
1

C H A P T E R 1

Verilog Design in the Real World

The challenges facing digital design
engineers in the Real World have changed as technology has advanced. Designs are faster,
use larger numbers of gates, and are physically smaller. Packages have many fine-pitch
pins. However, the underlying design concerns have not changed, nor will they change in
the future. The designer must create designs that:

• are understandable to others who will work on the design later.

• are logically correct. The design must actually implement the specified logic
correctly. The designer collects user specifications, device parameters, and
design entry rules, then creates a design that meets the needs of the end user.

• perform under worst-case conditions of temperature and process variation. As
devices age and are exposed to changes in temperature, the performance of the
circuit elements change. Temperature changes can be self-generated or caused
by external heat sources. No two devices are exactly equivalent, particularly

 2 Verilog Design in the Real World Chapter 1

devices that were manufactured at different times, perhaps at different
foundries and perhaps with different design rules. Variations in the device
timing specifications, including clock skew, register setup and hold times,
propagation delay times, and output rise/fall times must be accounted for.

• are reliable. The end design cannot exceed the package power dissipation
limits. Each device has an operational temperature range. For example, a
device rated for commercial operation has a temperature rating of 0 to 70
degrees C (32 to 160 degrees F). The device temperature includes the ambient
temperature (the temperature of the air surrounding the product when it is in
use), temperature increases due to heat-generating sources inside the product,
and heat generated by the devices of the design itself. Internally generated
temperature rises are proportional to the number of gates and the speed at
which they are changing states.

• do not generate more EMI/RFI than necessary to accomplish the job and meet
EMI/RFI specifications.

• are testable and can be proven to meet the specifications.

• do not exceed the power consumption goals (for example, in a battery-operated
circuit).

These requirements exist regardless of the final form of the design and regardless of
the engineering tools used to create and test the design.

SYNTHESIS: the translation of a high-level design description to target hardware. For the
purposes of this book, synthesis represents all the processes that convert Verilog code into a
netlist that can be implemented in hardware.

The job of the digital designer includes writing HDL code intended for synthesis.

This HDL code will be implemented in the target hardware and defines the operation of the
shippable product. The designer also writes code intended to stimulate and test the output
of the design. The designer writes code in a language that is easy for humans to
understand. This code must be translated by a compiler into a form appropriate for the final
hardware implementation.

Why HDL?
There are other methods of creating a digital design, for example: using a schematic. A
schematic has some advantages: it’s easy to create a design more tailored to the FPGA, and a
more compact and faster design can be created. However, a schematic is not portable and
schematics become unmanageable when a design contains more than 10 or 20 sheets. For
large and portable designs, HDL is the best method.

Verilog Design in the Real World Chapter 1 3

As a contrast between a Verilog design found in other books and a Real World design,
consider the code fragments in Listings 1-1 and 1-2.

Listing 1-1 Non- Real World Example

// Transfer the content of register b to register a.
 a <= b;

Listing 1-2 Real World Example

/* Signal b must transfer to signal a in less than 7.3 nsec in a
–3 speed grade device as part of a much larger design that must
draw less than 80 uA while in standby and 800 uA while operating.
The whole design must cost less than $1.47, pass CE testing, and
take less than two months to be written, debugged, integrated,
documented, and shipped to the customer. Signal a must be
synchronized to the 75 MHz system clock and reset by the global
system reset. The signal b input should be located at or near pin
79 on the 208-pin package in order to help meet the setup and
hold requirement of register a.*/

 a <= b;

To illustrate the design process, let’s follow a trivial example from concept to
delivery and examine the issues that the designer confronts when implementing the design.
Don’t worry if the Verilog language elements are unfamiliar; they will be covered in detail
later in this chapter.

TRIVIAL OVERHEAT DETECTOR EXAMPLE

Sarah, the Engineering Manager, writes the following email to Sam, the digital designer.

To: sam@engineering
From: sarah@management
Subject: Hot Design Project.

The customer wants a red light that turns on and stays on if a
button is pressed and if their machine is overheating. They
want it yesterday, it needs to be battery operated, and has to
have a final build cost of $0.02 so the company can make money
when they sell it for $9.95.

 4 Verilog Design in the Real World Chapter 1

First Sam estimates the scope of the design. From experience, she determines that
this circuit is very similar to a design she did last year. She counts the gates of the previous
design, factors in the differences between the two designs, and decides the design is
approximately 20 gates. She considers the speed that the design must run at and any other
complicating factors she can think of, including the error she made in estimating
complexity of the previous design and the fact that she's already purchased airline tickets
for a week of vacation. She knows that, overall, including design, test, integration, and
documentation, she can design 2000 gates a month without working significant overtime.
She counts the number of pins (the specification lists a pushbutton input, an overheat input,
and an overheat output, but Sarah realizes that she’ll need to add at least a reset and clock
input). From the gate-count estimate and the pin estimate she can select a device. She picks
a device that has more pins than she needs because she knows the design will grow as
features are added. She picks an FPGA package from a family that has larger and faster
parts available so she is not stuck if she needs more logic or faster speed. Now she sends a
preliminary schedule and part selection to her boss and starts working on the design. Her
boss will thank her for her thorough work on the cost and schedule estimates, but will insist
that the job be done faster to be ready for an important trade show and cheaper to satisfy
the marketing department.

Keep in mind that rarely will your estimates be low. Even when we know better,
engineers are eternally optimistic. Unless you are very smart and very lucky, your estimate
will not allow enough contingency to cover growth of the design (feature-creep) the hassles
associated with fitting a high-speed design into a part that is too small, and the other 1001
things that can go wrong. These estimating errors result in overtime hours and increased
project cost.

Now that Sam has taken care of the up-front project-related chores, she can start
working on the design. Sam recognizes that a simple flipflop circuit will perform this
function. She also recognizes, because of the problems she had with an earlier project, that
a synchronous digital design is the right approach to solving this problem. Sam creates a
Verilog design that looks like Listing 1-3.

Listing 1-3 Overheat Detector Design Example

module overheat (clock, reset, overheat_in, pushbutton_in,
overheat_out);
input clock, reset, overheat_in, pushbutton_in;
output overheat_out;
reg overheat_out;
reg pushbutton_sync1, pushbutton_sync2;
reg overheat_in_sync1, overheat_in_sync2;

// Always synchronize inputs that are not phase related to
// the system clock.
// Use double-synchronizing flipflops for external signals
// to minimize metastability problems.

