
Mobile Sensing Towards Context Awareness

Susana Bulas Cruz
Instituto de Telecomunicações

Faculdade de Engenharia da Universidade do Porto
Rua Dr. Roberto Frias, s/n 4200-465 Porto, Portugal

susana.bulas.cruz@fe.up.pt

Abstract

In recent years, mobile technologies suffered a great de-
velopment and became increasingly widespread, creating
new opportunities and challenges to a large variety of ar-
eas, namely mobile sensing. Mobile sensing is an interest-
ing and recent research topic, as nowadays mobile devices
are used not only for communicating, but also for access-
ing the Internet, purchasing goods, exchanging informa-
tion, and organizing our everyday life. In addition to contin-
uously providing connectivity through multiple wireless in-
terfaces (e.g. 3G, Wi-Fi, and Bluetooth), these devices also
integrate various types of sensors, from microphones and
cameras to accelerometers and positioning systems (GPS),
allowing to capture useful real-time information about the
user’s context. Therefore, the main goal of this work is to
use that data and develop advanced algorithms for context
estimation, inference and prediction, in order to provide the
user with content tailored to his context, current activity,
and preferences.

1. Introduction

Mobile device users want to be able to access and ma-
nipulate information and services specific to their location,
time, and environment. To provide the users with ade-
quate applications and services, the devices should be aware
and automatically adapt to their changing contexts, what is
called context-awareness [10]. It is important to formally
define context in mobile computing. According to Dey and
Abowd, ”context is any information that can be used to
characterize the situation of an entity. An entity is a person,
place, or object that is considered relevant to the interac-
tion between a user and an application, including the user
and the application themselves” [4]. Context usually con-
sists at each time instant of multiple partial descriptions of
a situation, called context atoms. Although context atoms
may already be useful without any further processing, it is

possible to use many context atoms together, at a certain
time instant, to form a single description of a higher level
context, e.g. an event [9].

As referred to in [5], there are great challenges in build-
ing context-aware systems, such as developing accurate
sensors to acquire information from the physical environ-
ment, building software infrastructure and tools to interpret
and process the sensed information, creating data manage-
ment systems to manage and store contextual data for later
retrieval, and developing frameworks to address security
and privacy issues associated with the context-aware sys-
tems. In this paper we will address some of those topics,
presenting proposed solutions discussed in the literature.

The rest of the paper is organized as follows. Section
2 characterizes sources for context-awareness, namely on
current mobile devices. In Section 3, we discuss the ar-
chitecture of context-aware systems, presenting a general
framework. Section 4 addresses decentralized inference and
compares centralized and distributed learning. Section 5
describes applications in context-aware telecommunication
services. We conclude in Section 6 with some directions for
future work.

2. Source Models for Context Awareness

The information we require to infer context can be ob-
tained from a variety of sources. Some examples are hard-
ware sensors, network information, device status, browsing
user profiles [2]. In [7], context instances are divided in
physical and logical context (some authors also call them
external and internal dimensions [2]). The first refers to
context that can be measured by hardware sensors, such as
location, light, sound, movement, touch, temperature, and
air pressure. The logical context is mostly characterized by
the user or obtained by monitoring user interactions, namely
the user’s goals, tasks, work context, business processes,
and emotional state [2].

Nowadays there exists a wide variety of hardware sen-
sors capable of capturing almost any physical data. In this



work, we denote by sensor not only these hardware devices,
but also any data source that can provide useful context in-
formation. Using the classification in [8], sensors can be
divided in three groups.

• Physical sensors are the most commonly used type.
Table 2 presents some available sensors of this type
for sensing different contexts.

• Virtual sensors are software applications or services
monitoring events in virtual space that provide context
information.

• Logical sensors combine information from a physi-
cal or virtual sensor with additional information from
some other source, such as a database, in order to solve
higher tasks.

