XSDoc: an Extensible Wiki-based Infrastructure
for Framework Documentation

Ademar Aguiar’?, Gabriel David!:?, and Manuel Padilha'

! Faculdade de Engenharia da Universidade do Porto
Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
{aaguiar,gtd,edeias}@fe.up.pt
http://www.fe.up.pt
? INESC Porto
http://www.inescporto.pt

Abstract. Good quality documentation is crucial for the effective reuse
of object-oriented frameworks, and must be adaptable to the needs of dif-
ferent audiences. To satisfy these needs, framework documentation com-
bines several kinds of documents and contents, resulting in hard, costly
and tiresome to produce, specially when not supported by appropriate
tools and methods. This paper presents XSDoc®, an extensible infras-
tructure based on a WikiWikiWeb engine that supports the creation,
integration, publishing and presentation of framework documentation.
XSDoc helps on creating and annotating framework documents, on in-
tegrating different kinds of contents (text, models and source code), and
provides a simple and economic cooperative web-based documentation
environment that can be used standalone in a web-browser, or in an
integrated development environment. A small example shows how easy
it is to use XSDoc for producing part of a document for JUnit testing
framework.

1 Introduction

Object-oriented frameworks are a powerful technique for large-scale reuse that,
through design and code reuse, help developers achieve higher productivity,
shorter time to-market, and improved compatibility and consistency [1,2].

But to benefit from framework reuse advantages, one first has to invest time
on understanding the framework, and on learning how to use it. As one of the
most complex kinds of object-oriented products, frameworks can be particularly
hard to understand by first-time users, specially if not accompanied with appro-
priate documentation [1,3].

1.1 The importance of framework documentation

Good quality documentation helps developers achieve the degree of understand-
ing they need to customize a framework and evolve its internal design and imple-
mentation. Concerning the importance of documentation for framework reuse,

3 XSDoc means ”Extensible Software Documentation”

2 Ademar Aguiar, Gabriel David, and Manuel Padilha

Booch stated in [4] that “the most profoundly elegant framework will never be
reused unless the cost of understanding it and then using its abstractions is lower
than the programmer’s perceived cost of writing them from scratch”.

Although not always recognized, documentation plays a central role also in
many framework development tasks. Most of the development effort is spent on
formalizing information, i.e., on reading and understanding requirements, spec-
ifications and other informal documents, in order to produce formal documents,
such as source code files and specifications.

Good quality documentation is therefore a crucial success factor for frame-
work reuse, being also very important for framework development, maintenance
and evolution.

1.2 Difficulties with framework documentation

To document frameworks is, at least, an order of magnitude more difficult than to
document object-oriented applications or class libraries, because we must cover
not only a single concrete product (an application) but, instead, a tool that is
able to produce a family of many similar concrete products (a framework).

Different approaches for documenting frameworks have been suggested, and
some have proven to be effective in reducing the learning curve of frameworks,
namely the approaches based on cookbooks, patterns, and meta-patterns. How-
ever, despite the research done in the community, it is still hard, costly and
tiresome to define and write good quality documentation for a framework.

To be complete and useful, the documentation of a framework must include
a large diversity of richly cross-linked contents, it must be presented in different
ways to meet the needs of different audiences. It must describe the application
domain covered by the framework, its purpose, how-to-use it, how it works, and
details about its internal design.

Good quality documentation for a framework is complex to produce because
is must cope with; different audiences, such as framework selectors, application
developers, framework developers and developers of other frameworks; different
styles of documents, such as framework overviews, example applications, cook-
books and recipes, design patterns, use cases, contracts, design notebooks and
reference manuals, in order to provide multiple views (static, dynamic, external,
internal) at different levels of abstraction and detail (architecture, design, imple-
mentation); and notations to represent its contents, such as free text, structured
text, source code, object models, images, and formal specifications. [5].