Verilog Design in the Real World Chapter 1 5

// Even better would be some type of filtering and latching
// for poorly behaving external signals that will bounce
// and have slow rise/fall times.

always @ (posedge clock or posedge reset)
begin
 if (reset)
 begin
 pushbutton_sync1 <= 1’b0;
 pushbutton_sync2 <= 1’b0;
 overheat_in_sync1 <= 1’b0;
 overheat_in_sync2 <= 1’b0;
 end
 else begin
 pushbutton_sync1 <= pushbutton_in;
 pushbutton_sync2 <= pushbutton_sync1;
 overheat_in_sync1 <= overheat_in;
 overheat_in_sync2 <= overheat_in_sync1;
 end
end

// Latch the overheat output signal when overheat is
// asserted and the user presses the pushbutton.
always @ (posedge clock or posedge reset)
begin
 if (reset)
 overheat_out <= 1’b0;

// Overheat_out is held forever (or until reset).
 else if (overheat_in_sync2 && pushbutton_sync2)
 overheat_out <= 1’b1;
end

endmodule

This seems like a lot of typing for such a simple circuit, doesn’t it? The first always
element appears to do nothing and looks like it could be deleted. In a previous design, Sam
had problems (which will be discussed in Chapter 2) with erratic logic behavior, so she
always double-synchronizes inputs from the Real World. The second always block asserts
pushbutton_out when overheat_in_sync and pushbutton_sync are asserted.

A useful method estimating the size of a design is to count the semicolons. A utility called
metric, which counts semicolons in a module, is included on the Real World FPGA Design with
Verilog CD-ROM. This method should be used informally to avoid designers developing a
semicolon-rich coding style :^).

 6 Verilog Design in the Real World Chapter 1

Sam has done the fun part of the design: the actual designing of the code. She
quickly runs her compiler, simulator, or Lint program to make sure there are no
typographical or syntax errors. Next, because writing test vectors is almost as much fun as
designing the code, Sam does a test fixture and checks out the behavior of her design. Her
test fixture looks something like Listing 1-4.

Listing 1-4 Overheat Detector Test Fixture

// Overheat detector test fixture.
// Created by Sam Stephens

`timescale 1ns / 1ns

module oheat_tf;

reg clock, system_reset, overheat_in, pushbutton_in;

parameter clk_period = 33.333;

overheat u1 (clock, system_reset, overheat_in, pushbutton_in,
overheat_out);

always begin
 #clk_period clock = ~clock; // Generate system clock.
 end

initial
begin
 clock = 0;
 system_reset = 1; // Assert reset.
 overheat_in = 0;
 pushbutton_in = 0;
#75 system_reset = 0;
end

// Toggle the input and see if overheat_out gets asserted.
always
 begin
#200 overheat_in = 1;
#100 pushbutton_in = 1;
#100 pushbutton_in = 0;
#200 overheat_in = 0;
#100 $finish;
 end

endmodule

Verilog Design in the Real World Chapter 1 7

Sam invokes her favorite simulation tool and examines the output waveforms to make sure
the output is logically correct. The output waveform looks like Figure 1-1 and appears
okay. Generally Sam will write and run an automated test-fixture program (as described in
Chapter 5), but the design is simple and the boss has ordered her to quit being such a
fussbudget and get on with it.

Figure 1-1 Overheat Detector Design Output Waveforms

Sam assigns input/output pins and defines timing constraints for her design. She
knows that the system does not have to run fast, so she selects the lowest available crystal
oscillator to drive the clock input. This gives the lowest current consumption to maximize
the life of the battery. Sam submits the design to her FPGA compiler and gets a report back
that tells her that the design fits into the device she chose and that timing constraints are
met. From experience, she knows that a design running this slowly will not have
temperature or RFI emission problems. She checks the design into the revision control
system, sends an email to her boss to tell her the job is complete, and takes the rest of the
day off to go rollerblading.

This probably seems like a lot of work to complete a job that consists of six flipflops,
but Sam was lucky. The design fit into the device she chose, the design ran at the right
speed, the design did not have temperature/EMI/RFI problems, the specifications didn’t
change halfway through the design, the software tools and her workstation didn’t crash,
and she avoided the 1001 other hazards that exist in the Real World.

ENGINEERING SCHEDULE: too often, a management tool for browbeating an engineer
into working free overtime. Engineers, even when they should really know better, are generally
too optimistic when creating schedules, thus, they are almost always late.

We have to be mature about this subject: without a deadline, nothing would ever get
finished. Still, most jobs should be completed with little overtime.

Some problems can be avoided by doing thorough design work up front. Sam was

careful not to start coding until she completely understood the requirements of the design.

 8 Verilog Design in the Real World Chapter 1

GIGO (GARBAGE IN, GARBAGE OUT)

There is a great temptation to start coding before the product is well understood. After all, to
an engineer, coding is fun and planning is not.

I don’t care how much fun the job is, don’t start coding the design until you know what the end
result is supposed to be.

This book emphasizes design approaches that minimize problems and unpleasant
surprises.

SYNTHESIZABLE VERILOG ELEMENTS

Verilog was designed as a simulation language and many of its elements do not translate to
hardware. Verilog is a large and complete simulation language. Only about 10% of it is
synthesizable. This chapter covers the fundamental properties of the 10% that the FPGA
designer needs.

 Exactly which Verilog elements are considered synthesizable is a design problem
faced by the synthesis vendor. Generally, an “unofficial” subset of the Verilog language
elements will be supported by all vendors, but the current Verilog specification does not
contain any minimum list synthesizable language elements. An IEEE working group is
writing a specification called IEEE Std 1364.1 RTL Synthesis Subset to define a minimum
subset of synthesizable Verilog language elements. Whether this specification is ever
released – and, once released, is embraced by users and synthesis tool vendors - remains to
be seen at this writing.

Verilog looks similar to the C programming language, but keep in mind that C
defines sequential processes (after all, only one line of code can be executed by a processor
at a time), whereas Verilog can define both sequential and parallel processes. Listing 1-5
presents some sample code with common synthesizable Verilog elements.