Type of context Available sensors
Light Photodiodes, color sensors, IR and

UV sensors etc.
Visual context Various cameras

Audio Microphones
Temperature Thermometers

Motion, acceleration Mercury switches, angular sensors,
accelerometers, motion detectors,
magnetic fields

Location Outdoor: Global Positioning Sys-
tem (GPS), Global System for Mo-
bile Communications (GSM); In-
door: Active Badge system, etc.

Touch Touch sensors implemented in mo-
bile devices

Physical attributes Biosensors to measure skin resis-
tance, blood pressure

Table 1. Commonly used physical sensors [2]

Mobile devices can acquire context information from
many possible sources. Current smart phones incorporate
assisted GPS, digital compass, three-axis gyroscope, ac-
celerometer, proximity sensor, ambient light sensor, camera
and microphones. In addition to this large number of phys-
ical sensors that has been successfully integrated in mobile
devices, they offer a lot of applications and services that can
be used to extract useful context information. Mobile de-
vices’ internal information, such as applications currently
running, internal device processes, and time, are some ex-
amples. They provide explicit information on device ap-
plication use and users’ scheduled tasks, preferences, and
social networks. This cognitive context information is key
towards providing the user with personalized context-aware
computing services. Time information is used to associate
certain events with others and form event sequences that

might relate to a current higher-level context or predict a fu-
ture event. Also, mobile devices that support various wire-
less networks (e.g. GSM and GPRS), and short-range ad
hoc networks (e.g. Bluetooth), provide continuous and ad
hoc connectivity to local and remote data [10].

The objective is to infer more context information from
a group of sensors than the sum of context derived from
individual sensors. However, there are some challenges as
the data supplied by diverse sensors can be very different,
ranging from slow sensors that supply scalars (e.g. tempera-
ture) to fast and complex sensors that provide larger volume
data (e.g. camera). The update time can also vary signifi-
cantly from sensor to sensor [14]. Moreover, the gathered
information has to be reliable, even if it comes from multi-
ple heterogeneous sources, which acquire rapidly changing
data with a level of uncertainty. Combining data from sev-
eral sensors to extract relevant context information is chal-
lenging due to some data acquisition degradation factors,
such as noise, faulty connections, drift, and miscalibration
[10]. Although context sensed from different sensors may
conflict to each other due to all those factors, it is possible
to use sensor-fusion techniques to solve such conflicts and
improve context accuracy and completeness [4]. Yet, in-
ferred contexts yield only partially reliable approximations.
Furthermore, this large amount of available data and data
sources requires not only to integrate them, but also to filter
the relevant parts of data. Providing the appropriately tai-
lored set of data is important in order to meet the devices
constraints on resources (power supply, memory and com-
puting power) and operate on a manageable amount of data
[3].

3. Context-Aware Systems Architecture
In [15] the authors present a literature review and a clas-

sification of context-aware systems from 2000 to 2007. A
general abstract layer architecture of context-aware systems
is presented, consisting in four layers:

1. Network Layer involves a network supporting
context-aware systems and sensor collecting low-level
of context information;

2. Middleware Layer manages processes and stores
context information;

3. Application Layer provides users with appropriate
service;

4. User Infrastructure Layer manages the interface of
context-aware systems to offer suitable interface to
users.

The classification framework, illustrated in Fig. 1, de-
veloped for classifying the literature related with context-



Figure 1. Classification framework [15].

aware systems is based on this abstract architecture. It con-
sists of the following five layers: concept and research layer,
network layer, middleware layer, application layer and user
infrastructure layer. Each layer has detailed categories for
dividing the literature. Concept and research layer, which
consists in theories and foundation to construct context-
aware systems, includes overview, algorithm, development
guideline, framework, context data management, evaluation
and privacy and security categories. Network layer involves
protocol, sensing, network requirement and network im-
plementation. Middleware layer is categorized into agent-
based middleware, metadata based middleware, tuple space
based middleware, OSGI based middleware, reflective mid-
dleware and sensor selection middleware. Application and
service layer is divided in smart space, tour guide, infor-
mation systems, communication systems, M-commerce and
web services. User infrastructure layer consists in interface
and usability categories.

