is provided to define and customize MPC controllers.
• Definition of continuous-time and discrete-time MPC optimization problem, CtMpcOp and DtMpcOp respectively, sub-

classes of MpcOp.
• Definition of abstract class for MPC solver MpcOpSolver and warm-start strategies WarmStart.
• Implementation of a discrete-time MPC solver using fmincon in FminconMpcOpSolver (subclass of MpcOpSolver).
• Implementation of different warm-start strategies ZerosWarmStart, ShiftAndAppendZeroWarmStart, AuxLawWarmStart,

ShiftAndHoldWarmStart, and ShiftAndAppendAuxLawWarmStart.
5) Motion control of underactuated vehicle: On the modelling of dynamical system, VirtualArena provides some models

of underactuated vehicle with different state-space representations.
• Generic dynamical model representing Unicycle and the 3-D version UAV subclasses of UnderactuatedVehicle.
• Different representations of attitude using quaternions and rotation matrices available in UnderactuatedVehicle.
6) Supported controller: Both state-less controller and controller with internal dynamical model are supported.
• Controller without internal dynamical model subclass of Controller.
• Discrete time controller with internal dynamical model, subclass of DtSytem.
• Continuous time controller with internal dynamical model, subclass of CtSytem.

IV. CONCLUSION AND FUTURE WORKS

This paper introduced the VirtualArena toolbox highlighting main features, keys benefits, and illustrating by example the
use of the toolbox for the simulation and single-agent/multi-agent systems and evaluation of control schemes via simulations.

Future works consider further extensions of the toolkit in the direction of multi-agent control and estimation as well as the
production of interfaces for existing third-party toolbox of interest, such as, e.g., fast solver for MPC optimization problem.
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Fig. 5. Simplified class diagram of the main components of VirtualArena. The solid arrow denotes inheritance/implementation, where a class A points
to a class B if A is a subclass of B and implements its abstract methods in the case of abstract class B (denoted in italic). The dashed arrow denotes
dependency, where if A points to B then A “uses” B to function.
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[5] P. Dias, S. L. Fraga, R. Gomes, G. Gonçalves, F. L. Pereira, J. Pinto, and J. Sousa. Neptus - a framework to support multiple vehicle operation. In

Europe Oceans 2005. IEEE, IEEE, 2005.
[6] A. Domahidi and J. Jerez. FORCES Professional, jul 2014.
[7] R. Findeisen and P. Varutti. Stabilizing nonlinear predictive control over nondeterministic communication networks. In Nonlinear model predictive

control, pages 167–179. Springer, 2009.
[8] M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari. Multi-parametric toolbox 3.0. In Proc. of the 2013 European Control Conference (ECC),,

pages 502–510, 2013.
[9] B. Houska, H. J. Ferreau, and M. Diehl. ACADO toolkit-An open-source framework for automatic control and dynamic optimization. Optimal

Control Applications and Methods, 32(3):298–312, 2011.
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