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Abstract: The present paper contributes to the issues of batch process modelling and 

monitoring by proposing a time-varying state space (TVSS) model for the evaporative 

sugar crystallization industrial process. The study is focused on issues of on-line detection 
of changes in crystallization process operation, the early warning of process malfunctions 

and potential production failures; problems that have not been directly addressed by 

existing statistical monitoring schemes. The TVSS methodology is compared with current 

state-of-the-art techniques and the results obtained demonstrate the superior performance 

of the TVSS approach to successfully detect abnormal events and periods of bad 

operation. Copyright 2005 IFAC 
 
Keywords: Statistical process control, dynamic principal component analysis, batch sugar 
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1. INTRODUCTION 

 

Sucrose crystallisation, carried out in evaporative 

crystallisers, operating under vacuum in a semi-batch 

regime, constitutes a relevant industrial 

crystallization process. It can be characterised as a 
strong non-linear and non-stationary process. 

Significant scientific work has been carried out into 

the development of mechanistic dynamical models to 

describe the process, Feyo de Azevedo et al., 1996.  

More recently a knowledge-based hybrid model 
(KBHM) based on a combination of a partial 

mechanistic and artificial neural network (ANN) 

model was proposed by Georgieva et al., 2003. 

However, these models were focused on various 

estimation, optimization and feedback control 

problems. The issues of the on-line detection of 
changes in process operation, early warning of 

process malfunctions and potential production 

failures have not been directly addressed by the 

existing models.  

 

In the present paper, a new methodology for  

crystallization modelling and monitoring is proposed. 
It is a fully data driven approach based on a time 

varying state space (TVSS) model. A TVSS model is 

developed for each time interval of the batch 

duration. The approach is multivariate and dynamic 

while by building successive local models over the 
batch duration faces more efficiently than current 

techniques the issue of non-linear behaviour. It can 

deal with unequal batch lengths while for on-line 

monitoring it does not require any assumptions for 

filling missing future data of the batch.  

The paper is organized as follows. Section 2 provides 
a short description of the process operation. In 



section 3 current state of the art statistical process 

control (SPC) methodologies are reviewed. In section 
4 the TVSS model is proposed. In section 5 the 

proposed modelling scheme is validated against a 

comprehensive crystallization simulation and 

compared with the reviewed  in section 3 approaches. 

The paper ends up with conclusions and references. 

 
 
2.  PROCESS OPERATION 

 

Sugar crystallization operation takes place in six 

phases: i) initial filling and concentration; ii) seeding; 

iii) setting the grain; iv) crystallization; v) tightening 
and  vi) discharging  to a storage mixer before 

centrifugation. Typically seeding is performed at a 

supersaturation of 1.15. Often at the start of this 

period some form of thinning with water is required 

in order to prevent formation of conglomerates. 

Crystallization takes the longest period and has to be 
controlled primarily by the feed flow driven by 

supersaturation, consistency and crystal production 

requirements. Tightening is principally controlled by 

the capacity for evaporation. 

 
The unit contains 15 sensors for the following 

properties and operating variables: i) inside the pan - 

massecuite temperatures at three locations; brix of 

solution; level; massecuite consistency; stirrer 

current; vacuum pressure and temperature. ii) feed 
conditions - temperature, brix and flow rate of feed 
liquor and feed syrups. iii) steam conditions - 

temperature, pressure and flow rate of steam.  

 

Brix is the concentration of total dissolved solids 

(sucrose plus impurities) in the solution. 

Supersaturation is not a measured variable but can be 
determined from the available measurements. The 

feed flow rate of sugar liquor/syrup and the vacuum 

pressure are considered as process inputs. The crystal 

contents and the crystal size distribution (CSD) 

characterise the productivity and the product quality. 
 

 

3. CURRENT ON-LINE  STATISTICAL PROCESS 

CONTROL TECHNIQUES 

 
Batch process modelling and monitoring has been 
always a challenging problem in chemical 

engineering due to the presence of non-linear 

behaviour and serial correlation, correlated and/or 

collinear data, varying batch lengths and multi-

product production. Current  empirical techniques 

include the bi-linear approaches of multi-way 
Principal Component Analysis (PCA) and multi-way 

Partial Least Squares (PLS), and the tri-linear 

methodologies of PARAFAC. Although the above 

techniques have been successfully applied to batch 

processes they experience a number of limitations. 

For example they do not incorporate the process 
dynamics and most of them assume the duration of 

the batches to be constant.  Moreover, for on-line 

monitoring, it is required that the whole batch 

trajectory is known or is predictable. This 
requirement results in certain assumptions being 

made in order to in-fill the unknown future values of 

the batch trajectory. To overcome the issues of data 

in-filling and unequal batches alternative approaches 

have been proposed. 

