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Abstract

This paper presents a novel method for bioprocess hybrid parametric/nonparametric modelling based
on mixture of experts (ME) and the Expectation Maximisation (EM) algorithm. The bioreactor system
is described by material balance equations whereas the cell population subsystem is described by an
adjustable mixture of parametric/nonparametric sub-models inspired in the ME architecture. This idea
was motivated by the fact that cellular metabolism has an inherent "modular" structure, organised in
metabolic reactions pathways, with complex interactions. As main conclusions it can be stated that
MEs trained with the EM algorithm are able to systematically detect metabolic shifts with the individual
experts developing expertise in describing the individual pathways. The MLP and the ME outperform
systematically the RBF network in terms of the ratio model accuracy/number of parameters. The ME
network outperforms the MLP network in its ability to describe metabolic switches.

1 Introduction

The development of optimal control strategies for bioprocesses is frequently constrained by the avail-
ability of sufficiently accurate mathematical models for supporting such developments. Bioprocesses
may be generically characterised as complex systems exhibiting non-linear and time-varying dynam-
ics. The main source of complexity arises from the intracellular phenomena. Model-based bioreac-
tor performance optimisation studies rarely incorporate detailed descriptions of the intracellular phase.
The method is simply too "expensive" for routine application in the biochemical industries. It has been
pointed out by several authors that hybrid parametric/nonparametric modelling techniques may represent
a cost-effective alternative for the analysis of bioprocesses (Schubert et al., 1994; Simutis et al., 1997).
Hybrid parametric/nonparametric systems combine First Principles modelling with chemometric tech-
niques for extracting knowledge hidden in process data. The most widely adopted hybrid structure for
bioreactor systems combines macroscopic material and/or energy balance equations with artificial neural
networks such as the MLP or the RBF networks (Psichogios & Ungar, 1992; Thompson & Kramer, 1994;
Montague & Morris, 1994; Chen et al., 2000). The job for the neural networks in these structures is the
nonparametric modelling of unknown reaction kinetics, which is normally the most challenging part of
the process to be modelled in a mechanistic sense. One important feature of living cells is the fact that
they process different substrates through different metabolic pathways. Diauxic growth on two carbon
sources is one of such examples. Another is aerobic/anaerobic growth, depending on the presence or
absence of dissolved oxygen in the medium. For example, the S. cerevisiae yeast grows through three
different metabolic pathways for exploiting energy and basic material sources and is able to switch be-
tween a oxidative metabolic state and a oxido-reductive metabolic state (Sonnleitner & Kappeli, 1986).
With high glucose supply or in conditions of oxygen limitation, Echireschia coli produces acetate via an
alternative pathway. In case of glucose limitation, E. coli is able to alternatively metabolise acetate (e.g.
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Reiling et al., 1985). The biological systems exemplified have inherent non-linear discontinuous reaction
kinetics due to switching between metabolic mechanisms. The popular MLPs and RBFs networks have
some limitations for approximating discontinuous input-output systems. Eikens & Karim (1999) showed
that modular neural networks, such as the ME (Jacobs et al., 1991), are well suited for the identification
of processes that switch between different operating conditions. Such modular network architectures
might be an interesting alternative for bioprocess hybrid modelling. A modular network architecture
consists of two or more (small) network modules mediated by an integration unit, which decides how to
combine their outputs to form the final system output and which modules should learn which training
patterns (Haykin, 1994). This type of architecture performs task decomposition in the sense that it learns
to partition a task into two or more functionally independent tasks and allocates distinct networks to
learn each task (Jacobs et al., 1991). The main objective of this work is to develop a hybrid modelling
method for bioprocesses accounting for the intracellular modular structure of the cells subsystem. The
combination of First Principles modelling with modular network architectures is thus explored. The re-
maining of this paper is organised in 4 more sections. In Section 2 a mechanistic/ME hybrid structure
for bioreactor systems is described and the ME network architecture is briefly reviewed. In Section 3 a
case study are presented where hybrid models employing ME, MLP and RBF networks are compared.
Finally, in Section 4, the main conclusions are presented.

2 Mechanistic/mixture of experts hybrid model for bioreactor systems
Hybrid model structures have been classified as parallel and/or serial (Thompson & Kramer, 1994; Psi-
chogios & Ungar, 1992). In parallel structures a full mathematical model is available that however is not
sufficiently accurate for model-based applications. A nonparametric modelling technique is then com-
bined in parallel with the mathematical model, having access to the same input variables and correcting
the mathematical model outputs. In the serial case, there is knowledge concerning the general structure
of the system, but parts thereof are not known in a mechanistic sense. Such unknown sub-systems are
modelled with nonparametric techniques, which feed with information to mechanistic parts. The hybrid
model structures that naturally arise in bioreactor modelling problems tend to be simultaneously serial
and parallel (Oliveira et al., 2005; Peres et al., 2005). The bioreactor system was described by material
balance equations while a parallel neural network/mechanistic structure represented the cell population
system. In this work a similar structure is adopted that however uses a ME architecture for modelling the
unknown reaction kinetics term instead of the usual MLPs or RBFs networks (see Fig. 1) This model
may be mathematically stated by the following two equations:

dc
E:r(c,w)—Dc+u (1)
r = Krye. (¢) pyp (c,w), ()

with c a vector of n concentrations, K a n X m yield coefficients matrix, r,. a m X r matrix of mech-
anistically known kinetic expressions, ¢, (¢, w) a vector of  unknown kinetic functions modelled
with ME networks, w a vector of parameters that must be estimated from data, D is the dilution rate, u
is a vector of net volumetric input rates (possibly control inputs).