1.3 Research overview

The fundamental goal of the research presented in this paper is to provide typ-
ical development environments (integrated or not) with tools and features able
to support documentation activities along the framework lifecycle. These tools
should make documentation convenient and attractive for framework develop-
ers, who are the best source of knowledge about the design and implementation

XSDoc — JISBD’2003 3

of a framework. By providing development environments with documentation
capabilities we aim to close the gap between the activities of development and
documentation, and thus motivate and assist developers to document while they
code and design.

XSDoc is an extensible infrastructure for framework documentation that was
built to achieve such goals. XSDoc is easy to integrate in development environ-
ments, including modern open integrated development environments (IDEs).
Although originally motivated to support a specific approach to framework doc-
umentation [6,7], XSDoc can be used with other approaches, due to its extensi-
bility and integrability with other tools.

This paper is organized as follows. The next section briefly overviews the most
relevant kinds of software documentation techniques. Then, the architecture and
key features of XSDoc are presented. A small example with JUnit framework
documentation shows how it can be used both autonomously and integrated in
the Eclipse IDE [8]. The final section discusses the key advantages of XSDoc and
the work planned for the near future.

2 Software Documentation Techniques

The many artifacts produced during development can be categorized in source
code, models, and documents, all of which require continual review and modifi-
cation throughout the lifecycle.

Typically, different kinds of contents are maintained independently using
different environments and editors (text editors, source code editors, visual model
editors, document editors). Such configuration often requires constant switching
between working environments, thus resulting inappropriate for maintaining the
semantic consistency between several documents, as it disturbs developers and
causes significant process inefficiencies.

2.1 Literate programming

The literate programming approach and tools [9] are a possible solution to the
problem of having source code and documentation always consolidated. The
technique was invented by Donald Knuth and involves writing documentation
and code in a single source document (verisimilitude) psychologically organized
for comprehension by humans rather than computers. Literate files can be tan-
gled to produce computer-understandable code, and woven to produce human
readable and comprehensible typeset documents. The technique provides signifi-
cant incentives for developers to document while they code, potentially resulting
in programs of higher quality and maintainability.

Despite its advantages, the technique is not widely used. This is mainly due
to the integration difficulties of literate programming tools in mainstream de-
velopment environments: it requires the combined use of three languages, a pro-
gramming language, a documentation language and an interconnection language;
it introduces too much overhead for small programs; the format of literate files

4 Ademar Aguiar, Gabriel David, and Manuel Padilha

is complex, what seriously compromises their on-screen readability and under-
standing during development; and finally, the organization of the source code
seen by the compiler is different from the original, as written by the program-
mer, what often cause problems when using tools that manipulate source code
files, such as debuggers, generators, reverse-engineering tools, and refactoring
tools.

2.2 Single source methods

Alternative documentation techniques to literate programming can be classified
into either single source or multiple source methods.

Single source methods integrate code and documentation together in a same
file, so there are no consistency problems between code and documentation as
there is no replication of contents in the whole documentation bundle. The Sun’s
Javadoc utility is an example of a single source method that weaves Java source
files to produce interface documentation in HTML, using simple Java comment-
ing conventions. Javadoc cannot be considered a literate programming tool be-
cause it lacks the support for psychological arrangement of documentation. Other
examples of similar tools are Doxygen and Doc++.

2.3 Multiple source methods

Multiple source methods maintain documentation and code in separate files.
Traditional documentation written externally to source code is the most com-
mon example of such technique. Due to the separation of code and documents,
documenters usually copy source code into document editors, and as soon as the
code changes, the two documents become inconsistent. More sophisticated sys-
tems simulate the verisimilitude characteristic of literate programming paradigm
with the help of tools that automatically manage the strict relationships between
code and documents.

The most typical problem with this kind of tools is not allowing the edition
of code and documents outside their tools, a serious obstacle for easy integration
in mainstream development environments. A good example of such a system is
Elucidative Programming [10], which enables the linking between source code
and documents using the insertion of special directives. Similarly to literate
programming, elucidative programming is intended for internal documentation,
and thus only supports very simple structured documents and textual contents.