An alternative framework devised from the common ar-
chitecture in various design approaches in presented in [2].
This conceptual framework is divided in the following five
layers: sensors, raw data retrieval, preprocessing, storage
and management, and application.

The first layer deals with the different sensors that are
sources for context awareness, already discussed in Section
2. The second layer, responsible for the retrieval of raw
context data, makes the low-level details of hardware ac-
cess transparent by providing abstract methods. For physi-
cal sensors it uses appropriate drivers. For virtual and log-
ical sensors employs APIs. Thus, by using interfaces, it
is possible to exchange components responsible for equal

types of context with only minor adjustments in the current
and upper layers. The preprocessing layer involves the in-
terpretation of contextual information, raising the results of
the previous layer to a higher abstraction level. The sensors
frequently return technical data that is not suitable to use by
application designers. This layer is not implemented in ev-
ery context-aware system but may offer useful information
if the raw data is too coarse grained. The transformations
include extraction and quantization operations. In context-
aware systems consisting of diverse context data sources, an
aggregation (also called composition) process can be car-
ried out in this layer. It consists in combining different con-
text atoms to obtain high-level information. To make this
analysis work correctly, several statistical methods are em-
ployed and often a training phase is necessary. The prob-
lem of sensing conflicts that might occur when using sev-
eral data sources has to be solved in this layer as well. Store
and management, the fourth layer, organizes the gathered
data and, via a public interface, makes the data available
to the client, either in a synchronous or asynchronous way.
In the synchronous mode the client is polling the server for
changes via remote method calls, i.e. it sends a message
requesting some sort of accessible data and pauses until it
receives the server’s answer. The asynchronous approach
works via subscriptions, i.e. each client subscribes to spe-
cific events it is interested in, and on occurrence of one of
them, the client is either simply notified or a client’s method
is directly involved using a call back. In most situations the
asynchronous mode is more appropriate as a result of the
rapid changes in the underlying context. The application
layer implements the actual reaction on different events and
context-instances, realizing the client.

Figure 2. Entities and information flow in context framework [15].

An example of a framework for context management in
mobile devices is presented in [10] and illustrated in Fig. 2.
It contains four main functional entities: context manager,
resource server, context recognition service, and applica-
tion. When they communicate, the context manager works
as a central server while the remaining entities, with the ex-



ception of security, act as clients, using services provided
by the server. The context manager, resource servers, and
applications run on the mobile device itself, and the services
are either distributed or local.

Concerning the architecture, [5] distinguishes three ap-
proaches in how to acquire context information. The first
one is direct sensor access, often applied in devices with
sensors locally build in. However, this method is not ade-
quate for distributed systems since it is not able to manage
multiple concurrent sensor accesses. The second approach,
middleware infrastructure, hides low-level sensing details
by introducing a layered architecture to context-aware sys-
tems. The last approach, the context server, allows multiple
clients access to remote data sources. It extends the mid-
dleware based architecture by introducing an access man-
aging remote component. This distributed approach moves
the complex operations of gathering sensor data to the con-
text server, and consequently unburden the end devices,
which usually have limited resources (e.g. energy, computa-
tion power, memory). However, when designing a context-
aware system based on client-server architecture, there are
important factors that have to be considered, such as appro-
priate protocols, network performance, and quality of ser-
vice.

