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Abstract. The increasing incidence of chronic diseases is a major chal-
lenge for the healthcare sector. Personal Health Systems (PHSs) address
the self-management of chronic diseases, by decentralizing the health
monitoring outside hospitalized environments. Rule based agents allow
bringing domain experts’ knowledge into PHSs. However, agents must
meet the requirements of real monitoring scenarios, characterized by
high streams of events. Hence, in this work, an agent mind for an agent-
oriented PHS is presented. It is based on the integration of a Cached
Event Calculus reasoner, jREC, with the aim to monitor the health sta-
tus of diabetic patients. The paper analyzes the performance of the pro-
posed agent mind, by computing the time needed to trigger different type
of alerts, when the number of recorded events (e.g. values of physiolog-
ical parameters) increases. The results show the usefulness of the agent
mind in monitoring scenarios as well as clear room for improvement when
many events (> 500) need to be checked.

1 Introduction

The incidence of chronic diseases in the population is recognized as a major
challenge for the healthcare sector [2]. For instance, the number of people affected
by diabetes has doubled in the last 20 years [29]. Statistics from WHO report that
more than 400 million individuals live with diabetes, and losses in the GDP for
diabetes-related costs from 2011 to 2030 are estimated at 1.7 trillion USD [28].

Personal Health Systems (PHSs) aim at supporting the self-management of
chronic diseases and reducing the healthcare costs. They implement the “health-
care to anyone, anytime, and anywhere” paradigm, by increasing both the cover-
age and the quality of healthcare [27]. In fact, PHSs bring the health technology



to domestic environments, by localizing healthcare services to the specific needs,
practices, and situations of people and their social contexts [20]. PHSs ensure
the continuity of care, focusing on a knowledge-based approach integrating past
and current data of each patient together with statistical evidence [25]. A PHS
is composed of three tiers [26]: Tier 1 is the Body Area Network (BAN), i.e. the
set of sensors on the patient’s body to monitor her health parameters; Tier 2 is
the personal server, usually a mobile device, which collects and aggregates the
parameters and events produced by the BAN; Tier 3 is the remote server which
processes and stores the data from the personal server and supports doctors in
following the treatment of patients at home.

Beyond the modeling capabilities of agent-based frameworks [24], Multi-
Agent Systems have been proved useful in the healthcare sector implement-
ing modularity, distribution, and personalization for data management, decision
support systems, planning and resource allocation, and remote care [14], being
ideal for PHSs. In [7], an agent-based platform called MAGPIE implements a
programmable expert PHS to monitor patients suffering from diabetes. In partic-
ular, that agent platform adds scalability to the PHS by shifting from Tier-3 to
Tier-2 the computation needed for the patient monitoring. To obtain such scal-
ability, the agents, composed by an agent body and an agent mind, run directly
on the personal server. The agent body is the part of the agent that collects
the data acting as an interface between the BAN in Tier-1 and the agent mind.
The agent mind, based on an Event Calculus (EC) engine, is the part of the
agent that checks the data collected from the body to perform the monitoring
task and trigger alerts for the medical doctors logging in Tier-3. The approach
of MAGPIE allows improving the scalability of the PHS when the number of
patients increases, compared to a centralized PHS where the computation is
performed in Tier-3. However, another aspect has to be taken into account: the
scalability of the agent mind when the number of events increases. In fact, the
use of rule engines based on EC usually restricts the number of events and rules
to be applied in a real monitoring scenario, where short time delays are needed
to apply corrective actions. Thus, the next step to apply the agent-based PHS in
real scenarios requiring long-term monitoring is to develop agent minds capable
of caching and retrieving events efficiently.

This paper addresses such issue by proposing an agent mind for the MAGPIE
agent platform presented in [7]. The agent mind has been implemented using
jREC, a Cached Event Calculus (CEC) reasoner based on Java and tuProlog [4],
to move the computational complexity from query to update time by caching the
maximum validity intervals for fluents. As the main contribution of the paper, the
performances of the jREC-based agent mind are evaluated on the time required
to trigger an alert, when the number of events generated by the agent body
increases. Diabetes has been adopted as the use case for the monitoring rules to
be checked.