3 The XSDoc documentation infrastructure

The XSDoc is an infrastructure based on XML and WikiWikiWeb [11] that cov-
ers all the typical functionalities of a content management system for framework
documentation. XSDoc uses a multiple source method.

XSDoc was specifically built to support a new approach to framework doc-
umentation, which aims to be simple and economic to adopt. The approach

XSDoc — JISBD’2003 5

reuses existing framework documentation styles, techniques and tools and com-
bines them in a way that follows the design principles of minimalist instruction
theory [6,7].

Currently, XSDoc supports source code written in Java and C++ program-
ming languages, models described in UML, and XML documents. The XSDoc
infrastructure results from the reification of two previous prototypes. The Frame-
DocMS [12] was a first prototype developed with the goal of evaluating the
appropriateness of using Wiki and XML technologies to implement a content
management system for framework documentation. The key idea of Wiki-based
software documentation behind FrameDocMS was then generalized to object-
oriented software documentation and evaluated with the WID* prototype [13].
As a result, XSDoc combines the best features of both prototypes and has an
evolved architecture, more flexible and easy to extend.

The XSDoc infrastructure is composed by one WikiWikiWeb engine (XS-
DocWiki), plugins for seamless integration in open IDEs (currently only exists
one for the Eclipse IDE), and a set of document templates (framework book,
cookbook, pattern, use case, etc) markup languages, and converters of contents
to and from XML. The Fig. 1 illustrates these components as well as their in-
terconnections.

Web
browser

Java, C++,
and UML
editors

external
contents

\<+

XSDoc infrastructure

Wiki Converters Converters
contents to XML from XML
Contents
integration, Contents
extraction

XML contents
repository

XSDoc plugin
for IDEs

\0

Wiki, HTML,
and PDF
files

XSDocWiki [

XSDoc
Configuration

Creation Management Publishing Presentation

Fig. 1. XSDoc components and their interconnections.

4 WID — Wiki-based Integrated Documentation

6 Ademar Aguiar, Gabriel David, and Manuel Padilha

3.1 XSDocWiki

The main component of the XSDoc infrastructure is XSDocWiki, a WikiWiki-
Web engine that extends a typical Wiki engine with several features useful for
documenting object-oriented frameworks, and software in general.

The Wiki concept. A WikiWikiWeb, or simply a Wiki, is a very innovative
and appealing collaboration tool [11]. It can be defined as a web platform for the
collaborative edition of documents. Documents are composed by topics, where
each topic corresponds to a web page. Using a simple web browser, everyone can
edit any page of the wiki, by invoking the ”Edit” option available on it. After
saving, the new version of the page is uploaded to the web server and become
immediately available.

There are several implementations of the Wiki concept, but all use very
simple markup languages to support text formatting, and simple mechanisms
based on WikiNames® for automatic linking of pages. Despite its simplicity, wiki
names are very powerful because they support dynamic linking.

Extensions added to the original Wiki engine. The XSDocWiki was de-
veloped using the VeryQuickWiki engine [14] as a starting base, which was then
extended with several features to make convenient the edition and visualization
of typical software documentation contents, including the support for: linking
and inlining source code fragments; linking and inlining UML diagrams; instanti-
ation and validation of XML documents; accessing repositories of version control
systems; adding new styles of documents using a plugin mechanism; and a few
browsing controls to adapt presented contents to user needs. These extensions
enhance the automatic linking mechanism originally restricted to Wiki pages to
support also linking of source code, models and structured contents, using simple
naming conventions (e.g. prefixes, suffixes, and patterns), which are very easy
to learn and use.

To be flexible, XSDocWiki provides a plugin mechanism that supports the ad-
dition of new styles of documents (e.g. use-case, example, pattern, requirement).
A XSDoc plugin typically includes: a document-template; a set of converters to
map that style of document to and from XML, if necessary; a declaration of
the elements to be parsed for automatic linking of WikiNames; and some lexical
rules to use during the automatic linking phase. For example, for Java source
files, it is declared that Javadoc comments may contain Wiki text, what enables
the usage of wiki names to link to other source code contents, UML models or
documents, structured or not.