THE MIXTURE OF EXPERTS ARCHITECTURE

The ME architecture has strong statistical foundations since it was inspired by the concept of mixture
models from Statistics field (Titterington et al., 1985). The ME architecture (Jacobs et al., 1991; Haykin,
1994) consists of a set of K expert networks and a gating network (see Fig. 1). Basically, the task of
each expert j is to approximate a function f; : ¢ — ¢; over a region of the input space. The task of the
gating system is to assign an expert network to each input vector c. The final system output ¢ ;5 is a
combination of the expert network outputs — ;5 = Z]K:1 gj (c) ; (c) — where g; (c) are the gating
outputs. The expert modules are simple linear functions for non-linear regression problems or linear
functions with a single output non-linearity for classification problems. In some non-linear regression
problems it may be necessary to use more complex non-linear experts. MLP networks with the tangent



—— ¢ cell system bioreactor system
®1

I

I

—» EXPERT I - |
9 |

I

. I

PME
> r=Krpecpy s (c, W) — =r(c)— Dc+u |

9K
GATING
SYSTEM

|
|
PK !
L » EXPERTK I— } c
|
|
|

c —>»
Figure 1: Proposed Mechanistic/Mixture of Experts hybrid structure

hyperbolic function in the hidden layers and linear functions in the output layer was the expert network
structure adopted in this work. Also, different forms for the gating system have been reported. The
softmax function suggested initially by Jacobs et al. (1991), is a normalised exponential function of
the inputs c and provides a “soft” hyperplane divison (Ramamurti & Ghosh, 1999). A localised gating
system based on Gaussian functions provides more flexible “soft” hyper-ellipsoids input space partitions
(Ramamurti & Ghosh, 1999) and was adopted in this work. The parameters present in each expert and
in the gating system were identified using the well known EM algorithm. The Reader is referred to the
work of Jordan & Jacobs (1994) for details of this technique.

3 Results and discussion

The S. cerevisiae yeast cells metabolise glucose via two pathways under aerobic conditions: oxidative
and/or reductive pathways, with ethanol the end product of the reductive pathway. The yeast cells are
also able to use ethanol as an alternative substrate, but the ethanol can be metabolised oxidatively only.
Sonnleitner & Kappeli (1986) developed a simple unstructured kinetic model based on the respiratory
bottleneck concept (see Oliveira et al. 2005 for detailed description). The model defines 3 macroscopic
reactions for carbon source utilisation with well-defined stoichiometry:

a1G + 1N + 109 fo, x + f1CO9 4+ g1 H2O (P1 - oxidative glucose uptake)
asG + by N o, x + esE + foCO9 + go HsO (P2 - reductive glucose uptake)

esE + b3N + c309 B x + f3CO9 4+ g3H2O (P3 - oxidative ethanol uptake)

with X, G, E, N, Os and C'O- the biomass, glucose, ethanol, ammonia, oxygen and carbon dioxide
respectively suspended or dissolved in the liquid phase, a;-g; with ¢ =1,2 or 3 are stoichiometric co-
efficients, and ug, pe and pg, specific growth rates associated with the three macroscopic reactions.
The yeast cells may find themselves in one of two metabolic states: oxidative or oxido-reductive. In
the oxidative metabolic state, only pathways (P1) and (P3) take place. In conditions of oxygen satura-
tion, it may be shown that the oxidative metabolic state is only possible for glucose concentrations lower
than 0.042 g/L. The oxido-reductive state, corresponding to pathways (P1) and (P2), occurs for glucose
concentrations higher than 0.042 g/L, presuming again oxygen saturation. The switch between the two
metabolic states is a crisp "if-then" switch. Consequently, pathways (P2) and (P3) are never simulta-
neous. The main objective in this study is to evaluate the proposed hybrid modelling technique and in
particular to verify if a mixture of two experts trained with the EM algorithm is capable of distinguish-
ing between the oxidative and oxido-reductive states, and if the individual experts develop expertise in
describing the one or the other metabolic state.
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Figure 2: Results for six simulated batches: (a) specific growth rate estimates with a ME with 2 experts (18 parameters):
measured values (o), estimated values (—).(b) Gaussian gating network outputs: g1 (---), g2 (). The true switch is when
substrate is constant and equal to 0.0422 g/L.