The rest of the paper is organized as follows. Section 2 presents the paper
background on EC, CEC, and jREC. Section 3 describes an overview of the
entire PHS in which the agent mind runs, and shows the enconding of the moni-



toring rules to check alerts based on glucose and blood pressure levels in diabetic
patients. Section 4 presents the experimental results to evaluate the jREC agent
mind. Section 5 describes the work related to the presented research. Section 6
draws the conclusions of the paper and outlines the future work.

2 Background

This section introduces the concepts on which the proposed agent mind are based
on.

2.1 Event Calculus

EC is a logic formalism for reasoning about actions and their effects in time [16].
Therefore, it is a suitable tool for modeling expert systems representing the evo-
lution in time of an entity by means of the production of events. EC is based on
many-sorted first-order predicate calculus, known as domain-independent ax-
ioms, which are represented as normal logic programs that are executable in
Prolog. The underlying time model of EC is linear. EC manipulates fluents,
where a fluent represents a property that can have different values over time.
The term F=V denotes that a fluent F has value V as a consequence of an action
that took place at some earlier time-point and not terminated by another ac-
tion in the meantime. Table 1 summarizes the main EC predicates. Predicates,
functions, symbols and constants start with lowercase letter, while variables start
with uppercase letter. Predicates in the text are referenced as predicate/N, where
predicate is the name of the predicate and N its arity (e.g. number of arguments).

The domain independent axioms of EC are the following:

holdsAt(F = V, 0)← initially(F = V ). (1)

holdsAt(F = V, T )←
initiatesAt(F = V, Ts), Ts < T,

not broken(F = V, [Ts, T ]).

(2)

Predicate (1) states that a fluent F holds value V at time 0, if it has been
initially set to this value. For any other time T > 0, the predicate (2) states that
the fluent holds at time T if it has been initiated to value V at some earlier time
point Ts, and it has not been broken on the meanwhile.

broken(F = V, [Tmin, Tmax])←
terminatesAt(F = V, T ), Tmin < T, Tmax > T.

(3)

broken(F = V1, [Tmin, Tmax])←
initiatesAt(F = V2, Ti), V1 6= V2,

Tmin < Ti, Tmax > Ti.

(4)



Table 1: Main Event Calculus predicates

Predicate Meaning

initially(F=V) The value of fluent F is V
at time 0

holdsAt(F=V,T) The value of fluent F is V
at time T

holdsFor(F=V,[Tmin,Tmax]) The value of fluent F is V
between Tmin and Tmax

initiatesAt(F=V,T) At time T the fluent F is
initiated to have value V

terminatesAt(F=V,T) At time T the fluent F is
terminated from having
value V

broken(F=V,[Tmin,Tmax]) The value of fluent F is
either terminated at Tmax,
or initiated to a different
value than V between Tmin

and Tmax

happensAt(E,T) An event E takes place at
time T updating the state
of the fluents

Predicates (3) and (4) specify the conditions that break a fluent. Predicate
(3) states that a fluent is broken between two time points Tmin and Tmax
if within this interval it has been terminated to have value V. Alternatively,
predicate (4) states that a fluent is broken within a time interval if it has been
initiated to hold a different value.

holdsFor(F = V, [Tmin, Tmax])←
initiatesAt(F = V, Tmin),

terminiatesAt(F = V, Tmax),

not broken(F = V, [Tmin, Tmax]).

(5)

holdsFor(F = V, [Tmin, infP lus])←
initiatesAt(F = V, Tmin),

not broken(F = V, [Tmin,+∞]).

(6)

holdsFor(F = V, [infMin, Tmax])←
terminatesAt(F = V, Tmax),

not broken(F = V, [−∞, Tmax]).

(7)

Predicates (5), (6) and (7) deal with the validity intervals of fluents. In par-
ticular, predicate (5) specifies that a fluent F keeps value V for a time interval
going from Tmin to Tmax if nothing happens in the middle that breaks such



an interval. Predicates (6) and (7) behave in the same way, but deal with open
intervals.

The domain dependent predicates in EC are typically expressed in terms of
the initiatesAt/2 and terminatesAt/2 predicates. One example of a common rule
for initiatesAt/2 is

initatesAt(F = V, T )←
happensAt(Ev, T ),

Conditions[T ].

(8)

The above definition states that a fluent is initiated to value V at time T if an
event Ev happens at this time point, and some optional conditions depending on
the domain are satisfied. In relation with MAGPIE, the agent platform in which
the proposed agent mind has been integrated, these events that must happen
are physiological measurements from the patient.