Listing 1-5 Example Verilog Program

module hello (in1, in2, in3, out1, out2, clk, rst, bidir_signal,
output_enable);// See note 1.
/* See note 2.
Comments that span multiple lines can be identified like this.
*/
input in1, in2, in3, clk, rst, output_enable; // See note 3.
output out1, out2;

Verilog Design in the Real World Chapter 1 9

inout bidir_signal;
reg out2; // See note 4
wire out1;

assign out1 = in1 & in2; // See note 5.
assign bidir_signal = output_enable ? out2 : 1’bz; // See note 6.

always @ (posedge clk or posedge rst) // See note 7.
 begin // See note 8.

if (rst) out2 <= 1’b0; // See note 9.
else out2 <= (in3 & bidir_signal);
end

endmodule

Note 1: The first element of a module is the module name. Modules are the building
blocks of a Verilog design. In this book, the module name will be the same as the file name
(with a .v extension added) and each file will contain a single module. This is not required
but helps keep the design structure intelligible.

The port list follows the module/file name. This list contains the signals that connect
this module to other modules and to the outside world. Signals used in the module that are
not in the port list are local to the module and will not be connected to other modules. Note
the use of a semicolon as a separator to isolate Verilog elements. One confusing aspect of
Verilog is that not all lines end with a semicolon, particularly the compiler instructions
(always statements, if statements, case statements, etc.). It takes the Verilog newbie some
time to get comfortable with Verilog syntax.

Note 2: Comments follow double forward slashes or can be enclosed within a /*

Comment here */ pair. The latter type of comment delimiting can’t be nested. The
detection of a /* following another /* will be flagged as an error.

Note 3: The port direction list follows the module port list. This list defines whether

the signals are inputs, outputs, or inouts (bidirectional) ports of the module. All port list
signals are wires. A wire is simply a net similar to an interconnection on a printed circuit
card.

Note 4: Signals are either wires (interconnects similar to traces and pads on a circuit

board) or registers (a signal storage element like a latch or a flipflop). Wires can be driven
by a register or by combinational assignments. It is illegal to connect two registers together
inside a module. Verilog assumes that a signal, unless otherwise defined in the code, is a
one-bit-wide wire. This can be a problem, the synthesis tool will not test vector width. This
is one good reason for using a Verilog Lint tool.

Note 5: The assign statement is a continuous (combinational) logic assignment.

 10 Verilog Design in the Real World Chapter 1

Note 6: The assignment of the bidir_signal uses a conditional assignment; if
output_enable is true, bidir_signal is assigned the value of out2, otherwise it’s assigned the
tri-state value z.

Note 7: Always blocks are sequential blocks. The signal list following the @ and

inside the parenthesis is called the event sensitivity list, and the synthesis tool will extract
block control signals from this list. The requirement of a sensitivity list comes from
Verilog’s simulation heritage. The simulator keeps a list of monitored signals to reduce the
complexity of the simulation model; the logic is evaluated only when signals on the
sensitivity list change. This allows simulation time to pass quickly when signals are not
changing. This list doesn’t mean much to the synthesis tool, except, that by convention,
when certain signals are extracted for control, these input signals must appear on the
sensitivity list. The compiler will issue a warning if the sensitivity list is not complete.
These warnings should be resolved to assure that the synthesis result matches simulation.

The sensitivity list can be a list of signals (in which case, any change on any listed
signal is detected and acted upon), posedge (rising-edge triggered), or negedge (falling-
edge triggered). Posedge and negedge triggers can be mixed, but if posedge or negedge is
used for one control, posedge or negedge must be used for ALL controls for this block.

Note 8: The begin/end command isolates code fragments. If the code can be

expressed using a single semicolon, the begin/end pair is optional.

Note 9: We’re using nonblocking assignments (<=) in the always block. If blocking

assignments are used, the order of the instructions may cause unwanted latches to be
synthesized so that a value can be held while earlier variables are updated. Generally, the
designer wants all elements in the sequential (always) block updated simultaneously, hence
the use of the nonblocking assignment, which emulates the clock-to-Q delay. The clock-to-
Q delay assures that cascaded flipflops (like a shift register) operate as expected. They are
called nonblocking because updating an earlier variable will not block the updating of a
later variable.

The rst input, when coded in this manner (i.e., a nonsynchronous signal used in a

synchronous module), is interpreted as asynchronous reset. This is not Verilog requirement
per IEEE Std 1364 but is an accepted convention.

Verilog language elements are case sensitive (X and x are not equivalent, for
example). Like the C programming language, Verilog is tolerant of white space. The
designer uses white space to assist legibility. It’s legal to combine lines as so:

a = b&c; d = e&f; g = h | i; j = k^m; n = o&p;

but designers who write hard-to-read code like this are subject to the loss of their free
sodas.

Verilog Design in the Real World Chapter 1
11

PORTABLE VERILOG CODE: It is desirable to write code that can be compiled by any
vendor’s compiler and can be implemented in any hardware technology with identical results.
Unfortunately, to write high-performance (where the design runs at high speed) and efficient
(where the design uses minimum hardware resources by targeting architecture-specific
features) code, the designer often must use architecture- and compiler-specific commands and
constructs. Portability is often not a practical or achievable design requirement. It’s a great
goal, even if we never reach it.

We’re not going to cover operator precedence. If you have a required precedence,

then use parenthesis to be explicit about that precedence. The reader should be able to read
the precedence in the source code, not be forced to memorize or look up the built-in
language precedence(s). Don’t create complicated structures; use the simplest and clearest
coding style possible. Listings 1-6 and 1-7 illustrate equivalent coding structures with
implicit and explicit ‘don’t-cares’.

Listing 1-6 Casex (Implicit Don’t Care) Code Fragment

// Indexing example with implicit 'don't cares'.
reg [7:0] test_vector;
Casex (test_vector)
8’bxxxx0001:
 begin
// Insert code here.
// This coding style results in a parallel case structure (MUX).
 end
endcase

Listing 1-7 Explicit Don’t Care Code Fragment

// Indexing example with explicit 'don't cares'.
reg [7:0] test_vector;
if (test_vector[3:0] == 4’b0001)
 begin
 // Insert code here.

// This coding style results in priority encoded logic.
 end

One feature of Verilog the designer must conquer is whether a priority-encoded (deep and
slow) structure or a MUX (wide and fast) structure is desired. Nested if-then statements
tend to create priority-encoded logic. Case statements tend to create MUX logic elements.
There will be more discussion of this topic later.

