## Teaching Non-Ideal Reactors with CFD Tools

## Geometry

A sketch of the geometry is presented in <u>Figure 1</u>. A fully developed laminar profile is imposed at the inlet boundary:

$$u_x(y) = U_{\text{max}} \left[ 1 - \left( \frac{y - H/20}{H/20} \right)^2 \right]$$

where  $U_{\text{max}}$ =1.5  $U_{\text{mean}}$  is the fluid velocity at the center of the inlet boundary.



Figure 1

The Reynolds number is defined based on inlet conditions,

$$Re = \frac{\rho U_{\text{mean}} H / 10}{\mu}$$

where  $\rho$  and  $\mu$  are the density and viscosity of the fluid, respectively.