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C H A P T E R  1  

Verilog Design in the Real World 

The challenges facing digital design 
engineers in the Real World have changed as technology has advanced. Designs are faster, 
use larger numbers of gates, and are physically smaller. Packages have many fine-pitch 
pins. However, the underlying design concerns have not changed, nor will they change in 
the future. The designer must create designs that: 

• are understandable to others who will work on the design later. 

• are logically correct. The design must actually implement the specified logic 
correctly. The designer collects user specifications, device parameters, and 
design entry rules, then creates a design that meets the needs of the end user. 

• perform under worst-case conditions of temperature and process variation. As 
devices age and are exposed to changes in temperature, the performance of the 
circuit elements change. Temperature changes can be self-generated or caused 
by external heat sources. No two devices are exactly equivalent, particularly 
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devices that were manufactured at different times, perhaps at different 
foundries and perhaps with different design rules. Variations in the device 
timing specifications, including clock skew, register setup and hold times, 
propagation delay times, and output rise/fall times must be accounted for. 

• are reliable. The end design cannot exceed the package power dissipation 
limits. Each device has an operational temperature range. For example, a 
device rated for commercial operation has a temperature rating of 0 to 70 
degrees C (32 to 160 degrees F). The device temperature includes the ambient 
temperature (the temperature of the air surrounding the product when it is in 
use), temperature increases due to heat-generating sources inside the product, 
and heat generated by the devices of the design itself. Internally generated 
temperature rises are proportional to the number of gates and the speed at 
which they are changing states. 

• do not generate more EMI/RFI than necessary to accomplish the job and meet 
EMI/RFI specifications. 

• are testable and can be proven to meet the specifications. 

• do not exceed the power consumption goals (for example, in a battery-operated 
circuit).  

These requirements exist regardless of the final form of the design and regardless of 
the engineering tools used to create and test the design. 

 

SYNTHESIS: the translation of a high-level design description to target hardware. For the 
purposes of this book, synthesis represents all the processes that convert Verilog code into a 
netlist that can be implemented in hardware. 

 
The job of the digital designer includes writing HDL code intended for synthesis. 

This HDL code will be implemented in the target hardware and defines the operation of the 
shippable product. The designer also writes code intended to stimulate and test the output 
of the design. The designer writes code in a language that is easy for humans to 
understand. This code must be translated by a compiler into a form appropriate for the final 
hardware implementation. 

 

Why HDL? 
There are other methods of creating a digital design, for example: using a schematic. A 
schematic has some advantages: it’s easy to create a design more tailored to the FPGA, and a 
more compact and faster design can be created. However, a schematic is not portable and 
schematics become unmanageable when a design contains more than 10 or 20 sheets. For 
large and portable designs, HDL is the best method. 
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As a contrast between a Verilog design found in other books and a Real World design, 
consider the code fragments in Listings 1-1 and 1-2. 

Listing 1-1 Non- Real World Example 

// Transfer the content of register b to register a. 
 a <= b; 

Listing 1-2 Real World Example 

/* Signal b must transfer to signal a in less than 7.3 nsec in a 
–3 speed grade device as part of a much larger design that must 
draw less than 80 uA while in standby and 800 uA while operating. 
The whole design must cost less than $1.47, pass CE testing, and 
take less than two months to be written, debugged, integrated, 
documented, and shipped to the customer. Signal a must be 
synchronized to the 75 MHz system clock and reset by the global 
system reset. The signal b input should be located at or near pin 
79 on the 208-pin package in order to help meet the setup and 
hold requirement of register a.*/ 
 
 a <= b; 

To illustrate the design process, let’s follow a trivial example from concept to 
delivery and examine the issues that the designer confronts when implementing the design. 
Don’t worry if the Verilog language elements are unfamiliar; they will be covered in detail 
later in this chapter. 

TRIVIAL OVERHEAT DETECTOR EXAMPLE 

Sarah, the Engineering Manager, writes the following email to Sam, the digital designer. 
 
To: sam@engineering 
From: sarah@management 
Subject: Hot Design Project. 
 
The customer wants a red light that turns on and stays on if a 
button is pressed and if their machine is overheating. They 
want it yesterday, it needs to be battery operated, and has to 
have a final build cost of $0.02 so the company can make money 
when they sell it for $9.95. 
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First Sam estimates the scope of the design. From experience, she determines that 
this circuit is very similar to a design she did last year. She counts the gates of the previous 
design, factors in the differences between the two designs, and decides the design is 
approximately 20 gates. She considers the speed that the design must run at and any other 
complicating factors she can think of, including the error she made in estimating 
complexity of the previous design and the fact that she's already purchased airline tickets 
for a week of vacation. She knows that, overall, including design, test, integration, and 
documentation, she can design 2000 gates a month without working significant overtime. 
She counts the number of pins (the specification lists a pushbutton input, an overheat input, 
and an overheat output, but Sarah realizes that she’ll need to add at least a reset and clock 
input). From the gate-count estimate and the pin estimate she can select a device. She picks 
a device that has more pins than she needs because she knows the design will grow as 
features are added. She picks an FPGA package from a family that has larger and faster 
parts available so she is not stuck if she needs more logic or faster speed. Now she sends a 
preliminary schedule and part selection to her boss and starts working on the design. Her 
boss will thank her for her thorough work on the cost and schedule estimates, but will insist 
that the job be done faster to be ready for an important trade show and cheaper to satisfy 
the marketing department. 

Keep in mind that rarely will your estimates be low. Even when we know better, 
engineers are eternally optimistic. Unless you are very smart and very lucky, your estimate 
will not allow enough contingency to cover growth of the design (feature-creep) the hassles 
associated with fitting a high-speed design into a part that is too small, and the other 1001 
things that can go wrong. These estimating errors result in overtime hours and increased 
project cost. 

Now that Sam has taken care of the up-front project-related chores, she can start 
working on the design. Sam recognizes that a simple flipflop circuit will perform this 
function. She also recognizes, because of the problems she had with an earlier project, that 
a synchronous digital design is the right approach to solving this problem. Sam creates a 
Verilog design that looks like Listing 1-3. 