So configured, the XSDocWiki promotes the collaboration of technical and
non-technical people on an incremental edition and revision of framework doc-
uments, ensuring high availability of contents (always online), using simple fea-

5 The word WikiName is a Wiki name because it JoinsCapitalizedWords, which is
AnotherWikiName

XSDoc — JISBD’2003 7

tures, automated archiving, and only requiring a simple web browser, a tool
currently very easy to integrate in a vast majority of development environments.

3.2 XML converters and presentation processors

As most of the documentation contents can be comfortably edited and linked
using the Wiki, most of them will reside on Wiki pages stored in a file system,
a version control system (currently, only CVS is supported), or a database.

However, source code programs and UML diagrams need special processing,
because they must be converted from their original format to XML using XSL
transformers, respectively using JavaML [15], Doxygen and SVG/XMI vocabu-
laries.

At a later stage, the contents are filtered and formatted accordingly to be
published and presented. Currently, XSDoc is able to output HTML files for
online browsing, and PDF files for high-quality printing.

3.3 Integration Mechanisms

The components of XSDoc are closely integrated, both functionally and in terms
of the information they exchange.

Multiple source approach. The integration of source code, UML models
and structured documents is achieved through a multiple source approach, what
means that source code and documentation reside in separate files. While this
separation preserves source code files and UML files, it requires a way of man-
aging the relationships between their contents.

These relations are supported in XSDoc by small extensions to the original
hyperlinking and inlining mechanisms of the wiki engine, which enable writers
to link and inline source code and models using simple textual references. These
extensions are implemented using source code parsers, and XML technology. The
information exchanged between the tools uses a textual format, both pure text
files and XML files. A markup language is also used internally to normalize all
the contents in a unique schema, when necessary.

Wiki-centric functional integration. The functional integration of the Wiki
with the converters and processors is done within the Wiki and its specific ex-
tensions, using Java, servlets, Java Server Pages, and external programs, such
as: a modified version of the jikes compiler to generate JavaML files, and the
doxygen documentation generator for C++.

Integration in development environments. The integration of XSDoc in
an industrial development environment is very easy to achieve in almost every
situation, considering that XML is widely supported everywhere and the Wiki
engine only needs a browser to run. We think that the combined use of XML and

8 Ademar Aguiar, Gabriel David, and Manuel Padilha

Wiki makes this integration successful in almost every industrial development
environment only with the low cost of small configurations in the environment.

Another goal of the infrastructure is its seamless integration in modern devel-
opment environments, such as IDEs. The integration of the XSDoc infrastructure
with IDEs is achieved through specific plugins. The plugin should enable the use
of a web browser through which the XSDocWiki can be accessed, and should also
provide a communication link between the IDE and the XSDocWiki, to enable
their interoperation.

Side-by-side edition of all contents. Much tighter integration of the infras-
tructure in a development environment can be achieved with open IDEs, such
as Borland’s Together or IBM’s Eclipse, which enable in a single environment
the side-by-side edition and and synchronization of all kinds of contents: source
code, UML models, and documents, thus eliminating the need to switch appli-
cations during development. In Fig. 2 is represented a snapshot of the Eclipse
IDE with the XSDoc plugin.

Every TestCase is created with 2 name, so if 2 test falls, you
can identify which test failed.

private String fName;
| JavaML2

=lelx|
E 15
= Hox - [[depo-os[AAA[cc o [EEE
|| 2 package Explrer ~ x |[ZTescaseinstertimescommndpatem ued - it ramowork_X. € x
& _‘\/Twaﬁtﬂ/ﬁgsa s+ nielz Bl
&l s - ls| niel]

o

¥ UML diagrams !
8 Secause ne srpect i clss o berevaed trouh chertance, |
< we declaro it public sbstract’, For now, ignore the fact that it
i o con ek of e 5 3 e o
b
z

e e D | Integrated
s) documentation

JavabiL2

£) depeocatesist il

) pefpoc enl
8 il

public TestResult run() (
TestResult result = createResult () ;
run (result) ;
rn result;

JavaL2

To ilustrate the evolution of JUnit, we use diagrams that show
snapshots of the architecture. The notation we use is smple.