3.1. Mobile Data Gathering

One of the challenges for context-aware applications is
to gather information on their current situation. The gather-
ing process includes the discovery of context sources (peer
devices, sensors or network services), matching of con-
text sources to system needs, and subsequent retrieval of
context data [6]. Context-aware applications require con-
necting and transferring data using heterogeneous devices,
managing different network interfaces, and dealing with
the various data formats used by different context sources.
The communication process of establishing a connection
for data transfer has to include functionality to transport
data, manage addressing, and support various message pro-
tocols. As already mentioned above, the data transport can
be either synchronous or asynchronous. Synchronous trans-
port mechanisms deliver data immediately to its recipient,
i.e. do not store and forward, and some examples include
distributed object technologies and streaming middlewares.
Asynchronous transport mechanisms deliver messages at ir-
regular intervals and are often forwarded with a time delay.
Examples include event-based middlewares and other mes-
sage passing schemes. There are also many challenges re-
lated to the task of managing the reception of data, namely
providing a uniform interface to receive multiple context
types (from different context source), eliminating irrelevant
sources by semantically making correspondence between
the types of context required by the application and the con-
text types provided by the sensors, deciding which set of

context providers to use, deciding on the need for data ac-
quisition, trading off the cost of communicating with con-
text providers against the cost of inferring context, and de-
ciding on the frequency of data acquisition [6].

Considering existing protocols for data-gathering in gen-
eral sensor networks, we can classify them by the way they
organize the sensor nodes: hierarchically and non- hierar-
chically. The non-hierarchical protocols include directed
diffusion, flooding, gossiping, and SPIN (Sensor Protocols
for Information via Negotiation). Examples of hierarchical
protocols include LEACH (Low-Energy Adaptive Cluster-
ing Hierarchy) and PEGASIS (Power-Efficient Gathering in
Sensor Information Systems). For more details see [1] and
references therein.

3.2. Context Models

Three context management modes for coordinating mul-
tiple processes and components are presented in [2]. The
first ones, widgets, present a process-centric view and are
efficient, yet not robust to component failures. Network ser-
vices, which resemble context server architecture and con-
sist in a service oriented model, are not as efficient as wid-
gets but provide robustness. The last one, called blackboard
model, provides a data centric view and requires a central-
ized server to host the blackboard.

To manage context data, the framework entities must
have a common structure for representing information in a
machine processable form. In [13], the most relevant ap-
proaches to modeling context are discussed concerning the
following factors: distributed composition, partial valida-
tion, richness and quality of information, incompleteness
and ambiguity, level of formality, and applicability to exist-
ing environments. The addressed context models are key-
value models, markup scheme models, graphical models,
object oriented models, logic based models, and ontology
based models. For the complete analysis please refer to
[13]. In this work, we will focus on ontology based models
as they fulfill most of the mentioned requirements, indicat-
ing that they are the most expressive approaches to model
context.

The authors in [9] developed an ontology for mobile de-
vice sensor-based context awareness. The design was based
on the following principles: domain, simplicity, practical
access, flexibility and expandability, facilitate inference,
genericity, efficiency, and expressiveness. Concerning the
structure of the ontology, each context is described using
seven properties: context type (context category), context
(symbolic value of context type), value (raw value of con-
text type), confidence (uncertainty measure), source, times-
tamp, and free attributes (additional properties about details
that are not included in the other properties). Any context
expression must contain at least context type and either con-
text or value. There is an example of a sensor-based context



ontology vocabulary in Table 3.2. In this example, context
is divided in low-level context and high-level context, ac-
cording to levels of abstraction. The most low-level context
is the raw data collected directly from the sensors. High-
level context is inferred from low-level context, applying al-
gorithms like Bayesian networks, probabilistic logic, fuzzy
logic, decision trees, neural networks and support vector
machines [15].

Context Type Context Value
Environment:Sound:Intensity {Silent, Moderate, Loud}
Environment:Light:Intensity {Dark, Normal, Bright}
Environment:Light:Type {Artificial, Natural}
Environment:Light:SourceFrequency {50Hz, 60Hz, NotAvailable}
Environment:Temperature {Cold, Normal, Hot}
Environment:Humidity {Dry, Normal, Humid}
User:Activity:PeriodicMovement {FrequencyOfWalking, Frequency-

OfRunning, NotAvailable}
Device:Activity:Stability {Unstable, Stable}
Device:Activity:Placement {AtHand, NotAtHand}
Device:Activity:Position {DisplayDown, DisplayUp, Anten-

naDown, AntennaUp, SidewaysRight,
SidewaysLeft}

Context Type (higher-level) Context Value
Environment:Location:Building {Indoors, Outdoors}

Table 2. Sensor-based context ontology vocabulary example [10]

4. Decentralized Inference

Wireless sensor networks (WSN) are designed to make
inferences from the environments they are sensing. How-
ever, they are usually characterized by limited communi-
cation capabilities due to tight energy and bandwidth con-
straints, which restrict the sensors ability to transmit data to
each other or to a fusion center for centralized processing.