 12 Verilog Design in the Real World Chapter 1

Do not assume a Verilog register is a flipflop of some type. In Verilog, a register is
simply a memory storage element. This is one of the first of the features (or quirks) the
Verilog designer grapples with. A register might synthesize to a flipflop (which is a digital
construct) or a latch (which is an analog construct), a wire, or might be absorbed during
optimization. Verilog assumes that a variable not explicitly changed should hold its value.
This is a handy feature (compared to Altera's AHDL, which assumes that a variable not
mentioned gets cleared). Verilog, with merciless glee, will instantiate latches to hold a
variable's state. The designer must structure the code so that the intended hardware
construct is synthesized and must be constantly alert to the possibility that the latches may
be synthesized. Verilog does not include instructions that require the synthesizer to use a
certain construct. By using conventions defined by the synthesis vendor, and making sure
all input conditions are completely defined, the proper interpretation will be made by the
synthesizer.

VERILOG HIERARCHY

A Verilog design consists of a top-level module and one or many lower-level modules. The
top-level module can be instantiated by a simulation module that applies test stimulus to
the device pins. The top-level device module generally contains the list of ports that
connect to the outside world (device pins) and interconnect between lower-level modules
and multiplexing logic for control of bidirectional I/O pins or tristate device pins. The
exact way the design is structured depends on designer preference.

Module instances are defined as follows:

module_name instance_name (port list);

 For example, the code in Listing 1-8 creates four instances of assorted primitive
gates and the post-synthesis schematic for this design is shown in Figure 1-2.

Listing 1-8 Structural Example

module gates (in1,in2,in3,out4);
input in1, in2, in3;
output out4;
wire in1, in2, in3, out1, out2, out3, out4;

and u1 (out1, in1, in2); // Structural (schematic-like)
or u2 (out2, out1, in3); // constructs.
xor u3 (out3, out1, out2);
not u4 (out4, out3);
endmodule

Verilog Design in the Real World Chapter 1
13

Figure 1-2 Gates Example Schematic

This example uses positional assignment. Signals are connected in the same order that they
are listed in the instantiated module port list(s). Generally, the designer will cut and paste
the port list to assure they are identical. A requirement for a primitive port listing is that
the output(s) occur first on the port list followed by the input(s).

The module port list can also use named assignments (exception: primitives require
positional assignment), in which case the order of the signals in the port list is arbitrary.
For named assignments, the format is .lower-level signal name (higher-level module signal
name). The module of Listing 1-9 includes examples of both named and positional
assignments.

Listing 1-9 Named and Positional Assignment Example

module and_top;
wire test_in1, test_in2, test_in3;
wire test_out1, test_out2;

// Named assignment where the port order doesn’t matter.
user_and u1 (.out1(test_out1), .in1(test_in1), .in2(test_in2));

// Positional assignment.
user_and u2 (test_out2, test_in2), (test_in3));
endmodule

module user_and (out1, in1, in2);
input in1, in2;
output out1;

assign out1 = (in1 & in2);
endmodule

 14 Verilog Design in the Real World Chapter 1

BUILT-IN LOGIC PRIMITIVES

Tables 1-1 through 1-12 describe Verilog two-input functions. The input combinations are
read down and across. Verilog primitives are not limited to two inputs, and the logic for
primitives with more inputs can be extrapolated from these tables.

and 0 1 x z

0 0 0 0 0

1 0 1 x x

x 0 x x x

z 0 x x x

Table 1-1 AND Gate Logic

nand 0 1 x z

0 1 1 1 1

1 1 0 x z

x 1 x x z

z 1 x x z

Table 1-2 NAND Gate Logic

or 0 1 x z

0 0 1 x x

1 1 1 1 1

x x 1 x x

z x 1 x x

Table 1-3 OR Gate Logic

Verilog Design in the Real World Chapter 1
15

nor 0 1 x z

0 1 0 x x

1 0 0 0 0

x x 0 x x

z x 0 x x

Table 1-4 NOR Gate Logic

xor 0 1 x z

0 0 1 x x

1 1 0 x x

x x x x x

z x x x x

Table 1-5 XOR Gate Logic

 16 Verilog Design in the Real World Chapter 1

xnor 0 1 x z

0 1 0 x x

1 0 1 x x

x x x x x

z x x x x

Table 1-6 XNOR (Equivalence) Gate Logic

input output

0 0

1 1

x x

z x

Table 1-7 buf (buffer) Gate Logic

input output

0 1

1 0

x x

z x

Table 1-8 not (inverting buffer) Gate Logic

Verilog Design in the Real World Chapter 1
17

bufif0 control = 0 control = 1 control = x control = z

data = 0 0 z x x

data = 1 1 z x x

data = x x z x x

data = z x z x x

 Table 1-9 bufif0 (tristate buffer, low enable) Gate Logic

bufif0 control = 0 control = 1 control = x control = z

data = 0 z 0 0 or z 0 or z

data = 1 z 1 1 or z 1 or z

data = x z x x x

data = z z x x x

Table 1-10 bufif1 (tristate buffer, high enable) Gate Logic

notif0 control = 0 control = 1 control = x control = z

data = 0 1 z 1 or z 1 or z

data = 1 0 z 0 or z 0 or z

data = x x z x x

data = z x z x x

Table 1-11 notif0 (tristate inverting buffer, low enable) Gate Logic

 18 Verilog Design in the Real World Chapter 1

notif1 control = 0 control = 1 control = x control = z

data = 0 z 1 1 or z 1 or z

Data = 1 z 0 0 or z x or z

Data = x z x x x

Data = z z x x x

Table 1-12 notif1 (tristate inverting buffer, high enable) Gate Logic

The code fragment in Listing 1-10 illustrates the use of these buffers and Figure 1-3
is the schematic extracted from the synthesized logic.

Listing 1-10 Example of Instantiating Structural Gates

module struct1 (out1, out2, out3, out4, in1, in2, in3, in4, in5,
in6, buf_control);
output out1, out2, out3, out4;
input in1, in2, in3, in4, in5, in6, buf_control;
bufif0 buf1(out1, in1, buf_control);
and and1(out2, in2, in3);
nor nor1(out3, in4, in5);
not not1(out4, in6);
endmodule

Verilog Design in the Real World Chapter 1
19

Figure 1-3 Schematic of Structural Gates

LATCHES AND FLIPFLOPS

Technically, a flipflop is defined as a bistable multivibrator. Not a very helpful definition,
is it? A multivibrator is an analog circuit with two or more outputs, where, if one output is
on, the other(s) will be off. Bistable means an output is binary or digital and has two output
states: high or low. We will extend the output states to include tristate (z).