It annatates classes with shaded baxes containing the
aszociated pattem. When the rola of the class in the pattern is
Gbvious then anly the pattern name is shown. If the role isn't
clear then the shaded bos is augmented by the name of the
participant this class comespands ta. This notation minimizes
the clutter in diagrams and was first shown in (see Gamma, E.,
Applying Design Patterns in Java, in Java Gems, SIGS Reference

Ubrary, 1997) Figure 1 shows this notation applied to TestCase.
Since wa are dealing with 3 singl class and thera can b no
smbiguities just the pattem name is shown

Figurs 1. TesCase applies CommandPatiern (see
TestCaselnstantiatosCommandPattorn)

‘TheDesianofUitis mentionsd onsJUniACooksTour

) e
£ail{"Heckod \"MsNanes™ " not Tound");

Fig. 2. A snapshot of the XSDoc plugin for the Eclipse IDE showing the integration of
the development environment provided by Eclipse (on the left) with the documentation
environment provided by XSDoc (on the right).

XSDoc — JISBD’2003 9

3.4 Extensibility Mechanisms

XSDoc was designed with a special concern on simplicity, flexibility and ex-
tensibility, so that it can be adapted to different project environments, ranging
from literate programming environments to industrial integrated development
environments.

As a result, in addition to the kinds of contents already supported and the
template documents provided, XSDoc users are able to extend it with new tem-
plates, linking mechanisms, and formatting features. XSDoc administrators can
also customize and develop plugins to support new programming languages or
other kinds of contents.

4 Using the XSDoc infrastructure

The usage of XSDoc is very simple, and the basics can be learned very fast in
few minutes by people already familiar with the use of a web browser.

As an example, it will be briefly presented how XSDoc can be used to write
part of a document for the JUnit testing framework. Fig.3 shows part of a
document that describes the instantiation of the Command pattern by the class
TestCase of the JUnit framework. The text that is required to write is shown
in Fig.3(top), and the resulting documentation, is represented in Fig.3(bottom).
Any change on the code or models is automatically reflected in the documen-
tation when the web page is refreshed by the browser, or when the involved
contents are modified and saved.

4.1 Installation and configuration

Firstly, XSDoc must be installed and configured. In the current state of devel-
opment, XSDoc is available as a Tomcat’s web application archive (xsdoc.war)
ready to be automatically deployed and installed in the application server.

After installation, it is required to create an area on the wiki to store the
documents of the project, usually called a wiki web. The project’s wiki web
must then be configured to the specificities of the project at hands. The config-
uration includes the definition of: template documents, based on those already
provided with XSDoc, or written from scratch; additional linking conventions
and navigational properties, location of repositories; kind of integration with
the development environment (standalone or a specific supported IDE); and
user accounting. With XSDoc configured to the development environment, the
developer can then use a web browser to access the XSDocWiki.

4.2 Contents creation

Documentation contents may be created internally with the XSDocWiki or ez-
ternally with editors not included with XSDoc. Source code contents, and UML
diagrams always require the use of external editors.

10 Ademar Aguiar, Gabriel David, and Manuel Padilha

Every TestCase is created with a name, so if = test fails, you can identify vhich test failed.