Decentralized inference has often been considered in the
framework of parametric models, in which the statistics of
phenomena under observation are assumed known to the
system designer. However, in a WSN scenario one cannot
expect that the necessary data or domain knowledge will al-
ways be available to support a parametric approach. Conse-
quently, applications of WSN provide an especially strong
motivation for the study of nonparametric methods for de-
centralized inference [11]. We will discuss these methods,
focusing on how is distributed learning in WSN different
from centralized learning and what fundamental limits on
learning are imposed by constraints on energy and band-
width.

4.1. Centralized versus Distributed Learning

To separate the low-level sensor data processing from
high-level applications, a middleware layer is required to
collect raw sensor information, translate it to an application-
understandable format, and disseminate it to interested ap-
plications [4]. There are typically two approaches, central-
ized and distributed.

The simplest way to decouple is to use a centralized con-
text server, which provides contextual information to the
applications. Centralized learning systems are character-
ized by moving the data (raw data) to a central location
for model building, making the training data entirely avail-
able to a single processor. Nonparametric methods studied
within machine learning, such as kernel methods, neural
networks, nearest-neighbor rules, decision-trees, Bayesian
and Markov networks, and boosting, have demonstrated
widespread empirical success in many centralized applica-
tions. Yet, in WSN, since the aforementioned constraints
prevent the necessary communication for enabling the ac-
cess to the entire data set, many centralized learning strate-
gies are unfeasible. For details on these methods, please
refer to [11] and the references therein. Also, the central-
ized approaches usually have scalability problems.

Instead of maintaining all context information in one
centralized place, a distributed architecture allows context
be held at several places to avoid potential bottleneck [4].
Distributed inference in sensor networks under communi-
cation constraints is a topic of much current interest. One
approach to extending classical learning rules to distributed
learning, and in particular to wireless sensor networks, fo-
cuses on developing communication-efficient training algo-
rithms [12]. In [11], ensemble methods, parallel learning,
and data mining, are pointed out as learning algorithms that
could possibly be relevant in giving some insights to devel-
oping distributed learning efficient algorithms.

Figure 3. (a) A parallel network with a fusion center, and (b) an ad
hoc network with in-network processing, [11].

In [11], the authors decompose the literature on dis-
tributed learning according to two general research themes
(see Fig. 3): distributed learning in WSNs with a fu-
sion center, where the focus is on how learning is effected
when communication constraints limit access to training
data; and distributed learning in WSNs with in-network pro-
cessing, where the focus is on how inter-sensor commu-
nications and local processing may be exploited to enable
communication-efficient collaborative learning. In the first
approach, sensors would be divided into subgroups with a



”cluster head” each, responsible for collecting the data from
its group. As the sensors within a cluster are close to each
other and communication over short distances can be done
efficiently, this may be inexpensive. Also, only a small sub-
set of nodes is chosen to send data to the fusion center. If the
nodes are wisely selected, the learning performance remains
high while keeping communication costs low enough. In
the second approach, the authors consider how in-network
processing and local inter-sensor communication may en-
able communication-efficient collaborative learning. The
links are usually assumed to support the exchange of simple
real-valued messages, where simplicity is defined relative to
the application (e.g., sensors communicate summary statis-
tics rather than entire data sets). The key intuition is that
local communication is more efficient since it requires less
energy and bandwidth than communicating globally. The
correlation structure of the phenomenon under observation
(e.g., a temperature field) can often be represented using a
graphical model (e.g., Markov networks) and since inter-
sensor communications are envisioned to occur over simi-
lar graphical structures, message-passing algorithms asso-
ciated with graphical models may be applied to address dis-
tributed learning in WSN. This approach is efficient due to
its exploitation of local communication.