2.2 Cached Event Calculus and jREC

Straightforward implementations of EC [16] have time and memory complexity
which are not practical for developing real applications. This is due to the fact
that every time the EC engine is queried, the computation starts from scratch,
and all fluents validity intervals are calculated again. Cached Event Calculus
(CEC), proposed by Chittaro and Montanari [10], tries instead to overcome this
inefficiency by giving EC a memory mechanism, and moving computation from
query time to update time.

CEC formalizes the concept of Maximal Validity Interval (MVI), that repre-
sents a time interval in which a particular fluent holds without being terminated
by any event. A fluent is also associated to a list of MVIs, in order to express all
the time intervals in which that fluent holds continuously.

Whenever the rule engine is updated (e.g. by inserting a new event occur-
rence), the fluents’ MVIs are calculated, and then stored for further use, allowing
incremental computation for following updates. Also, every time a new event is
added to the database, CEC manages to compute MVIs only for the fluents that
can vary with that event, and does not check the MVIs of those fluents that
cannot possibly change, thus avoiding unnecessary computation.

jREC is a reasoning tool based on Java and tuProlog that implements a
lightweight version of CEC [4]. Since MAGPIE is also written in Java, it has
been chosen to implement the proposed agent mind, in order to ensure seamless
integration with the agent platform.

jREC consists of three main components:

– The Prolog theory, which represents the actual CEC axiomatization that is
loaded into tuProlog;

– The Java engine, which allows to query and update the database without
having to interact directly with tuProlog, as well as adding specific domain-
dependent theories;



– The Tester, which is a GUI based stand-alone tool for editing theories, vi-
sualizing fluents’ MVIs and event occurrences, mainly used for prototyping
and developing domain-dependent theories.

3 System overview

The implemented agent mind runs in Tier-2 of the MAGPIE agent-based PHS
for self monitoring of diabetes. The entire PHS is depicted in Figure 1. Each
patient has its own agent composed by a body (Tier-1) and a mind (Tier-2)
running on the personal server: in Tier-1 data are collected from the patients
through a BAN; in Tier-2, the agent minds are responsible to trigger possible
alerts based on the patients’ physiological values, running domain dependent
rules which could be customized for each patient. The triggered alerts have to
be sent as a notification to medical doctors connected to Tier-3.

Body Area Network (BAN)

Monitoring Agents

Internet

Medical
Staff

Hospital

Fixed or Mobile 
Network Operator

Physiological 
Values

Alerts

Tier 1 Tier 2 Tier 3

Fig. 1: The agentified PHS. The agent mind runs in Tier-2, to monitor the pa-
tient’s physiological values.

3.1 MAGPIE Agent Platform

MAGPIE is an agent platform integrated with the Android OS. It plays the
role of Tier-2 in a PHS by connecting the patient and the medical doctor, with
the aim of improving the management of chronic diseases. From the side of
the patient it collects physiological values, whereas from the medical side it
models the medical knowledge in terms of monitoring rules expressed as domain
dependent axioms of EC. Interested readers can find in [8] a description of the
MAGPIE architecture and its integration with Android. In relation to this work,
a monitoring rule is defined as a combination of events that trigger an alert to be
notified to a medical doctor, where an event is considered as the measurement
of a physiological parameter. Therefore, the following two types of monitoring
rules are specified:



– Complex rules: consist of the combination of two or more events in a specific
time window, where the order in which the events happen is not considered.

– Sequential rules: consist of the sequence of two or more events in a specific
time window, where the particular order in which the events occur matters.

3.2 Diabetes Monitoring Rules

In order to detect alert conditions related to diabetes, a sequential and a com-
plex rule patterns are proposed. These rule patterns are based on the literature
available for glucose and blood pressure monitoring [12, 5] and checks physiolog-
ical values collected by the patient’s BAN. The patterns identify alert conditions
in the patient’s health status by modeling the sensor inputs as events that are
evaluated in the body of the rules. The two patterns are:
Pattern 1: Brittle diabetes, defined as a glucose rebound going from less than
3.8 mmol/l to more than 8.0 mmol/l in a period of six hours. This pattern can
be expressed with a sequential rule.
Pattern 2: Pre-hypertension, defined as two events of high blood pressure in a
period of one week. This pattern can be expressed with a complex rule.