Listing 1-3 Overheat Detector Design Example 

module overheat (clock, reset, overheat_in, pushbutton_in, 
overheat_out); 
input  clock, reset, overheat_in, pushbutton_in; 
output  overheat_out; 
reg   overheat_out; 
reg   pushbutton_sync1, pushbutton_sync2; 
reg   overheat_in_sync1, overheat_in_sync2; 
 
// Always synchronize inputs that are not phase related to  
//  the system clock. 
// Use double-synchronizing flipflops for external signals  
//  to minimize metastability problems. 
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// Even better would be some type of filtering and latching  
//  for poorly behaving external signals that will bounce 
//  and have slow rise/fall times. 
 
always @ (posedge clock or posedge reset) 
begin 
 if (reset) 
  begin 
  pushbutton_sync1 <= 1’b0; 
  pushbutton_sync2 <= 1’b0; 
  overheat_in_sync1 <= 1’b0; 
  overheat_in_sync2 <= 1’b0; 
  end 
 else begin 
  pushbutton_sync1 <= pushbutton_in; 
  pushbutton_sync2 <= pushbutton_sync1; 
  overheat_in_sync1 <= overheat_in; 
  overheat_in_sync2 <= overheat_in_sync1; 
  end 
end 
 
// Latch the overheat output signal when overheat is 
//  asserted and the user presses the pushbutton. 
always @ (posedge clock or posedge reset) 
begin 
 if (reset) 
  overheat_out <= 1’b0; 
 
// Overheat_out is held forever (or until reset). 
 else if (overheat_in_sync2 && pushbutton_sync2) 
  overheat_out <= 1’b1; 
end 
 
endmodule 

This seems like a lot of typing for such a simple circuit, doesn’t it? The first always 
element appears to do nothing and looks like it could be deleted. In a previous design, Sam 
had problems (which will be discussed in Chapter 2) with erratic logic behavior, so she 
always double-synchronizes inputs from the Real World. The second always block asserts 
pushbutton_out when overheat_in_sync and pushbutton_sync are asserted. 

 

A useful method estimating the size of a design is to count the semicolons. A utility called 
metric, which counts semicolons in a module, is included on the Real World FPGA Design with 
Verilog CD-ROM. This method should be used informally to avoid designers developing a 
semicolon-rich coding style :^). 
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Sam has done the fun part of the design: the actual designing of the code. She 
quickly runs her compiler, simulator, or Lint program to make sure there are no 
typographical or syntax errors. Next, because writing test vectors is almost as much fun as 
designing the code, Sam does a test fixture and checks out the behavior of her design. Her 
test fixture looks something like Listing 1-4. 

Listing 1-4 Overheat Detector Test Fixture 

// Overheat detector test fixture. 
// Created by Sam Stephens 
 
`timescale 1ns / 1ns 
 
module oheat_tf; 
 
reg clock, system_reset, overheat_in, pushbutton_in; 
 
parameter clk_period  = 33.333; 
 
overheat u1 (clock, system_reset, overheat_in, pushbutton_in, 
overheat_out); 
 
always begin 
 #clk_period clock = ~clock; // Generate system clock. 
  end 
 
initial 
begin 
         clock            =    0; 
  system_reset  = 1; // Assert reset.  
  overheat_in      = 0; 
  pushbutton_in = 0; 
#75   system_reset  = 0; 
end 
 
// Toggle the input and see if overheat_out gets asserted. 
always 
 begin 
#200  overheat_in      = 1; 
#100  pushbutton_in = 1; 
#100  pushbutton_in = 0; 
#200  overheat_in      = 0; 
#100        $finish; 
    end 

 
endmodule 
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Sam invokes her favorite simulation tool and examines the output waveforms to make sure 
the output is logically correct. The output waveform looks like Figure 1-1 and appears 
okay. Generally Sam will write and run an automated test-fixture program (as described in 
Chapter 5), but the design is simple and the boss has ordered her to quit being such a 
fussbudget and get on with it. 

 

 

Figure 1-1 Overheat Detector Design Output Waveforms 

Sam assigns input/output pins and defines timing constraints for her design. She 
knows that the system does not have to run fast, so she selects the lowest available crystal 
oscillator to drive the clock input. This gives the lowest current consumption to maximize 
the life of the battery. Sam submits the design to her FPGA compiler and gets a report back 
that tells her that the design fits into the device she chose and that timing constraints are 
met. From experience, she knows that a design running this slowly will not have 
temperature or RFI emission problems. She checks the design into the revision control 
system, sends an email to her boss to tell her the job is complete, and takes the rest of the 
day off to go rollerblading. 

This probably seems like a lot of work to complete a job that consists of six flipflops, 
but Sam was lucky. The design fit into the device she chose, the design ran at the right 
speed, the design did not have temperature/EMI/RFI problems, the specifications didn’t 
change halfway through the design, the software tools and her workstation didn’t crash, 
and she avoided the 1001 other hazards that exist in the Real World. 

 

ENGINEERING SCHEDULE: too often, a management tool for browbeating an engineer 
into working free overtime. Engineers, even when they should really know better, are generally 
too optimistic when creating schedules, thus, they are almost always late. 

We have to be mature about this subject: without a deadline, nothing would ever get 
finished. Still, most jobs should be completed with little overtime. 

 
Some problems can be avoided by doing thorough design work up front. Sam was 

careful not to start coding until she completely understood the requirements of the design. 
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GIGO (GARBAGE IN, GARBAGE OUT) 

There is a great temptation to start coding before the product is well understood. After all, to 
an engineer, coding is fun and planning is not. 

I don’t care how much fun the job is, don’t start coding the design until you know what the end 
result is supposed to be. 

This book emphasizes design approaches that minimize problems and unpleasant 
surprises. 

SYNTHESIZABLE VERILOG ELEMENTS 

Verilog was designed as a simulation language and many of its elements do not translate to 
hardware. Verilog is a large and complete simulation language. Only about 10% of it is 
synthesizable. This chapter covers the fundamental properties of the 10% that the FPGA 
designer needs. 

 Exactly which Verilog elements are considered synthesizable is a design problem 
faced by the synthesis vendor. Generally, an “unofficial” subset of the Verilog language 
elements will be supported by all vendors, but the current Verilog specification does not 
contain any minimum list synthesizable language elements. An IEEE working group is 
writing a specification called IEEE Std 1364.1 RTL Synthesis Subset to define a minimum 
subset of synthesizable Verilog language elements. Whether this specification is ever 
released – and, once released, is embraced by users and synthesis tool vendors - remains to 
be seen at this writing. 

Verilog looks similar to the C programming language, but keep in mind that C 
defines sequential processes (after all, only one line of code can be executed by a processor 
at a time), whereas Verilog can define both sequential and parallel processes. Listing 1-5 
presents some sample code with common synthesizable Verilog elements. 