5. Context-Aware Applications
In 2000, [4] made a survey on previous research work

about context-awareness focusing on applications, and de-
scribing a significant number of them. They concluded that
until that moment, most of research on modeling context
was limited to location information. In fact, location as po-
sition or area in space is a context of particular importance,
and has received more attention in mobile computing than
any other type of context [14]. However, there are examples
of applications considering other types of context.

In [4], context is divided in the following four categories:

• Computing context includes network connectivity,
communication costs, communication bandwidth, and
nearby resources (e.g. printers, displays, and worksta-
tions).

• User context includes the user’s profile, location, peo-
ple nearby, the current social situation.

• Physical context includes lighting, noise levels, traffic
conditions, and temperature.

• Time context includes time of a day, week, month, and
season of the year.

The computing, user and physical contexts can be
recorded across a time span and used to form a context
history, which is very useful for certain applications. For

example, if we know the user’s calendar and the current lo-
cation and time, the application may have an accurate idea
of the user’s social situation, such as having a meeting or a
class.

Figure 4. Evolution chain of distributed systems [13].

In [15], a large list of references (from 2000 to 2007)
concerning applications and services in context-aware sys-
tems is divided in the following categories: smart space
(home, hospital and classroom), tour guide, information
systems, communication systems, M-commerce, and web-
service. They conclude, however, that the scope of applica-
tions and services in most articles is limited to small regions
(laboratory, school, hospital, smart room, etc.), and strate-
gic alternatives or business models for gaining the revenue
by using context-aware systems are very few. Nevertheless,
they find context awareness to be a key factor for new ap-
plications in the area of ubiquitous computing (see Fig. 4).
The authors also present the main characteristics of context-
aware applications and services, based on their analysis of
the literature review related with this topic.

• Context-aware applications are customizable and ex-
ploit user context and preferences. They compute de-
vices to operate independently of human control with
automatic execution within a certain context, in order
to provide the user with services autonomously.

• Context-aware applications not only handle current
task, situation and action but also predict future behav-
ior, acting in anticipation of future goals or problems.

• In context-aware applications several devices are in-
terconnected, recognizing each other on a certain dis-
tance. The distance between device and user is an im-
portant factor to offer appropriate service to the user.

• Context-aware applications provide a rich set of capa-
bilities and services to the nomad, who moves from
place to place in a transparent way.

One essential factor about context-aware applications is
that traditional concerns regarding security and privacy are
amplified [6]. They imply access to a wide range of sen-
sitive data, and involve ad-hoc collaborations between un-
known entities. When support for security or privacy was
addressed in context-aware infrastructures, it focused on
confidentiality, trust and identity. As privacy is pointed out



as the major criticism of ubiquitous computing, some au-
thors argue that support for privacy constraints must be pro-
vided by context-aware infrastructures and not applications
[6].

Concerning telecommunication services, it has been
shown that context can be applied for different tasks within
a mobile device. In overall device operation, context can
for example be exploited for context-sensitive resource and
power management. In applications run on mobile devices,
context might be applied to enable adaptive applications and
explicitly context-based services. In the mobile device user
interface, context can be used to facilitate a shift from ex-
plicit user-driven to implicit context-driven interaction [14].

6. Conclusions

With the strong penetration of mobile devices such as
notebooks, PDAs, and smart phones, ubiquitous systems
are recently becoming more and more popular. By gather-
ing context data, these systems (context-aware systems) of-
fer innovative opportunities for application developers and
for end users. They allow the adaptation of systems be-
havior according to the user current context, activity, and
preferences. Particularly in combination with mobile de-
vices, these mechanisms for context estimation, inference
and prediction are of high value and can be used to increase
usability tremendously.