There are various flavors of flipflops, but generally we will be discussing the clocked
D flipflop in which the output follows the D input after a clock edge. Table 1-13 shows the
function table of a common edge-triggered D flipflop. Note that Table 1-13 Set and Reset
inputs are active-low.

 20 Verilog Design in the Real World Chapter 1

/Set /Reset Clock Data Q /Q

0 1 x x 1 0

1 0 x x 0 1

0 0 x x 1 1 Note 1

1 1 r 1 1 0

1 1 r 0 0 1

1 1 0 x n n

1 1 1 x n n

Note 1: This condition is not stable and is illegal. The problem is, if the /Set and /Reset inputs

are removed simultaneously, the output state will be unknown.
x = don’t care (doesn’t matter).
r = rising edge of clock signal.
n = no change, previous state is held.

Table 1-13 Logic description of a 7474-style D flipflop

The typical FPGA logic element design allows the use of either an asynchronous Set

or Reset, but not both together, so we won’t have to worry about the illegal input condition
where both are asserted. This book is going to strongly emphasize synchronous design
techniques, so we discourage any connection to a flipflop asynchronous Set or Reset
input except for power-up initialization control. Even in this case, a synchronous
Set/Reset might be more appropriate.

A latch is more of an analog function. It’s helpful to bear in mind that all the
underlying circuits that make up our digital logic are analog! There is no magic flipflop
element. Flipflops are made with transistors and positive feedback: latches.

Verilog Design in the Real World Chapter 1
21

Figure 1-4 Schematic of a Typical CMOS D Flipflop Implementation

Even if you’re the kind of person whose eyes glaze over when you see transistors on a
schematic, you should still notice two things about Figure 1-4. The first thing is that this D
flipflop is made with linear devices, i.e., transistors. If you can always keep the idea in the
back of your head that all digital circuits are built from analog elements that have gain,
impedance, offsets, leakages, and other analog nasties, then you are on the road to being an
excellent digital designer. The second thing to notice is feedback (see highlighted signals)
from the Q and /Q outputs back into the circuit. Feedback is what causes the flipflop to
hold its state.

 22 Verilog Design in the Real World Chapter 1

Figure 1-5 Schematic of a Typical CMOS D Flipflop Implementation (Gates)

If you are more comfortable with gates, a different view of the same D flipflop is shown in
Figure 1-5. This is a higher level of abstraction; the transistors and resistors are hidden.
Those pesky transistors are still there! Again, note highlighted feedback path.

Listing 1-11 shows a Verilog version of a latch, and Figure 1-6 shows the schematic
extracted from this Verilog design. The underlying circuit that implements RS Latch
(LATRS) is a circuit functionally similar to Figure 1-5. It’s not a digital circuit!

Figure 1-6 Schematic of Latch Flipflop Implementation

Verilog Design in the Real World Chapter 1
23

Listing 1-11 Latch Verilog Code

// Your Basic Latch.
// This is a bad coding style: do not create latches this way!

module latch(q, q_not, set, reset);
output q, q_not;
input set, reset;
reg q;

wire set, reset;

assign q_not = ~q;

 always @ (set or reset)
 begin
 if (set)
 q = 1;
 else if (reset)
 q = 0;
 end
endmodule

The latch uses feedback to hold a state: this feedback is implied in Listing 1-11 by
not defining q for all combinations of input conditions. For undefined inputs, q will hold its
previous state. The logic that determines a latch output state may include a clock signal but
typically does not and is therefore a level-sensitive rather than an edge-triggered construct.

Listing 1-12 Verilog Code That Creates a Latch

module lev_lat(test_in1, enable_input, test_out1);
input test_in1, enable_input;
output test_out1;
reg test_out1;

always @ (test_in1 or enable_input)
if (enable_input) begin

test_out1 <= test_in1;
end

endmodule

In the example of Listing 1-12, test_out1 will change only while enable_input is
high, then test_out1 will follow test_in1. This will synthesize to a combinational latch as
illustrated in Figure 1-7. We’ll discourage this type of coding style unless the latch is

 24 Verilog Design in the Real World Chapter 1

driven by a synchronous circuit and drives a synchronous circuit, resulting in a
pseudosynchronous design.

Is a latch a good design construct? That depends on the designer’s intent. If the
designer intended to create a latch construct, then a synthesized latch is good. If the
designer did not intend to create a latch construct (which Verilog is very inclined to
create), then a latch is bad. In general, we will scrutinize all synthesized latches
suspiciously, because they are, at best, pseudosynchronous constructs.

Figure 1-7 Latch Circuit Schematic (Reset-Set Latch)

A better design infers a clocked flipflop structure, as in Listing 1-13, with the
respective schematic shown in Figure 1-8.

Listing 1-13 Cascaded Flipflops with Synchronous Reset

module edge_lat (clk, rst, test_in1, enable_input, test_out2);
input clk, rst, test_in1, enable_input;
reg test_out1, test_out2;
output test_out2;

always @ (posedge clk or posedge rst)
begin

if (rst) test_out1 <= 0;
else if (enable_input) begin

 test_out2 <= test_out1;
 test_out1 <= test_in1;
 end
end
endmodule

Verilog Design in the Real World Chapter 1
25

Figure 1-8 Schematic for Cascaded Flipflops with Synchronous Reset

Listing 1-13 demonstrates a flipflop with synchronous reset where the reset input is
evaluated only on clock edges. If the target hardware does not support a synchronous reset,
logic will be added to set the D input low when reset is asserted as shown in Figure 1-9.
Listing 1-14 illustrates a flipflop with asynchronous reset where the rst signal is
“evaluated” on a continuous basis. Notice that the dedicated global set/reset (GSR) resource
of the flipflops are not used. It would be much more efficient to synthesize a synchronous
reset signal and connect it to the GSR. This type of assignment is covered in Chapter 5.

Listing 1-14 Verilog Flipflop with Asynchronous Reset

module edgetrig (clk, rst, test_in1, enable_input, test_out2);
input clk, rst, test_in1, enable_input;
reg test_out1, test_out1;
output test_out2;

always @ (posedge clk)
begin

if (rst)
test_out1 <= 0;

else if (enable_input) begin
 test_out2 <= test_out1;
 test_out1 <= test_in1;
 end
end
endmodule

 26 Verilog Design in the Real World Chapter 1

Figure 1-9 Schematic for Cascaded Flipflops with Synchronous Reset

BLOCKING AND NONBLOCKING ASSIGNMENTS

So far, we’ve used only nonblocking assignments (<=). A blocking assignment, when the
variable is defined outside the always statement where it is used, holds off future
assignments until the previous assignment is complete. How can synthesized hardware
hold off an assignment? By storing an old value in a latch, that’s how. This means that
blocking assignments are order sensitive; they are executed in the begin/end sequential
block in the order in which they are encountered by the compiler (top to bottom).