Listing 1-5 Example Verilog Program 

module hello (in1, in2, in3, out1, out2, clk, rst, bidir_signal, 
output_enable);// See note 1. 
/* See note 2. 
Comments that span multiple lines can be identified like this. 
*/ 
input  in1, in2, in3, clk, rst, output_enable; // See note 3. 
output  out1, out2; 
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inout  bidir_signal; 
reg   out2;    // See note 4 
wire  out1; 
 
assign out1    = in1 & in2; // See note 5. 
assign bidir_signal = output_enable ? out2 : 1’bz; // See note 6. 
 
always @ (posedge clk or posedge rst) // See note 7. 
 begin      // See note 8. 

if (rst) out2  <= 1’b0;  // See note 9. 
else out2   <= (in3 & bidir_signal);  
end 

endmodule 

Note 1: The first element of a module is the module name. Modules are the building 
blocks of a Verilog design. In this book, the module name will be the same as the file name 
(with a .v extension added) and each file will contain a single module. This is not required 
but helps keep the design structure intelligible. 

The port list follows the module/file name. This list contains the signals that connect 
this module to other modules and to the outside world. Signals used in the module that are 
not in the port list are local to the module and will not be connected to other modules. Note 
the use of a semicolon as a separator to isolate Verilog elements. One confusing aspect of 
Verilog is that not all lines end with a semicolon, particularly the compiler instructions 
(always statements, if statements, case statements, etc.). It takes the Verilog newbie some 
time to get comfortable with Verilog syntax. 

 
Note 2: Comments follow double forward slashes or can be enclosed within a /* 

Comment here */ pair. The latter type of comment delimiting can’t be nested. The 
detection of a  /* following another /* will be flagged as an error. 

 
Note 3: The port direction list follows the module port list. This list defines whether 

the signals are inputs, outputs, or inouts (bidirectional) ports of the module. All port list 
signals are wires. A wire is simply a net similar to an interconnection on a printed circuit 
card. 

 
Note 4: Signals are either wires (interconnects similar to traces and pads on a circuit 

board) or registers (a signal storage element like a latch or a flipflop). Wires can be driven 
by a register or by combinational assignments. It is illegal to connect two registers together 
inside a module. Verilog assumes that a signal, unless otherwise defined in the code, is a 
one-bit-wide wire. This can be a problem, the synthesis tool will not test vector width. This 
is one good reason for using a Verilog Lint tool. 

 
Note 5: The assign statement is a continuous (combinational) logic assignment. 
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Note 6: The assignment of the bidir_signal uses a conditional assignment; if 
output_enable is true, bidir_signal is assigned the value of out2, otherwise it’s assigned the 
tri-state value z. 

 
Note 7: Always blocks are sequential blocks. The signal list following the @ and 

inside the parenthesis is called the event sensitivity list, and the synthesis tool will extract 
block control signals from this list. The requirement of a sensitivity list comes from 
Verilog’s simulation heritage. The simulator keeps a list of monitored signals to reduce the 
complexity of the simulation model; the logic is evaluated only when signals on the 
sensitivity list change. This allows simulation time to pass quickly when signals are not 
changing. This list doesn’t mean much to the synthesis tool, except, that by convention, 
when certain signals are extracted for control, these input signals must appear on the 
sensitivity list. The compiler will issue a warning if the sensitivity list is not complete. 
These warnings should be resolved to assure that the synthesis result matches simulation. 

The sensitivity list can be a list of signals (in which case, any change on any listed 
signal is detected and acted upon), posedge (rising-edge triggered), or negedge (falling-
edge triggered). Posedge and negedge triggers can be mixed, but if posedge or negedge is 
used for one control, posedge or negedge must be used for ALL controls for this block. 

 
Note 8: The begin/end command isolates code fragments. If the code can be 

expressed using a single semicolon, the begin/end pair is optional. 
 
Note 9: We’re using nonblocking assignments (<=) in the always block. If blocking 

assignments are used, the order of the instructions may cause unwanted latches to be 
synthesized so that a value can be held while earlier variables are updated. Generally, the 
designer wants all elements in the sequential (always) block updated simultaneously, hence 
the use of the nonblocking assignment, which emulates the clock-to-Q delay. The clock-to-
Q delay assures that cascaded flipflops (like a shift register) operate as expected. They are 
called nonblocking because updating an earlier variable will not block the updating of a 
later variable. 

 
The rst input, when coded in this manner (i.e., a nonsynchronous signal used in a 

synchronous module), is interpreted as asynchronous reset. This is not Verilog requirement 
per IEEE Std 1364 but is an accepted convention. 

Verilog language elements are case sensitive (X and x are not equivalent, for 
example). Like the C programming language, Verilog is tolerant of white space. The 
designer uses white space to assist legibility. It’s legal to combine lines as so: 

a = b&c; d = e&f; g = h | i; j = k^m; n = o&p; 
 

but designers who write hard-to-read code like this are subject to the loss of their free 
sodas. 
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PORTABLE VERILOG CODE: It is desirable to write code that can be compiled by any 
vendor’s compiler and can be implemented in any hardware technology with identical results. 
Unfortunately, to write high-performance (where the design runs at high speed) and efficient 
(where the design uses minimum hardware resources by targeting architecture-specific 
features) code, the designer often must use architecture- and compiler-specific commands and 
constructs. Portability is often not a practical or achievable design requirement. It’s a great 
goal, even if we never reach it. 

 
We’re not going to cover operator precedence. If you have a required precedence, 

then use parenthesis to be explicit about that precedence. The reader should be able to read 
the precedence in the source code, not be forced to memorize or look up the built-in 
language precedence(s). Don’t create complicated structures; use the simplest and clearest 
coding style possible. Listings 1-6 and 1-7 illustrate equivalent coding structures with 
implicit and explicit ‘don’t-cares’. 

Listing 1-6 Casex (Implicit Don’t Care) Code Fragment 

// Indexing example with implicit 'don't cares'. 
reg   [7:0] test_vector; 
Casex (test_vector) 
8’bxxxx0001: 
 begin 
// Insert code here. 
// This coding style results in a parallel case structure (MUX). 
 end 
endcase 

Listing 1-7 Explicit Don’t Care Code Fragment  

// Indexing example with explicit 'don't cares'. 
reg   [7:0] test_vector; 
if (test_vector[3:0] == 4’b0001) 
 begin 
 // Insert code here. 

// This coding style results in priority encoded logic. 
 end 

One feature of Verilog the designer must conquer is whether a priority-encoded (deep and 
slow) structure or a MUX (wide and fast) structure is desired. Nested if-then statements 
tend to create priority-encoded logic. Case statements tend to create MUX logic elements. 
There will be more discussion of this topic later. 
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Do not assume a Verilog register is a flipflop of some type. In Verilog, a register is 
simply a memory storage element. This is one of the first of the features (or quirks) the 
Verilog designer grapples with. A register might synthesize to a flipflop (which is a digital 
construct) or a latch (which is an analog construct), a wire, or might be absorbed during 
optimization. Verilog assumes that a variable not explicitly changed should hold its value. 
This is a handy feature (compared to Altera's AHDL, which assumes that a variable not 
mentioned gets cleared). Verilog, with merciless glee, will instantiate latches to hold a 
variable's state. The designer must structure the code so that the intended hardware 
construct is synthesized and must be constantly alert to the possibility that the latches may 
be synthesized. Verilog does not include instructions that require the synthesizer to use a 
certain construct. By using conventions defined by the synthesis vendor, and making sure 
all input conditions are completely defined, the proper interpretation will be made by the 
synthesizer. 