Pattern 1 is implemented as follows:

initiatesAt(F = A, T ) : −
happensAt(ev(2, A,W ), T ),

happensAt(ev(1, A, ), T1),

Ts is (T −W ),

T > T1,

T1 >= Ts,

no alert(A, Ts).

(9a)

terminatesAt(F = A, T ) : −
happensAt(ev(1, A, ), T ).

(9b)

happensAt(ev(1, ‘brittle diabetes’, E), T ) : −
hours to epoch(6, E),

happensAt(glucose(G), T ),

G =< 3.8.

(9c)

happensAt(ev(2, ‘brittle diabetes’, E), T ) : −
hours to epoch(6, E),

happensAt(glucose(G), T ),

G >= 8.

(9d)

Rules (9a) and (9b) represent a generic sequential rule template with two
events. In particular, the fluent F (i.e. the alert) is initiated with value A when:
(i) two temporal ordered events occur inside a certain time window and (ii) when



the fluent does not hold anywhere else inside the time window (no alert/2). The
fluent F is instead terminated when the first event of the ordering happens.

Rules (9c) and (9d) customize the template for the glucose monitoring use
case. They instantiate the variables of the ev/3 term, specifying the time window
width (W ), the alert name (A) and the threshold values for G.

Pattern 2 is expressed in the following way:

initiatesAt(F = A, T ) : −
happensAt(alertcheck(A,W,NMax1), T ),

Ts is (T −W ),

count events tw(N1, evc(1, A), Ts, T ),

N1 >= NMax1,

no alert(A, Ts).

(10a)

terminatesAt(F = A, T ) : −
happensAt(alertcheck(A,W, ), T ),

holdsAt(F = A, T ).

(10b)

happensAt(evc(1, ‘pre-hypertension’), T ) : −
happensAt(blood pressure(S,D), T ),

S >= 130,

D >= 80.

(10c)

happensAt(alertcheck(‘pre-hypertension’, E, 2), T ) : −
weeks to epoch(1, E),

happensAt(evc(1, ‘pre-hypertension’), T ).

(10d)

Rules (10a) and (10b) represent a generic complex rule template with one
event type. In particular, the fluent F (i.e. the alert) is initiated with value A
when: (i) there are least NMax1 occurrences of the alertcheck/3 event inside
the time window and (ii) when the fluent does not hold anywhere else inside
the time window (no alert/2). Also, the count events tw/4 predicate is necessary
to handle different event temporal orderings without having to duplicate the
rule body for every permutation. Rules (10c) and (10d) customize the template
for the hypertension monitoring use case. They instantiate the variables of the
evc/2 and the alertcheck/3 terms specifying the time window width (W ), the
alert name (A) and the threshold values for S and D.

4 Test setup and results

The performance of the jREC agent mind has been evaluated using the sequen-
tial and complex rule patterns described above. To accomplish that, synthetic
datasets containing glucose and blood pressure measurements have been created.
Each measurement is a tuple containing the value(s) and its timestamp.



4.1 Testing Protocol

To see how the performance of the agent mind evolves when the number of events
increases, a series of random dataset has been created, each one containing a
different number of events.

The events of each dataset are fed into the agent mind one by one, and the
time needed by the agent to trigger the alert is recorded. Each experiment is
repeated one-hundred times to obtain the mean and standard deviation values.

The biggest assumption of the experiment is that real datasets do not add
any value to the performance evaluation. In fact, the use of synthetic datasets
allowed to stress the agent minds on very specific and critical tasks.

4.2 Results and Discussion
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(a) Sequential rule.
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(b) Complex rule.

Fig. 2: Milliseconds needed by the JREC agent mind to compute an alert, for
the different rules.

The tests have been executed on an i7-6700K@4.20 GHz CPU with 16 GB@2400
MHz DDR4 RAM, running Ubuntu/Linux 16.04 and Java Runtime Environment
8u121.

It should be noticed that the main results of these tests are the execution
time trends, rather than the absolute values themselves (since they vary with
different machines). From plots in Figure 2a and 2b, it is clear that the execution
time grows in a polynomial fashion. Thus, feasibility of the reasoning performed
by the agent mind must be evaluated carefully depending on how many events
are expected to occur, and on the time constraints in which the alert must be
generated.