Listing 1-15 Blocking Statement Example 1

/* The blocking statement of the first blocking assignment must
be completed before any later assignments will be performed. In
this example, two sets of flipflops will be created (see Figure
1-10) because an intermediate value is required to create
data_out. */

module blocking(clock, reset, data_in, data_out);
input clock, reset;
input data_in;

Verilog Design in the Real World Chapter 1
27

reg data_temp;
output data_out;
reg data_out;

 always @ (posedge clock or posedge reset)
 if (reset)
 begin
 data_out = 0;
 data_temp = 0;
 end
 else
 begin
 data_out = data_temp;
 data_temp = data_in;
 end
endmodule

The synthesized logic for Listing 1-15, shown in Figure 1-10, illustrates the blocking
assignment of data_temp and data_out: a flipflop is synthesized to create the intermediate
(pipelined) data_temp variable.

Figure 1-11 Blocking Statement Example 1

In Listing 1-16, the blocking statements are reversed. Notice how the resulting logic,
as illustrated in Figure 1-11, is different from the logic of Figure 1-10.

Listing 1-16 Blocking Statement Example 2

 28 Verilog Design in the Real World Chapter 1

/* The blocking statements are reversed, making the data_temp
variable redundant, so data_temp gets optimized out. One set of
flipflops is created because the intermediate value is ‘blocked’
and not needed to create data_out. */

module block2(clock, reset, data_in, data_out);
 input clock, reset, data_in;
 reg data_temp;
 output data_out;
 reg data_out;

 always @ (posedge clock or posedge reset)
 if (reset) begin
 data_out = 0;
 data_temp = 0;
 end
 else begin
 data_temp = data_in; // Switch order.
 data_out = data_temp;
 end
endmodule

In a set of blocking assignments that appear in the same always block, the order in
which the statements are evaluated is significant. The use of nonblocking assignments avoids
order sensitivity and tends to create flipflops: this is generally what the designer intends.

Figure 1-11 Blocking Assignment Example 2

Verilog Design in the Real World Chapter 1
29

If we replace the blocking assignments with nonblocking assignments, the order of
the sequential instructions no longer matters. All right-hand values are evaluated at the
positive edge of the clock, and all assignments are made at the same time. The synthesized
logic for Listing 1-17, shown in Figure 1-12, illustrates the nonblocking assignments of
data_temp and data_out and resulting synthesized design which is equivalent to the logic of
Listing 1-16.

Listing 1-17 Non-Blocking Assignment Example

// Nonblocking Logic Example
// The order of the nonblocking assignments is not significant.

module nonblock(clock, reset, data_in, data_out);
input clock, reset;
input data_in;
reg data_temp;
output data_out;
reg data_out;

 always @ (posedge clock or posedge reset)
 if (reset)
 begin
 data_out <= 0;
 data_temp <= 0;
 end
 else
 begin
 data_out <= data_temp;
 data_temp <= data_in;
 end
endmodule

 30 Verilog Design in the Real World Chapter 1

Figure 1-12 Nonblocking Assignment Example

MISCELLANEOUS VERILOG SYNTAX ITEMS

Numbers

Unless defined otherwise by the designer, a Verilog number is 32 bits wide. The format of a
Verilog integer is size'base value. The ' is the apostrophe or tick, not to be confused with `
(accent grave or back tick) which is used to identify constants or text substitutions. Both
tick and back tick are used in Verilog, which will frustrate a newbie. Underscores are legal
in a number to aid in readability. All numbers are padded to the left with zeros, x’s, or z’s
(if the leftmost defined value is x or z) as necessary. If the number is unsized, the assumed
size is just large enough to hold the defined value when the value gets used for comparison
or assignment. X or x is undefined, Z or z is high impedance. Verilog allows the use of ? in
place of z. Numbers without an explicit base are assumed to be decimal.

Number examples:

 1'b0 // A single bit, zero value.
 'b0 // 32 bits, all zeros.

Verilog Design in the Real World Chapter 1
31

32'b0 // 32 bits, all zeros,
// 0000_0000_0000_0000_0000_0000_0000_0000).

 4'ha // A 4-bit hex number (1010).
 5'h5 // A 5-bit hex number (00101).
 4'hz // zzzz.
 4'h?ZZ? // zzzz; ? is an alternate form of z.
 4'bx // xxxx.

9 // A 32-bit number (it’s padded to the left
// with 28 zeroes).

 a // An illegal number.

Verilog is a loosely typed language. For example, it will accept what looks like an 8-
bit value like 4'hab without complaint (the number will be recognized as 1011 or b and the
upper nibble will be ignored). The use of a Lint program like Verilint will flag problems
like this. Otherwise, the Verilog designer must stay alert to guard against such errors.

Forms of Negation

! is logical negation; the result is a single bit value, true (1) or false (0). ~ (tilde) is
bitwise negation. We can use a ! (sometimes called a bang) to invert a single bit value, and
the result is the same as using a ~ (tilde), but this is a bad habit! As soon as someone comes
in and changes the single bit to a multibit vector, the two operators are no longer
equivalent, and this can be a difficult problem to track down (see Listing 1-18).

Listing 1-18 Negation example

 module negation (clk, resetn);
 input clk, resetn;
 reg [3:0] c, d, e;

 always @ (posedge clk or negedge resetn)
 begin
 if (~resetn) // Active low asynchronous reset.
 begin

 c <= 5; // Bad form to async set a value like

 // this. This is called a magic
 // number and should be a parameter.

 d <= 0;
 e <= 0;
 end
 else begin
 d <= !c; // d gets assigned value of 0;
 e <= ~c; // e gets assigned value of 1010.
 end
 end
 endmodule

 32 Verilog Design in the Real World Chapter 1

Forms of AND/OR

& is the symbol for the AND operation. & is a bitwise AND, && is a logical
(true/false) AND. As illustrated in Listing 1-19, these two forms are not functionally
equivalent.