VERILOG HIERARCHY 

A Verilog design consists of a top-level module and one or many lower-level modules. The 
top-level module can be instantiated by a simulation module that applies test stimulus to 
the device pins. The top-level device module generally contains the list of ports that 
connect to the outside world (device pins) and interconnect between lower-level modules 
and multiplexing logic for control of bidirectional I/O pins or tristate device pins. The 
exact way the design is structured depends on designer preference. 

Module instances are defined as follows: 

module_name instance_name (port list); 
 

 For example, the code in Listing 1-8 creates four instances of assorted primitive 
gates and the post-synthesis schematic for this design is shown in Figure 1-2. 

Listing 1-8 Structural Example 

module gates (in1,in2,in3,out4); 
input  in1, in2, in3; 
output  out4; 
wire  in1, in2, in3, out1, out2, out3, out4; 
 
and u1 (out1, in1, in2); // Structural (schematic-like)  
or u2 (out2, out1, in3); //  constructs. 
xor u3 (out3, out1, out2); 
not u4 (out4, out3); 
endmodule 
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Figure 1-2 Gates Example Schematic 

This example uses positional assignment. Signals are connected in the same order that they 
are listed in the instantiated module port list(s). Generally, the designer will cut and paste 
the port list to assure they are identical. A requirement for a primitive port listing is that 
the output(s) occur first on the port list followed by the input(s). 

The module port list can also use named assignments (exception: primitives require 
positional assignment), in which case the order of the signals in the port list is arbitrary. 
For named assignments, the format is .lower-level signal name (higher-level module signal 
name). The module of Listing 1-9 includes examples of both named and positional 
assignments. 

Listing 1-9 Named and Positional Assignment Example 

module and_top; 
wire  test_in1, test_in2, test_in3; 
wire  test_out1, test_out2; 
 
// Named assignment where the port order doesn’t matter. 
user_and u1 (.out1(test_out1), .in1(test_in1), .in2(test_in2)); 
 
// Positional assignment. 
user_and u2 (test_out2, test_in2), (test_in3)); 
endmodule 
 
module user_and (out1, in1, in2); 
input  in1, in2; 
output  out1; 
 
assign  out1 = (in1 & in2); 
endmodule 
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BUILT-IN LOGIC PRIMITIVES 

Tables 1-1 through 1-12 describe Verilog two-input functions. The input combinations are 
read down and across. Verilog primitives are not limited to two inputs, and the logic for 
primitives with more inputs can be extrapolated from these tables. 

 
and   0 1 x z 

0 0 0 0 0 

1 0 1 x x 

x 0 x x x 

z 0 x x x 

Table 1-1 AND Gate Logic 

 

nand 0 1 x z 

0 1 1 1 1 

1 1 0 x z 

x 1 x x z 

z 1 x x z 

Table 1-2 NAND Gate Logic 

 

or 0 1 x z 

0 0 1 x x 

1 1 1 1 1 

x x 1 x x 

z x 1 x x 

Table 1-3 OR Gate Logic 
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nor 0 1 x z 

0 1 0 x x 

1 0 0 0 0 

x x 0 x x 

z x 0 x x 

Table 1-4 NOR Gate Logic  

 

xor 0 1 x z 

0 0 1 x x 

1 1 0 x x 

x x x x x 

z x x x x 

Table 1-5 XOR Gate Logic  
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xnor 0 1 x z 

0 1 0 x x 

1 0 1 x x 

x x x x x 

z x x x x 

Table 1-6 XNOR (Equivalence) Gate Logic 

 
input output 

0 0 

1 1 

x x 

z x 

 

Table 1-7 buf (buffer) Gate Logic 

 

input output 

0 1 

1 0 

x x 

z x 

Table 1-8 not (inverting buffer) Gate Logic 
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bufif0 control = 0 control = 1 control = x control = z 

data = 0 0 z x x 

data = 1 1 z x x 

data = x x z x x 

data = z x z x x 

 Table 1-9 bufif0 (tristate buffer, low enable) Gate Logic 

 

bufif0 control = 0 control = 1 control = x control = z 

data = 0 z 0 0 or z 0 or z 

data = 1 z 1 1 or z 1 or z 

data = x z x x x 

data = z z x x x 

 

Table 1-10 bufif1 (tristate buffer, high enable) Gate Logic 

 

notif0 control = 0 control = 1 control = x control = z 

data = 0 1 z 1 or z 1 or z 

data = 1 0 z 0 or z 0 or z 

data = x x z x x 

data = z x z x x 

 

Table 1-11 notif0 (tristate inverting buffer, low enable) Gate Logic 
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notif1 control = 0 control = 1 control = x control = z 

data = 0 z 1 1 or z 1 or z 

Data = 1 z 0 0 or z x or z 

Data = x z x x x 

Data = z z x x x 

Table 1-12 notif1 (tristate inverting buffer, high enable) Gate Logic 

The code fragment in Listing 1-10 illustrates the use of these buffers and Figure 1-3 
is the schematic extracted from the synthesized logic. 

Listing 1-10 Example of Instantiating Structural Gates 

module struct1 (out1, out2, out3, out4, in1, in2, in3, in4, in5, 
in6, buf_control); 
output  out1, out2, out3, out4; 
input  in1, in2, in3, in4, in5, in6, buf_control; 
bufif0 buf1(out1, in1, buf_control); 
and and1(out2, in2, in3); 
nor nor1(out3, in4, in5); 
not not1(out4, in6); 
endmodule 
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Figure 1-3 Schematic of Structural Gates 

LATCHES AND FLIPFLOPS 

Technically, a flipflop is defined as a bistable multivibrator. Not a very helpful definition, 
is it? A multivibrator is an analog circuit with two or more outputs, where, if one output is 
on, the other(s) will be off. Bistable means an output is binary or digital and has two output 
states: high or low. We will extend the output states to include tristate (z). 

There are various flavors of flipflops, but generally we will be discussing the clocked 
D flipflop in which the output follows the D input after a clock edge. Table 1-13 shows the 
function table of a common edge-triggered D flipflop. Note that Table 1-13 Set and Reset 
inputs are active-low. 