In a first study, 6 batches were simulated using the model described in Oliveira et al. (2005) for distinct
operating conditions of feed rate (F’), glucose concentration in the feed (S¢), and initial medium com-
position. To simplify the analysis, oxygen was assumed to be never limiting. In such circumstances the
specific growth rate is a function of glucose and ethanol concentrations only. Data of specific growth
rate (11), flexp = %% + D = pg + pg + 1% = f(Sa, Se), was collected at sampling intervals of 0.2
h along with the concentrations of glucose (S¢) and ethanol (Sg), yielding a total number of measured
patterns of np = 606. Measurement noise was excluded from this analysis thus avoiding the issues of
model overfitting. The main objective in this study is to compare the ME, MLP and RBF networks in
mapping the relationship between (1) and the two concentrations (S¢) and (Sg). The ME network was
configured with KX = 2 MLP experts with equal size {2,2,1}. The total number of parameters was
24 (9 parameters per expert and 6 parameters for the gating system - the gating had just one input, the
glucose concentration). The ME was trained with the EM algorithm. The results obtained after 1000
iterations are shown in Figs. 2(a-b). It is not surprising the fact that this small ME network was able
to model this system with almost negligible error for all 6 batches (the mean squared error (MSE) was
2.59 x 1079) as shown in Fig. 2a, given the powerful capacity for nonlinear function approximation of
the experts. A more significant result is the fact that the ME network learned to distinguish between the
two metabolic states: expert (1) developed expertise in describing the oxidative metabolic state whereas
expert (2) developed expertise in describing the oxido-reductive state. Fig. 2b shows the gating outputs
(g1) and (g2) over measured pattern along with the corresponding glucose measurements. The gating
outputs intercept at glucose concentration of 0.042 g/L that is precisely where the true process switch
occurs. A MLP network with 18 parameters was trained over the same data and the same structure as
the experts in the ME. The network was trained with the same algorithm employed to solve the first K
optimisations of the M step: quasi-Newton with a Conjugate Gradient method (CG) along with error
backpropagation for the analytical evaluation of gradients. The objective function was defined in this
case as a least squares problem. After 2000 iterations the MSE stabilised at 3.62 x 10~°. This error is
higher than that obtained with the ME but still very small (one order of magnitude below). In practical
terms an almost perfect mapping is achieved indicating that there is no apparent advantage of using a ME
network in this example maybe because it is too simple. The results produced by a RBF network with
2 inputs (Sg and SE), a single hidden layer with 16 nodes and an output layer, trained over the same
data, were however much worst (MSE=2.3 x 10~%). The basis function units were symmetrical Gaussian
density functions. The training algorithm follows the scheme proposed by Moody & Darken (1989).
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Figure 3: The square error of the specific growth rate estimates with: (a) a ME with 2 MLP experts (18 parameters); (b) a MLP
network with 17 parameters.

In a second study, a grid of 2601 points in the 2D input space of (S¢) and (Sg) was generated using the
same model of the first study. The objective was to assess the performance of the ME and MLP networks
in the vicinity of the switch between metabolic states. The ME network was configured with 2 MLP
expert networks with dimensions {2, 2,1} each. The output of the network was again the total specific
growth rate and the inputs were ¢ = {S¢, Sp}. The gating system was a localised gating network as in
the previous case. The results are presented in Figs. 3(a-b) and Fig. 4a. Figs. 3(a) and 3(b) show the
modelling error for the ME and MLP respectively. Two differences are evident: (i) the mean sum error
(MSE) is much smaller for the Mixture of Experts (ME) than for the MLP and (ii) the MSE is erratic
in the case of the MLP. This is a relevant result though not totally unexpected because it is well known
that MLPs have difficulties in mapping discontinuous systems and exhibit oscillatory behaviour at the
extremities (Haykin, 1994). The use of a ME could represent a clear advantage for modelling processes
that are run near metabolic switches. The case of recombinant S. cerevisiae or E. coli are such examples
since they are facultative aerobic microorganisms and the build up of ethanol or acetate are associated
with lower biomass and product yields. The more accurate results provided by the ME network arise
from the ability to detect the switch of both metabolic states and to assign each expert to describe the
individual metabolic states. Fig. 4(b) is a contour plot showing the true process switch. The metabolic
switch is independent of the ethanol concentration and occurs for constant glucose concentration of
SG=0.042 g/L. The black surface signals the oxidative state while the white surface signals the oxido-
reductive state. Fig. 4(a) shows a contour plot of the gating system outputs in the same 2D input space.
The black colour indicates the g; output whereas white represents go output. The ME transition occurs
precisely for the true switch of S=0.042 g/L. The ME transition is however soft when compared to the
true crisp switch shown in Fig. 4(b). Soft transitions are however characteristic of biological systems
thus this result is not seen as a disadvantage of the Gaussian gating system.

4 Conclusions

The proposed mechanistic/mixture of experts hybrid model for bioreactor systems was compared with
the conventional hybrid technique employing the Multi Layer Perceptron (MLP) and the Radial Basis
Function (RBF) networks. As main conclusions it can be stated that MEs trained with the Expectation
Maximisation algorithm are able to sistematically detect metabolic shifts with the individual experts
developing expertise in describing the individual pathways. The MLP and the ME outperformed system-
atically the RBF network in terms of the ratio model accuracy/number of parameters. The ME network
outperforms the MLP network in its ability to describe metabolic switches.
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Figure 4: (a) Gaussian gating network outputs. (b) The true switch is when glucose is constant and equal to 0.0422 (g/L)
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