Listing 1-19 Logical and Bitwise AND Examples

a = 4’b1000 & 4’b0001; // a = 4’b0000;
b = 4’b1000 && 4’b0001; // b = 1’b0.

| (pipe) is the symbol for the OR operation where | is a bitwise OR and || is a logical
OR. As illustrated in Listing 1-20, these two forms are not functionally equivalent.

Listing 1-20 Logical and Bitwise OR Examples

a = 4’b1000 | 4’b0001; // a = 4’b1001;
b = 4’b1000 || 4’b0001; // b = 1’b1.

Listing 1-21 AND/OR Examples

module and_or (clk, resetn, and_test, or_test);
 input clk, resetn, and_test, or_test;
 reg a;
 reg [3:0] b;
 reg [3:0] c;
 reg [3:0] d;
 reg [3:0] e;
 reg [3:0] g;

 always @ (posedge clk or negedge resetn)
 begin

 if (~resetn) // Active low asynchronous reset.
 begin

 a <= 0;
 b <= 4’d4; // Bad form to async set values

// like this, should be a
// parameter.

 c <= 4’d5;
 d <= 0;
 e <= 0;
 g <= 0;
 end

Verilog Design in the Real World Chapter 1
33

 else if (and_test)
 begin

 d <= (c && !a); // d gets assigned value of 0.
 e <= (c & !a); // e gets assigned value of

// 1010.
 g <= (b & c); // g gets assigned the value

// 0100.
 end
 else if (or_test == 1) // Equivalent to simply (or_test).
 begin
 e <= (c | !a); // e gets assigned value of all

// 1's (1111).
 g <= (b | c); // g gets assigned the value 0101.
 end
 else
 begin
 d <= 0; // Assign default values to avoid

// unwanted latches.
 e <= 0;
 g <= 0;
 end

 end
 endmodule

In Listing 1-21, the final else condition bears some comment. We did not cover all
input conditions in the logic above the final else condition. For example, what output do we
want if neither and_test or or_test is asserted? Without the final else defined, Verilog
interprets a change from a defined condition to an undefined condition as a hold condition
(if outputs are not commanded, the last value gets held). This causes latches to be created.
Generally, this is not what the designer intends; thus we need to make sure that all
conditions are defined.

Equality Operators

== === are logical operators, the result is either true or false except that the ==
(called logical equality) version will have an unknown (x) result if any of the compared bits
are x or z. The === (called case equality) version looks for exact match of bits including x's
and z's and returns only a true or false. Prepending a ! (bang) means "is not equal." In the
equality examples of Listing 1-22, there are several if statements that will evaluate to true.
As the block is examined from top to bottom, only the first true condition will be accepted.
The later ones will not be evaluated. This is called priority encoding, and, like instantiating
latches, Verilog has a natural tendency to use this structure. It can result in many levels of
cascaded logic! Pay close attention. The alternative option is more of a MUXstyle of

 34 Verilog Design in the Real World Chapter 1

structure where inputs are evaluated in parallel, which may be what you intend. We'll talk
more about this later.

Listing 1-22 Equality Examples

 module eq_test (clk, resetn, and_test, or_test);
 input clk, resetn, and_test, or_test;
 reg result;
 reg [3:0] b;
 reg [3:0] c;
 reg [3:0] d;
 reg [3:0] e;
 reg [4:0] g;
 reg [3:0] h, i, j;

 always @ (posedge clk or negedge resetn)
 begin

if (~resetn) // Active low asynchronous reset.
begin

 result <= 0; // We'll use this register to
// mirror the equality result.

 b <= 4’b1x00; // Bad form to async set values
 // like this; should be a
 // parameter.

 c <= 4’b1z00;
 d <= 4’b1000;
 e <= 4’b1001;
 g <= 4’b01001;
 h <= 4’b1z00;
 i <= 4’b0110;
 j <= 4’b011x;
 end

// The following test fails.

 else if ((b == d) == 1)
 result <= 1’bx;

 else if (b == d) // This test is the same as previous

// line. Fails.
 result <= 1’bx;

 else if ((b == d) == 0) // This test fails because of the

 // x value in b.
 result <= 1’bx;

 else if ((b != d) == 1) // This test is the same as in the

 // previous line. Fails.
 result <= 1’b0;

Verilog Design in the Real World Chapter 1
35

 else if ((b == d) == 1’bx) // This test passes because the

 // b value is x.
 result <= 1’b1; // All following true conditions

 // will be ignored.

 else if (c === d) // This test fails.
 result <= 1’b0;

 else if (e == g) // This test passes because e is

 // padded with 0's to become equal
 // in size to g.

result <= 1’b0; // Be careful when variables sizes
 // don't match.

 else if (b == c) // This test fails (returns false).
 result <= 1’b0;

 else if (b != c) // This test passes (returns true).
 result <= 1’b1;

 else if (d == e) // This test fails (returns false).
 result <= 1’b0;

 else if (b !== c) // This test passes (returns true).
 result <= 1’b1;

else if (c == h) // This test fails (returns x).
 result <= 1’bx;

 else if (c===h) // This test passes (returns true).
 result <= 1’b1;

 else if (e == !i) // This test passes (returns true).
 result <= 1’b1;

 else if (e != j) // This test fails (returns x).

// An inverted x (unknown) is
// still an unknown.

 result <= 1’bx;

 end
 endmodule

The designer can choose between the following if statement forms:

if (~resetn) ...

if (resetn == 1`b0)

 36 Verilog Design in the Real World Chapter 1

Both are equivalent. Which is easy to read and easier to understand? That's a matter
of opinion. Note the use of an 'n' suffix to indicate an active low (asserted when low or low-
true are other ways to describe this) signal. There are various ways of identifying active low
signals- for example, reset_not, resetl, or reset*, or resetN. It helps to identify the assertion
sense as part of the label; the main thing is to be consistent when selecting labels.

Other equalities are supported, including greater than (>), less than (<), greater than
or equal to (>=), and less than or equal to (<=).

Shift Operators

>> n and << n identify right-shift (divide by 2n) and left-shift (multiply by 2n)
operations. This operation will fill left and right values with zeros as necessary to fill the
register. Operating on a value which contains an x or a z gives an x result in all bit
positions. Some examples of using the shift operators are presented in Listing 1-23.