 20                                                           Verilog Design in the Real World     Chapter   1 

 
 

/Set /Reset Clock Data Q /Q  

0 1 x x 1 0  

1 0 x x 0 1  

0 0 x x 1 1 Note 1 

1 1 r 1 1 0  

1 1 r 0 0 1  

1 1 0 x n n  

1 1 1 x n n  

 
Note 1: This condition is not stable and is illegal. The problem is, if the /Set and /Reset inputs 

are removed simultaneously, the output state will be unknown. 
x = don’t care (doesn’t matter). 
r = rising edge of clock signal. 
n = no change, previous state is held. 

Table 1-13 Logic description of a 7474-style D flipflop 

   
The typical FPGA logic element design allows the use of either an asynchronous Set 

or Reset, but not both together, so we won’t have to worry about the illegal input condition 
where both are asserted. This book is going to strongly emphasize synchronous design 
techniques, so we discourage any connection to a flipflop asynchronous Set or Reset 
input except for power-up initialization control. Even in this case, a synchronous 
Set/Reset might be more appropriate. 

A latch is more of an analog function. It’s helpful to bear in mind that all the 
underlying circuits that make up our digital logic are analog! There is no magic flipflop 
element. Flipflops are made with transistors and positive feedback: latches. 
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Figure 1-4 Schematic of a Typical CMOS D Flipflop Implementation 

Even if you’re the kind of person whose eyes glaze over when you see transistors on a 
schematic, you should still notice two things about Figure 1-4. The first thing is that this D 
flipflop is made with linear devices, i.e., transistors. If you can always keep the idea in the 
back of your head that all digital circuits are built from analog elements that have gain, 
impedance, offsets, leakages, and other analog nasties, then you are on the road to being an 
excellent digital designer. The second thing to notice is feedback (see highlighted signals) 
from the Q and /Q outputs back into the circuit. Feedback is what causes the flipflop to 
hold its state. 
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Figure 1-5 Schematic of a Typical CMOS D Flipflop Implementation (Gates) 

If you are more comfortable with gates, a different view of the same D flipflop is shown in 
Figure 1-5. This is a higher level of abstraction; the transistors and resistors are hidden. 
Those pesky transistors are still there! Again, note highlighted feedback path. 

Listing 1-11 shows a Verilog version of a latch, and Figure 1-6 shows the schematic 
extracted from this Verilog design. The underlying circuit that implements RS Latch 
(LATRS) is a circuit functionally similar to Figure 1-5. It’s not a digital circuit! 

 

Figure 1-6 Schematic of Latch Flipflop Implementation 
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Listing 1-11 Latch Verilog Code 

// Your Basic Latch. 
// This is a bad coding style: do not create latches this way! 
 
module latch(q, q_not, set, reset); 
output  q, q_not; 
input  set, reset; 
reg   q; 
 
wire  set, reset; 
 
assign  q_not = ~q; 
 
 always @ (set or reset) 
 begin  
  if (set) 
  q = 1; 
  else if (reset) 
  q = 0; 
 end 
endmodule 

The latch uses feedback to hold a state: this feedback is implied in Listing 1-11 by 
not defining q for all combinations of input conditions. For undefined inputs, q will hold its 
previous state. The logic that determines a latch output state may include a clock signal but 
typically does not and is therefore a level-sensitive rather than an edge-triggered construct. 

Listing 1-12 Verilog Code That Creates a Latch 

module lev_lat(test_in1, enable_input, test_out1); 
input  test_in1, enable_input; 
output  test_out1; 
reg   test_out1; 
 
always @ (test_in1 or enable_input) 
if (enable_input) begin 

test_out1 <= test_in1; 
end 

endmodule 

In the example of Listing 1-12, test_out1 will change only while enable_input is 
high, then test_out1 will follow test_in1. This will synthesize to a combinational latch as 
illustrated in Figure 1-7. We’ll discourage this type of coding style unless the latch is 
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driven by a synchronous circuit and drives a synchronous circuit, resulting in a 
pseudosynchronous design. 

Is a latch a good design construct? That depends on the designer’s intent. If the 
designer intended to create a latch construct, then a synthesized latch is good. If the 
designer did not intend to create a latch construct (which Verilog is very inclined to 
create), then a latch is bad. In general, we will scrutinize all synthesized latches 
suspiciously, because they are, at best, pseudosynchronous constructs. 

 

Figure 1-7 Latch Circuit Schematic (Reset-Set Latch) 

A better design infers a clocked flipflop structure, as in Listing 1-13, with the 
respective schematic shown in Figure 1-8. 

Listing 1-13 Cascaded Flipflops with Synchronous Reset 

module edge_lat (clk, rst, test_in1, enable_input, test_out2); 
input  clk, rst, test_in1, enable_input; 
reg   test_out1, test_out2; 
output  test_out2; 
 
always @ (posedge clk or posedge rst) 
begin 

if (rst) test_out1 <= 0; 
else if (enable_input) begin 

  test_out2 <= test_out1; 
  test_out1 <= test_in1; 
 end 
end 
endmodule 
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Figure 1-8 Schematic for Cascaded Flipflops with Synchronous Reset 

Listing 1-13 demonstrates a flipflop with synchronous reset where the reset input is 
evaluated only on clock edges. If the target hardware does not support a synchronous reset, 
logic will be added to set the D input low when reset is asserted as shown in Figure 1-9. 
Listing 1-14 illustrates a flipflop with asynchronous reset where the rst signal is 
“evaluated” on a continuous basis. Notice that the dedicated global set/reset (GSR) resource 
of the flipflops are not used. It would be much more efficient to synthesize a synchronous 
reset signal and connect it to the GSR. This type of assignment is covered in Chapter 5. 

Listing 1-14 Verilog Flipflop with Asynchronous Reset 

module edgetrig (clk, rst, test_in1, enable_input, test_out2); 
input  clk, rst, test_in1, enable_input; 
reg   test_out1, test_out1; 
output  test_out2; 
 
always @ (posedge clk) 
begin 

if (rst) 
test_out1 <= 0; 

else if (enable_input) begin 
  test_out2 <= test_out1; 
  test_out1 <= test_in1; 
 end 
end 
endmodule 
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Figure 1-9 Schematic for Cascaded Flipflops with Synchronous Reset  

BLOCKING AND NONBLOCKING ASSIGNMENTS 

So far, we’ve used only nonblocking assignments (<=). A blocking assignment, when the 
variable is defined outside the always statement where it is used, holds off future 
assignments until the previous assignment is complete. How can synthesized hardware 
hold off an assignment? By storing an old value in a latch, that’s how. This means that 
blocking assignments are order sensitive; they are executed in the begin/end sequential 
block in the order in which they are encountered by the compiler (top to bottom). 