With the machine used for tests, it is shown that keeping the event number
less than 500 would lead to a reasonable computation time. Thus, some possible



real-case applications for the jREC agent mind, with the proposed rule patterns,
can be:

– Detecting Brittle Diabetes with Continuous Glucose Monitoring devices.
They can provide glucose measurements up to one minute [12], so referring
to the Rule Pattern 1, it would mean a worst case scenario of 360 events.

– Detecting Pre-Hypertension conditions with digital arm sphygmomanome-
ters. It is enough to have two blood pressure measurements per day [5], so
referring to Rule Pattern 2, it would mean a worst case scenario of 14 events.

5 Related work

Multi-Agent Systems (MASs) meet the requirements of the healthcare sector:
context awareness, reliability, data abstraction and interoperability, unobtrusive-
ness [3]. From a requirements engineering perspective, goal-oriented and agent-
based design methodologies are useful to tailor pervasive systems to end-users
and stakeholders’ needs [9]. When appied to PHSs, agent-based modeling has
the potential to bring the decision making at the level of self-management of
chronic diseases [17]. In the implementation phase, MASs in PHSs pursue the
enhancement of home-based self-care by using networks of sensors and remote
assistance, to increase the satisfaction of the patient and make an efficient use
of resources [13].

Reasoning agents in PHSs allow to transfer part of the knowledge from do-
main experts to the handheld devices used to perform the self-management
of chronic diseases. Beyond PHSs, other applications include energy manage-
ment [21], to control energy demand and production, home automation [22], to
coordinate the available appliances, and ambient assisted living [19, 23], with
monitoring purposes. In the context of PHSs, EC and MASs have been success-
fully applied to the self-management of diabetes [15, 6]. However, such works do
not take into account the scalability of the PHS. In fact, a clear advantage of
reasoning agents in the Tier-2 of PHSs is the system scalability with increas-
ing number of patients, as showed in [7]. Nevertheless, in such research, the
scalability of the agent minds with high streams of events is not considered.
Thus, there is the need to find the suitable tools to implement agent minds,
which are supposed to run in portable devices, even with high numbers of events
and large datasets. This is especially true for EC given its complexity. Indeed,
non-logic based pattern recognition has been proved, overall, more efficient than
traditional EC when performing predictions. However, it lacks the potential of
coding domain experts’ knowledge into logic rules and needs to train on large
amounts of data. Hence, caching and windowing techniques to make EC efficient
and applicable with large scale dataset have been investigated [4, 1]. There are
some already available tools that allow logic programming in terms of EC. One
of such is DECReasoner [18], a Discrete Event Calculus Reasoner: it implements
EC without any caching mechanism and, thus, it is not usable for this research,
due to its computation time with the datasets used for the performance tests. A



more efficient EC implementation is RTEC, which adds to EC support for han-
dling event streams [1]. However, it is not compatible with the agent-oriented
PHS considered in this research, which is based on tuProlog and Java [7]. Thus,
jREC has been used to implement a prototype for the proposed agent mind, since
it implements Cached Event Calculus [4] with tuProlog, a Java-based Prolog en-
gine [11]. Moreover, being Java-based, jREC and tuProlog can run on Android
devices, allowing to run the proposed agent mind on handheld devices.

6 Conclusions

In this work, a rule-based mind for monitoring agents running on Tier-2 of a
PHS has been presented and tested. It is based on jREC, a CEC reasoner. In
order to be used in real monitoring scenarios, the agent mind has to be able to
process high stream of events, represented by the patient’s physiological values.
Therefore, the main contribution of this paper is the evaluation of the perfor-
mance of the proposed agent mind on the time needed to trigger alerts based on
glucose and blood pressure levels, in a diabetes monitoring scenario. The results
show that a reasonable computation time can be obtained with less than 500
events occurrences. Two real application scenarios for the proposed agent mind
are the detection of brittle diabetes, with Continuous Glucose Monitoring, and
the detection of Pre-Hypertension conditions, with devices such as digital arm
sphygmomanometers.

As future work, since PHS is intended for the self-management of diabetes
with a handheld device, the tests should be performed on mobile phones, to
obtain more realistic figures. In this direction, work must be done to improve
the agent mind efficiency, to get a lower execution time with higher number of
events. Furthermore, in order to validate the usefulness of the rules, the tests
should run on real datasets. Lastly, the system can be applied to other use cases,
in order to model rules for other diseases.
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