Listing 1-23 Shift Operator Examples

module shifter (clk, resetn, shift_right_test, shift_left_test);
input clk, resetn;
input shift_right_test;
input shift_left_test;
reg [3:0] a;
reg [3:0] b;
reg [3:0] c;
reg d;
reg [3:0] e, f;

 always @ (posedge clk or negedge resetn)
 begin
 if (~resetn) // Active low asynchronous reset.
 begin

 a <= 'b1001;
 b <= 0; // It’s bad form to async set

// values like this.
 c <= 0;
 d <= 0;
 e <= 'bx000;
 end

 else if (shift_right_test)
 begin

 c <= a >> 2; // c gets assigned value of

// 0010.
 d <= a >> 5; // Regardless of the value

// of a, d will always get

Verilog Design in the Real World Chapter 1
37

// assigned to 0.
// Verilog will not complain
// about this; use caution.

 f <= e >> 1; // Result is xxxx because of
// x in e.

 end

 else if (shift_left_test)
 begin

 c <= a << 2; // c gets assigned value of

// 0100.
 d <= a << 5; // Regardless of the value

// of a, d will always get
 // assigned to 0.
 // Verilog will not complain
 // about this; use caution.

 f <= e << 1; // Result is xxxx because of
// of x in e.

 end

 else
 begin
 d <= 0; // Assign values default to avoid

 // unwanted latches.
 e <= 0;
 f <= 0;
 end

 end
 endmodule

Conditional Operator

A shorthand method of doing a conditional uses a ternary form (which means
arranged in order by threes).

output_assignment <= expression ? true_assignment :
false_assignment;

This is a common way of defining a MUX. If the expression being evaluated resolves

to x or z, the output_bus is evaluated bit-by-bit, and Verilog will try to resolve the output
values. If both input bits are 1 (which means the input condition doesn't matter), then the
output bit is a 1. Same for both input bits being 0. Any bits that can't be resolved are
assigned an x value. If the true_assignment or the false_assignment register width is not
wide enough to fill the output_assignment, the output_assignment bits are left-filled with
zeros. See Listing 1-24.

 38 Verilog Design in the Real World Chapter 1

Listing 1-24 Conditional Example

 module cond_tst (clk, resetn, tristate_control, input_bus,
output_bus);
 input clk, resetn;
 input tristate_control;
 input [7:0] input_bus;
 output output_bus;
 reg [7:0] output_bus;

 always @ (posedge clk or negedge resetn)
 begin
 if (!resetn) // Active low asynchronous reset.
 output_bus <= 8'bz;

 else

// Assign output_bus = input_bus if tristate_control is
// true and assign output_bus = high impedance if
// tristate_control is false.
 output_bus <= tristate_control ? input_bus : 8'bz;

 end
 endmodule

Math Operators

Verilog supports a small set of math operators including addition (+), subtraction (-) ,
multiplication (*), division (/), and modulus (%); however, the synthesis tool probably
limits the usage of multiplication and division to constant powers of two (in other words, a
left shifter or right shifter will be synthesized) and may not support modulus. The + and -
math operators will instantiate preoptimized adders. Verilog assumes all reg and wire
variables are unsigned.

Parameters

Parameters are a useful way of making constants values more readable in the code.
Parameters are used only in the modules where they are defined, but they can be changed
by higher-level modules. Parameters cannot be changed at run time, but they can be
changed at compile time. This is useful in cases where a parameter changes the defined
number of signals or the number of instances some construct is used. Not all parameters
have to be assigned, but if there is a positional assignment list, parameters can't be skipped.

A parameter can also be defined in terms of other constants or parameters. To aid in
reading the code, some people use upper-case characters for parameters.

Verilog Design in the Real World Chapter 1
39

Listings 1-25 and 1-26 demonstrate Verilog hierarchy, where a module list descends
into the hierarchy, starting at the top, and with module names separated by periods.

Listing 1-25 Parameter Example, Top Module

 module top;
 reg clk, resetn;
 parameter byte_width = 8;
 defparam
 u1.reg_width = 16; // This parameter will

// replace the first
// parameter found in
// the u1 instantiation
// of reg_width.

 defparam
 u2.reg_width = byte_width * 2;
 parm_tst u1 (clk, reset, output_bus); // Create a version

// of parm_tst with
// reg_width = 16.

 parm_tst u2 (clk, reset, output_bus); // This version of
// parm_tst also has
// reg_width of 16.

 parm_tst u3 (clk, reset, output_bus); // This version of
// parm_tst has a
// reg_width of 8.

 endmodule

Listing 1-26 Parameter Example, Lower Module

 module parm_tst (clk, resetn, output_bus);
 input clk, resetn;
 parameter reg_width = 8; // This constant can be

// overridden by a parameter
 // value passed into the

 // module.
 parameter byte_signal = 8'd99;
 parameter byte_signal_true = 8'hff;
 parameter byte_signal_false = 8'h00;
 output [reg_width - 1 : 0] output_bus;
 reg [reg_width - 1 : 0] output_bus;
 reg [7:0] byte_count;

 always @ (posedge clk or negedge resetn)
 begin
 if (~resetn) // Active low asynchronous reset.
 begin
 output_bus <= 8'b0;
 byte_count <= 8’b0;
 end

 40 Verilog Design in the Real World Chapter 1

 else if (byte_count == byte_signal)
 output_bus <= byte_signal_true;
 else
 begin
 output_bus <= byte_signal_false;
 byte_count <= byte_count + 1;
 end
 end
 endmodule

Concatenations

Concatenations are groupings of signals or values and are enclosed in curly brackets
{} with commas separating the concatenated expressions, as shown in Listing 1-27. All
concatenated values must be sized. Note the use of [] to identify the bit select or register
index. It’s legal to define a register like backwards_reg, but, regardless of the numbers
used, the leftmost definition is always the most significant bit. Usually, you'll see the
largest number occurring on the left side of the colon (:) unless a one-dimensional array of
variables (like a RAM) is being created.

Listing 1-27 Concatenation Example

module backward;
reg [0:2] backwards_reg;
reg [2:0] test;
/* {1'b0, test, 8'h55} is the same as:

{1'b0, test[2], test[1], test[0], 1'b0, 1'b1, 1'b0, 1'b1, 1'b0,
1'b1, 1'b0, 1'b1} */

always @ (test)
 begin

 test = backwards_reg;
// The assignment above is equivalent to the assignments below:
 test[2] = backwards_reg[0];
 test[1] = backwards_reg[1];
 test[0] = backwards_reg[2];
 end
endmodule