Listing 1-15 Blocking Statement Example 1 

/* The blocking statement of the first blocking assignment must 
be completed before any later assignments will be performed. In 
this example, two sets of flipflops will be created (see Figure 
1-10) because an intermediate value is required to create 
data_out. */ 
 
module blocking(clock, reset, data_in, data_out); 
input  clock, reset; 
input  data_in; 
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reg   data_temp; 
output  data_out; 
reg   data_out; 
 
 always @ (posedge clock or posedge reset) 
 if (reset) 
 begin 
     data_out  = 0; 
     data_temp    =   0; 
 end 
 else 
 begin 
     data_out     =  data_temp; 
     data_temp    =  data_in; 
 end 
endmodule 

The synthesized logic for Listing 1-15, shown in Figure 1-10, illustrates the blocking 
assignment of data_temp and data_out: a flipflop is synthesized to create the intermediate 
(pipelined) data_temp variable. 

 

Figure 1-11 Blocking Statement Example 1 

In Listing 1-16, the blocking statements are reversed. Notice how the resulting logic, 
as illustrated in Figure 1-11, is different from the logic of Figure 1-10. 

Listing 1-16 Blocking Statement Example 2 
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/* The blocking statements are reversed, making the data_temp 
variable redundant, so data_temp gets optimized out. One set of 
flipflops is created because the intermediate value is ‘blocked’ 
and not needed to create data_out. */ 
 
module block2(clock, reset, data_in, data_out); 
 input  clock, reset, data_in; 
 reg  data_temp; 
 output data_out; 
 reg  data_out; 
 
 always @ (posedge clock or posedge reset) 
 if (reset) begin 
     data_out  = 0; 
     data_temp    =   0; 
 end 
 else begin 
     data_temp    =  data_in; // Switch order. 
     data_out     =  data_temp; 
 end 
endmodule 

In a set of blocking assignments that appear in the same always block, the order in 
which the statements are evaluated is significant. The use of nonblocking assignments avoids 
order sensitivity and tends to create flipflops: this is generally what the designer intends. 

 

Figure 1-11 Blocking Assignment Example 2 
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If we replace the blocking assignments with nonblocking assignments, the order of 
the sequential instructions no longer matters. All right-hand values are evaluated at the 
positive edge of the clock, and all assignments are made at the same time. The synthesized 
logic for Listing 1-17, shown in Figure 1-12, illustrates the nonblocking assignments of 
data_temp and data_out and resulting synthesized design which is equivalent to the logic of 
Listing 1-16. 

Listing 1-17 Non-Blocking Assignment Example 

// Nonblocking Logic Example 
// The order of the nonblocking assignments is not significant. 
 
module nonblock(clock, reset, data_in, data_out); 
input  clock, reset; 
input  data_in; 
reg   data_temp; 
output  data_out; 
reg   data_out; 
 
 always @ (posedge clock or posedge reset) 
 if (reset) 
 begin 
     data_out  <= 0; 
     data_temp    <=   0; 
 end 
 else 
 begin 
     data_out     <=   data_temp; 
     data_temp    <=   data_in; 
 end 
endmodule 
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Figure 1-12 Nonblocking Assignment Example 

MISCELLANEOUS VERILOG SYNTAX ITEMS 

Numbers 

Unless defined otherwise by the designer, a Verilog number is 32 bits wide. The format of a 
Verilog integer is size'base value. The ' is the apostrophe or tick, not to be confused with ` 
(accent grave or back tick) which is used to identify constants or text substitutions. Both 
tick and back tick are used in Verilog, which will frustrate a newbie. Underscores are legal 
in a number to aid in readability. All numbers are padded to the left with zeros, x’s, or z’s 
(if the leftmost defined value is x or z) as necessary. If the number is unsized, the assumed 
size is just large enough to hold the defined value when the value gets used for comparison 
or assignment. X or x is undefined, Z or z is high impedance. Verilog allows the use of ? in 
place of z. Numbers without an explicit base are assumed to be decimal. 

Number examples: 

 1'b0  // A single bit, zero value. 
 'b0  // 32 bits, all zeros. 
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32'b0 // 32 bits, all zeros, 
//  0000_0000_0000_0000_0000_0000_0000_0000). 

 4'ha  // A 4-bit hex number (1010). 
 5'h5  // A 5-bit hex number (00101). 
 4'hz  // zzzz. 
 4'h?ZZ? // zzzz; ? is an alternate form of z. 
 4'bx  // xxxx. 

9 // A 32-bit number (it’s padded to the left 
//  with 28 zeroes). 

 a  // An illegal number. 

Verilog is a loosely typed language. For example, it will accept what looks like an 8-
bit value like 4'hab without complaint (the number will be recognized as 1011 or b and the 
upper nibble will be ignored). The use of a Lint program like Verilint will flag problems 
like this. Otherwise, the Verilog designer must stay alert to guard against such errors. 

Forms of Negation  

! is logical negation; the result is a single bit value, true (1) or false (0). ~ (tilde) is 
bitwise negation. We can use a ! (sometimes called a bang) to invert a single bit value, and 
the result is the same as using a ~ (tilde), but this is a bad habit! As soon as someone comes 
in and changes the single bit to a multibit vector, the two operators are no longer 
equivalent, and this can be a difficult problem to track down (see Listing 1-18). 

Listing 1-18 Negation example 

 module negation (clk, resetn); 
 input  clk, resetn; 
 reg [3:0] c, d, e; 
  

 always @ (posedge clk or negedge resetn) 
 begin 
  if (~resetn)    // Active low asynchronous reset. 
  begin 
 
  c <= 5; // Bad form to async set a value like 

 //  this. This is called a magic 
 //  number and should be a parameter. 

  d <= 0; 
  e <= 0; 
  end 
  else begin 
  d  <=  !c;  // d gets assigned value of 0; 
  e <= ~c;  // e gets assigned value of 1010. 
  end 
 end 
 endmodule 
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Forms of AND/OR 

& is the symbol for the AND operation. & is a bitwise AND, && is a logical 
(true/false) AND. As illustrated in Listing 1-19, these two forms are not functionally 
equivalent. 

Listing 1-19 Logical and Bitwise AND Examples 

a = 4’b1000 &  4’b0001;  // a = 4’b0000; 
b = 4’b1000 &&  4’b0001; // b = 1’b0. 

| (pipe) is the symbol for the OR operation where | is a bitwise OR and || is a logical 
OR. As illustrated in Listing 1-20, these two forms are not functionally equivalent. 