[<javaSources]junit.framevork. TestCasefiTestCase (String); comments=no; lines=first,last
[</javaSources]

To illustrate the evolution of JUnit, we use diagrams that shov snapshots of the architecture.
The notation we use is simple. It annotates classes with shaded boxes containing the
associated pattern. Uhen the role of the class in the pattern is obvious then only the pattern
name is shown. If the role isn’t clear then the shaded box is augmented by the name of the
participant this class corresponds to. This notation minimizes the clutter in diagrans and vas
first shown in (see Gamma, E., Applying Design Patterns in Java, in Java Gems, 3IG3 Reference ol x|

Library, 1997) Figure 1 shows this notation applied to TestCase. Since we are dealing with a >
=ingle class and there can be no ambiguities just the pattern name is shown. e

[<uml>] junit. framevork. TestCase InstantiatesCommandPatternf</unl>] =
- EJeo |unks *

‘i'Figure 1.''' The class javaSource:junit.framevork.TestCase applies ConmandPactern (see T

TestCaseInstantiatesCommandPattern) Aakloe

| Export | Try | Help 3 aaguiar

- Edit | attach ¢

El) 5|

Every TestCase is created with a name, s if a test fails, you can identify which test failed,

FILTER
[Architectore = (0
Architecture x| (37 junit.framework.TestCase#TestCase(String) constructor
BROWSE ooose public TestCase (String name) {
@ allwikiTopics 00088 3

(2 wikivebsList
(23 wikiFe aturss pawered by JavaML2

Ta illustrate the evolution of JUnit, we use diagrams that show snapshots of the architecture. The
notation we use is simple. It annotates classes with shaded boxes containing the associated pattern, When
the role of the class in the pattern is obvious then only the pattern name is shown. If the role isn't clear
then the shaded box is augmented by the name of the participant this class carresponds to. This natation
minimizes the clutter in diagrams and was first shown in (see Gamma, E., Applying Design Patterns in Java,
in Java Gems, SIGS? Reference Library, 1997) Figure 1 shows this notation applied to TestCase. Since we
are dealing with a single class and there can be no ambiguities just the pattern name is shown.

@ TestCase

= — | Testcase instartiates the Command pattern 5
@ rn)

Figure 1. The class javaSource:junit framework.TestCase applies CommandPattern? (see
TestCaselnstantiatesC: tern)

==
[&] pane [[[[N3 Local intranet p

Fig. 3. Documenting the application of the Command pattern to the class TestCase:
(top) text written (bottom) output obtained.

Using the XSDocWiki it is possible to create new documents, and to revise
them using a web-based collaborative environment. The creation of new pages
are triggered by following a non-existent topic, presented as a link marked with
a question mark, as shown in Fig.3. Template documents can be associated
with specific topic name patterns, and are instantiated at topic creation time.
For example, the wiki name CommandPattern shown in Fig.3(top) is associated
with the template DesignPattern. Depending on the level of integration with the
development environment, the XSDocWiki may trigger the creation of source
code and UML diagrams using external editors.

4.3 Contents integration

In addition to the hyperlinking mechanisms provided by HTML, XSDoc provides
two dynamic mechanisms for the integration and synchronization of the possible
kinds of document contents (source code, UML diagrams, XML files): inlining
of contents, and automatic linking using Wiki names.

XSDoc — JISBD’2003 11

Inlining. The inlining of contents is defined with a reference to the specific
contents, annotated with the tag predefined for its respective kind. Example:
[<javaSource>] junit.framework.TestCase [</javaSource>].

Whenever possible, these references use standard formats and rules, such
as Javadoc references for Java source code. As an example, it is shown in
Fig.3(top) a reference to a fragment of Java source code, which includes the
first and last line of the method setName(String) from the TestCase class of
the junit.framework package, from JUnit framework.

Linking. The definition of links to specific contents are realized with Wiki
names and external references with predefined formats. Here is an example:
javaSource: junit.framework.TestCase. In Fig.3(top) are shown other exam-
ples. TestCase and CommandPattern wiki names link to topics of the overall
documentation. CommandPattern doesn’t have its target defined yet, therefore
the Wiki (see Fig.3(bottom)) presents it with a question mark.

In a similar way, XSDoc supports the inline and linking of C++ source code
and UML models, using the tags cppSource and uml.

4.4 Contents publication and presentation

The contents are always available for online browsing through the XSDocWiki,
but can also be exported to static HTML, for offline browsing, or to PDF files,
for high-quality prints.