For this purpose, we intend to build software modules ca-
pable of (a) classifying the information flows that reach the
server, (b) selecting the most relevant information sources
according to the service requirements in an automatic fash-
ion, (c) extracting context information from the correlation
among the different sources, and (d) predicting the client’s
behavior and changes of context from all sorts of data
sources, from the most traditional ones (access points and
phone characteristics) to the most recent ones (accelerom-
eters and other sensors of the mobile devices, social net-
works, and intelligent vehicles). These tasks involve di-
verse challenges, such as extracting information from a
huge amount of data from different types as well as iden-
tifying the sources models, finding adequate strategies and
protocols for mobile data gathering, and developing infer-
ence techniques for context awareness by using machine
learning tools. All these challenges are future directions
for our research in the area of mobile sensing for context-
awareness.

References

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. A survey on sensor networks. IEEE Commu-
nications Magazine, 40(8):102–114, August 2002. 4

[2] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on
context-aware systems. Int. J. Ad Hoc and Ubiquitous Com-
puting, 2(4):263277, 2007. 1, 2, 3, 4

[3] C. Bolchini, C. A. Curino, E. Quintarelli, F. A. Schreiber,
and L. Tanca. A data-oriented survey of context models.
SIGMOD Rec., 36:19–26, December 2007. 2

[4] G. Chen and D. Kotz. A survey of context-aware mobile
computing research. Technical report, 2000. 1, 2, 5, 6

[5] H. L. Chen. An Intelligent Broker Architecture for Pervasive
Context-Aware Systems. PhD thesis, Faculty of the Graduate
School of the University of Maryland, 2004. 1, 4

[6] S. L. T. Éamonn Linehan and S. Clarke. Supporting context-
awareness: A taxonomic review. Technical Report TCD-CS-
2008-37, Trinity College Dublin, 2008. 4, 6, 7

[7] T. Hofer, M. Pichler, G. Leonhartsberger, J. Altmann, and
W. Retschitzegger. Context-awareness on mobile devices
the hydrogen approach. In Proceedings of the 36th Annual
Hawaii International Conference on System Sciences, pages
292–302, 2002. 1

[8] J. Indulska and P. Sutton. Location management in perva-
sive systems. In Proceedings of the Australasian informa-
tion security workshop conference on ACSW frontiers 2003
- Volume 21, ACSW Frontiers ’03, Darlinghurst, Australia,
Australia, 2003. Australian Computer Society, Inc. 2

[9] P. Korpipää and J. Mäntyjärvi. An ontology for mobile de-
vice sensor-based context awareness. In Proceedings of the
4th international and interdisciplinary conference on Mod-
eling and using context, CONTEXT’03, pages 451–458.
Springer-Verlag, 2003. 1, 4

[10] P. Korpipää, J. Mäntyjärvi, J. Kela, H. Keranen, and E.-J.
Malm. Managing context information in mobile devices.
IEEE Pervasive Computing, 2:42–51, July 2003. 1, 2, 3,
5

[11] J. B. Predd, S. B. Kulkarni, and H. V. Poor. Distributed learn-
ing in wireless sensor networks. IEEE Signal Processing
Magazine, 23:56–69, July 2006. 5

[12] J. B. Predd, S. R. Kulkarni, and H. V. Poor. A collaborative
training algorithm for distributed learning. IEEE Trans. Inf.
Theor., 55:1856–1871, April 2009. 5

[13] T. Strang and C. Linnhoff-Popien. A context modeling sur-
vey, September 2004. 4, 6

[14] H. w. Gellersen, A. Schmidt, and M. Beigl. Multi-sensor
context-awareness in mobile devices and smart artefacts.
Mob. Netw. Appl, 7:341–351, 2002. 2, 6, 7

[15] J. yi Hong, E. ho Suh, and S. jin Kim. Context-aware sys-
tems: A literature review and classification. Expert Systems
With Applications, 36:8509–8522, 2009. 2, 3, 5, 6