Listing 1-20 Logical and Bitwise OR Examples 

a = 4’b1000 |  4’b0001;  // a = 4’b1001; 
b = 4’b1000 ||  4’b0001; // b = 1’b1. 

Listing 1-21 AND/OR Examples 

module and_or (clk, resetn, and_test, or_test); 
 input  clk, resetn, and_test, or_test; 
 reg   a; 
 reg [3:0] b; 
 reg [3:0] c; 
 reg [3:0] d; 
 reg [3:0] e; 
 reg [3:0] g; 
  
 always @ (posedge clk or negedge resetn) 
 begin 

 if (~resetn) // Active low asynchronous reset. 
 begin 

  a <= 0; 
  b <= 4’d4;  // Bad form to async set values 

//  like this, should be a 
//  parameter. 

  c <= 4’d5;  
  d <= 0; 
  e <= 0; 
  g <= 0; 
  end 
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  else if (and_test) 
  begin 
 
 d  <=  (c && !a);  // d gets assigned value of 0. 
 e <= (c & !a);  // e gets assigned value of 

//  1010.  
 g <= (b & c);  // g gets assigned the value 

//  0100. 
  end 
 else if (or_test == 1) // Equivalent to simply (or_test). 
  begin  
 e <= (c | !a);  // e gets assigned value of all 

//  1's (1111).  
 g <= (b | c);  // g gets assigned the value 0101. 
  end 
  else 
  begin 
 d  <=  0;  // Assign default values to avoid 

//  unwanted latches. 
 e <= 0;  
 g <= 0;  
  end 
 
 end 
 endmodule 

In Listing 1-21, the final else condition bears some comment. We did not cover all 
input conditions in the logic above the final else condition. For example, what output do we 
want if neither and_test or or_test is asserted? Without the final else defined, Verilog 
interprets a change from a defined condition to an undefined condition as a hold condition 
(if outputs are not commanded, the last value gets held). This causes latches to be created. 
Generally, this is not what the designer intends; thus we need to make sure that all 
conditions are defined. 

Equality Operators  

== === are logical operators, the result is either true or false except that the == 
(called logical equality) version will have an unknown (x) result if any of the compared bits 
are x or z. The === (called case equality) version looks for exact match of bits including x's 
and z's and returns only a true or false. Prepending a ! (bang) means "is not equal." In the 
equality examples of Listing 1-22, there are several if statements that will evaluate to true. 
As the block is examined from top to bottom, only the first true condition will be accepted. 
The later ones will not be evaluated. This is called priority encoding, and, like instantiating 
latches, Verilog has a natural tendency to use this structure. It can result in many levels of 
cascaded logic! Pay close attention. The alternative option is more of a MUXstyle of 
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structure where inputs are evaluated in parallel, which may be what you intend. We'll talk 
more about this later. 

Listing 1-22 Equality Examples 

 module eq_test (clk, resetn, and_test, or_test); 
 input  clk, resetn, and_test, or_test; 
 reg   result; 
 reg [3:0] b; 
 reg [3:0] c; 
 reg [3:0] d; 
 reg [3:0] e; 
 reg [4:0] g; 
 reg [3:0] h, i, j; 
  
 always @ (posedge clk or negedge resetn) 
 begin 

if (~resetn) // Active low asynchronous reset. 
begin 
 

  result <= 0; // We'll use this register to 
//  mirror the equality result. 

  b <= 4’b1x00; // Bad form to async set values 
   //  like this; should be a 
   //  parameter. 

  c <= 4’b1z00;  
  d <= 4’b1000; 
  e <= 4’b1001; 
  g <= 4’b01001; 
  h <= 4’b1z00; 
  i <= 4’b0110; 
  j <= 4’b011x; 
  end 
 
// The following test fails. 

 
 else if ((b == d) == 1)  
  result <= 1’bx; 
 
 else if (b == d) // This test is the same as previous 

//  line. Fails. 
  result <= 1’bx; 
 
 else if ((b == d) == 0)  // This test fails because of the 

      //  x value in b. 
  result <= 1’bx; 
 
 else if ((b != d) == 1)  // This test is the same as in the 

    //  previous line. Fails. 
  result <= 1’b0; 
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 else if ((b == d) == 1’bx) // This test passes because the 

    //  b value is x. 
  result <= 1’b1; // All following true conditions 

   //  will be ignored. 
 

 else if (c === d)      // This test fails. 
  result <= 1’b0; 
 
 else if (e == g)     // This test passes because e is 

  //  padded with 0's to become equal 
  //  in size to g.   

result <= 1’b0;  // Be careful when variables sizes 
       //  don't match. 

 
 else if (b == c)     // This test fails (returns false). 
  result <= 1’b0; 
 
 else if (b != c)     // This test passes (returns true). 
  result <= 1’b1; 
 
 else if ( d == e)     // This test fails (returns false). 
  result <= 1’b0; 
 
 else if (b !== c)     // This test passes (returns true). 
  result <= 1’b1; 
 

else if (c == h)     // This test fails (returns x). 
 result <= 1’bx; 

 
 else if (c===h)     // This test passes (returns true). 
  result <= 1’b1; 
 
 else if (e == !i)  // This test passes (returns true). 
  result <= 1’b1; 
 
 else if (e != j) // This test fails (returns x). 

//  An inverted x (unknown) is 
//  still an unknown. 

  result <= 1’bx; 
 
 end 
 endmodule 

The designer can choose between the following if statement forms: 
 
if (~resetn) ... 
 
if (resetn == 1`b0) 
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Both are equivalent. Which is easy to read and easier to understand? That's a matter 
of opinion. Note the use of an 'n' suffix to indicate an active low (asserted when low or low-
true are other ways to describe this) signal. There are various ways of identifying active low 
signals- for example, reset_not, resetl, or reset*, or resetN. It helps to identify the assertion 
sense as part of the label; the main thing is to be consistent when selecting labels. 

Other equalities are supported, including greater than (>), less than (<), greater than 
or equal to (>=), and less than or equal to (<=). 

Shift Operators  

>> n and << n identify right-shift (divide by 2n) and left-shift (multiply by 2n) 
operations. This operation will fill left and right values with zeros as necessary to fill the 
register. Operating on a value which contains an x or a z gives an x result in all bit 
positions. Some examples of using the shift operators are presented in Listing 1-23. 