Source code is presented with syntax-highlighting, and smart hyperlinking to
other source code files, formal documentation contained in Javadoc comments
and Doxygen comments, and related documents.

5 Conclusions

XSDoc, an infrastructure combining a Wiki engine, document processing with
XML technology, and easy integration in development environments, including
open IDEs, shows that the production of framework documentation can be done
easier with the help of appropriate tools.

From the work done, we conclude that the use of the XSDoc infrastructure
can reduce the effort typically needed to document frameworks, specially when
integrated in an open IDE, as it combines the simplicity, easiness and versatility
of the collaborative document edition in the Wiki, with the powerful development
features of IDEs, and the well-known qualities of XML technology in terms of
information integration, processing and presentation.

The combination of both technologies result in a very attractive infrastruc-
ture, whose best qualities can be summarized as: easy to integrate in software
development environments; easy to use by technical and not technical people;
promotes the participation of all the team in the documentation process; im-
proves team communication; provides an easy way to access, revise and evolve
the documentation; and finally, enables a smooth integration of contents in a

12 Ademar Aguiar, Gabriel David, and Manuel Padilha

controlled and structured way, while preserving the information in an universal
format, the XML format.

In future work, the XSDoc tools will be improved with more browsing fea-
tures to help adapt documentation contents to the user needs (zoom, exploration
mode, error recovery, extensive search), new plugins for integration with other
popular IDEs will be developed, and other popular Wiki engines will be sup-
ported. Another interesting feature to add to XSDoc it would be to support
literate programming in XML, ie, to enable the definition of source code frag-
ments in documents. In order to quantitatively and qualitatively evaluate the
impact of these tools on the quality, understandability and usability of the re-
sulting framework documentation, more user tests and experiments are required,
namely in industrial settings.

References

1. Taligent Press. Building Object-Oriented Frameworks. Addison-Wesley, 1994.

2. Mohamed E. Fayad, Douglas C. Schmidt, and Ralph E. Johnson. Building Appli-
cation Frameworks — Object-Oriented Foundations of Framework Design. John
Wiley & Sons, 1999.

3. Greg Butler and Pierre Denommée. Documenting frameworks. In Building Ap-
plication Frameworks — Object-Oriented Foundations of Framework Design [2],
pages 495-504.

4. Grady Booch. Designing an application framework. Dr. Dobb’s Journal, 19(2),
February 1994.

5. Greg Butler, Rudolf K. Keller, and Hafedh Mili. A framework for framework
documentation. http://www.cs.concordia.ca/faculty/gregh, 1998.

6. Ademar Aguiar. A minimalist approach to framework documentation. PhD thesis,
2003.

7. Ademar Aguiar and Gabriel David. A minimalist approach to framework documen-

tation. In Proceedings of the 13th Workshop for PhD Students in Object-Oriented

Systems, ECOOP’2003 — European Conference on Object-Oriented Programming

(to be published), 2003.

IBM. Eclipse, an open extensible integrated development environment.

Donald Ervin Knuth. Literate programming. The Computer Journal, 27(2):97-111,

1984.

10. Kurt Ngrmark. Requirements for an elucidative programming environment. In

Eight International Workshop on Program Comprehension. IEEE, June 2000.

11. Ward Cunningham. The original wiki front page., 1999. Available from

http://c2.com/cgi/wiki.

12. Ademar Aguiar and Gabriel David. FrameDocMS — um sistema de gestdo de

contetdos para documentagdo de frameworks baseado em XML e WikiWikiWeb.
In Proceedings of XATA 2003, XML: Aplicagées e Tecnologias Associadas (to be
published), February 2003.

13. edeias. Wid — wiki-based integrated documentation. Available from

http://www.fe.up.pt/~edeias/.

14. Gareth Cronin and Bill Barnett. Very quick wiki engine homepage. Available from

http://veryquickwiki.sourceforge.net/.

15. Greg J. Badros. JavaML: a markup language for Java source code. Computer

Networks (Amsterdam, Netherlands: 1999), 33(1-6):159-177, 2000.

© ®