Listing 1-23 Shift Operator Examples 

module shifter (clk, resetn, shift_right_test, shift_left_test); 
input  clk, resetn; 
input  shift_right_test; 
input  shift_left_test; 
reg [3:0] a; 
reg [3:0] b; 
reg [3:0] c; 
reg   d; 
reg [3:0] e, f; 
  
 always @ (posedge clk or negedge resetn) 
 begin 
  if (~resetn) // Active low asynchronous reset. 
  begin 
 
  a <= 'b1001; 
  b <= 0; // It’s bad form to async set 

//  values like this. 
  c <= 0;  
  d <= 0; 
  e <= 'bx000; 
  end 
 
  else if (shift_right_test) 
  begin 
 
  c <=  a >> 2; // c gets assigned value of 

//  0010. 
  d <= a >> 5; // Regardless of the value 

//  of a, d will always get 
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//  assigned to 0. 
// Verilog will not complain 
//  about this; use caution. 

  f <= e >> 1;  // Result is xxxx because of 
//  x in e. 

  end 
 
  else if (shift_left_test) 
  begin 
 
  c <=  a << 2;  // c gets assigned value of 

//  0100. 
  d <= a << 5;  // Regardless of the value 

//  of a, d will always get 
   //  assigned to 0. 
   // Verilog will not complain 
   //  about this; use caution. 

  f <= e << 1;  // Result is xxxx because of 
//  of x in e. 

  end 
 
  else 
  begin 
  d  <=  0; // Assign values default to avoid 

  //  unwanted latches. 
  e <= 0;  
  f <= 0; 
  end 
 
 end 
 endmodule 

Conditional Operator  

A shorthand method of doing a conditional uses a ternary form (which means 
arranged in order by threes). 

output_assignment <= expression ? true_assignment : 
false_assignment; 

 
This is a common way of defining a MUX. If the expression being evaluated resolves 

to x or z, the output_bus is evaluated bit-by-bit, and Verilog will try to resolve the output 
values. If both input bits are 1 (which means the input condition doesn't matter), then the 
output bit is a 1. Same for both input bits being 0. Any bits that can't be resolved are 
assigned an x value. If the true_assignment or the false_assignment register width is not 
wide enough to fill the output_assignment, the output_assignment bits are left-filled with 
zeros. See Listing 1-24. 
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Listing 1-24 Conditional Example 

 module cond_tst (clk, resetn, tristate_control, input_bus, 
output_bus); 
 input  clk, resetn; 
 input  tristate_control; 
 input  [7:0] input_bus; 
 output  output_bus; 
 reg  [7:0] output_bus; 
  
 always @ (posedge clk or negedge resetn) 
 begin 
  if (!resetn) // Active low asynchronous reset. 
  output_bus <= 8'bz; 
 
  else 
 
// Assign output_bus = input_bus if tristate_control is 
//  true and assign output_bus = high impedance if 
//  tristate_control is false.  
 output_bus <= tristate_control ? input_bus : 8'bz; 
 
 end 
 endmodule 

Math Operators 

Verilog supports a small set of math operators including addition (+), subtraction (-) , 
multiplication (*), division (/), and modulus (%); however, the synthesis tool probably 
limits the usage of multiplication and division to constant powers of two (in other words, a 
left shifter or right shifter will be synthesized) and may not support modulus. The + and - 
math operators will instantiate preoptimized adders. Verilog assumes all reg and wire 
variables are unsigned. 

Parameters  

Parameters are a useful way of making constants values more readable in the code. 
Parameters are used only in the modules where they are defined, but they can be changed 
by higher-level modules. Parameters cannot be changed at run time, but they can be 
changed at compile time. This is useful in cases where a parameter changes the defined 
number of signals or the number of instances some construct is used. Not all parameters 
have to be assigned, but if there is a positional assignment list, parameters can't be skipped. 

A parameter can also be defined in terms of other constants or parameters. To aid in 
reading the code, some people use upper-case characters for parameters. 
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Listings 1-25 and 1-26 demonstrate Verilog hierarchy, where a module list descends 
into the hierarchy, starting at the top, and with module names separated by periods. 

Listing 1-25 Parameter Example, Top Module 

 module top; 
 reg  clk, resetn; 
 parameter  byte_width = 8; 
 defparam 
  u1.reg_width  = 16; // This parameter will 

//  replace the first 
//  parameter found in 
//  the u1 instantiation 
//  of reg_width. 

 defparam 
  u2.reg_width  = byte_width * 2;  
 parm_tst u1 (clk, reset, output_bus);  // Create a version 

//  of parm_tst with 
//  reg_width = 16.  

 parm_tst u2 (clk, reset, output_bus); // This version of 
//  parm_tst also has  
//  reg_width of 16. 

 parm_tst u3 (clk, reset, output_bus); // This version of 
//  parm_tst has a 
//  reg_width of 8. 

 endmodule 

Listing 1-26 Parameter Example, Lower Module 

 module  parm_tst (clk, resetn, output_bus); 
 input  clk, resetn; 
 parameter  reg_width = 8;  // This constant can be 

// overridden by a parameter 
     // value passed into the 

   // module. 
 parameter  byte_signal  = 8'd99; 
 parameter byte_signal_true = 8'hff; 
 parameter  byte_signal_false = 8'h00; 
 output  [reg_width - 1 : 0] output_bus; 
 reg   [reg_width - 1 : 0] output_bus; 
 reg  [7:0] byte_count; 
 
 always @ (posedge clk or negedge resetn) 
 begin 
  if (~resetn) // Active low asynchronous reset. 
  begin 
  output_bus <= 8'b0; 
  byte_count <= 8’b0; 
  end 
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  else if (byte_count == byte_signal) 
  output_bus <= byte_signal_true; 
  else 
  begin 
  output_bus <= byte_signal_false; 
  byte_count <= byte_count + 1; 
  end 
 end 
 endmodule 

Concatenations  

Concatenations are groupings of signals or values and are enclosed in curly brackets 
{} with commas separating the concatenated expressions, as shown in Listing 1-27. All 
concatenated values must be sized. Note the use of [ ] to identify the bit select or register 
index. It’s legal to define a register like backwards_reg, but, regardless of the numbers 
used, the leftmost definition is always the most significant bit. Usually, you'll see the 
largest number occurring on the left side of the colon (:) unless a one-dimensional array of 
variables (like a RAM) is being created. 

Listing 1-27 Concatenation Example 

module backward; 
reg [0:2] backwards_reg;  
reg [2:0] test; 
/* {1'b0, test, 8'h55} is the same as: 
 
{1'b0, test[2], test[1], test[0], 1'b0, 1'b1, 1'b0, 1'b1, 1'b0, 
1'b1, 1'b0, 1'b1} */ 
 
always @ (test) 
 begin 
 
 test  = backwards_reg; 
// The assignment above is equivalent to the assignments below: 
 test[2] = backwards_reg[0]; 
 test[1] = backwards_reg[1]; 
 test[0] = backwards_reg[2]; 
 end 
endmodule 