 
3.1 Moving window principal component analysis 
 

Moving Window Principal Component Analysis 

(MWPCA) was proposed by Lennox et al. 2001. 

Typically measurements from a batch process are 

arranged in a three-dimensional matrix X 

(NBNVNT) where NB, NV and NT are the number 
of batches, variables and time instants. The three-

dimensional matrix X can be transformed to a 

bidimensional matrix by unfolding over the batch 

dimension (NB (NV⋅NT)). A scaling is usually 

applied to the unfolded matrix X before an ordinary 
PCA analysis. The mean of each column of X is 

subtracted from each data element of this column. 

This way of mean centring is very important since it 

results in the removal of the main non-linear 

component in the data. Furthermore, by scaling the 
variables in each column of X, the differences in the 

measurement units between variables can be handled 

to allow equal weight to be given to each variable at 

each time interval. A PCA model is then developed 

on a moving window of data. Having selected the 

length of the moving window (L), MWPCA then 
develops NT-L+1 PCA models for each time interval 

by decomposing the (NB NV) matrix X. into a 

systematic and noisy part: 

 

EPTX +=
T
kk  

(1) 

 

where Tk and Pk are the matrices of the k retained 

principal component scores and loading respectively, 
while E is the matrix of the residuals. The number of 

the retained principal components, k, is usually 

determined by the means of cross-validation. For the 

process considered the order of the moving window 

was selected to be L=2. For each of the NT-L+1 PCA 

models the loading matrix Pk, is stored. 
Having performed a PCA analysis, a set of on-line 

monitoring tools can then be developed. Typically 

these tools are Hotelling’s T2 and Squared Prediction 

Error (SPE) control charts. Consider that a new batch 

 is to be monitored. Then Hotelling’s Tnewx 2 is 

calculated using the k retained PCA scores 

 

knewk Pxt =  (2) 

T
tttT tSt 12 −

=  (3) 

 

where tk are the k retained PCA scores and S is their 
covariance matrix. The SPE is then calculated as 

follows: 

 
T
ttSPE ee=  (4) 
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3.2 Batch dynamic principal component analysis 
 

The MWPCA approach does not capture the dynamic 

behaviour within a batch process. Chen and Liu, 

2000, proposed Batch Dynamic Principal Component 

Analysis (BDPCA), in an attempt to explain the 

batch process dynamics. They suggested the use of 
lagged variables to incorporate process dynamics. 

More specifically in BDPCA, each batch is isolated 

from the others. A matrix X (NTNV) is formed for 

each batch. Then each of the NV variables is lagged d 

times resulting in an lagged X[(NT-d)(NV⋅(d+1))] 

matrix. The covariance matrix of the lagged X 

matrix, Siv, is then calculated. The procedure is 

repeated for all NB batches, resulting in NB Siv 

covariance matrices. The elements in each of the Siv 

matrices are a measure of the dynamic relationship 

between variables in batch iv. Having calculated 
these dynamic correlations for all NB batches an 

average covariance matrix, is then calculated based 

on the NB Siv covariance matrices : 
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(6) 

 

The average covariance matrix, , expresses the 

average dynamic relationships  between the process 

measurements. A PCA model is then developed 

based on . The resulting BDPCA model is 

finally used to calculate the T

avgS

avgS
2 and SPE statistics for 

monitoring purposes. 

 

 
3.3 Batch observation level 
 

 To overcome the problem with unequal batch 

lengths an alternative monitoring approach was 

proposed by Wold et al, 1998, termed Batch 

Observation Level (BOL). In BOL the original three-
way data is unfolded over the variables dimension. A 

dummy y-variable that can be a time index or a batch 

maturity index is then specified. Data is scaled and a 

Partial Least Squares (PLS) analysis is then 

performed between the unfolded matrix X and the 

dummy y vector: 
 

EPTX +=
T
kk

 (7) 

 

fcTy += k  (8) 

  

where c is the regression vector of  y onto the PLS 

scores Tk,, and f are the PLS model residuals. The 

number of PLS latent variables to be retained are 
selected as those that provide an adequate description 

of both the X and y spaces. For setting up an on-line 

monitoring scheme the scores of the retained PLS 

scores are then rearranged over the batch dimension 

resulting in a [NB(NT⋅k)] matrix, and their mean 

and standard deviation calculated for each sample 

point and stored. In an on-line situation, when a new 
sample is obtained, the scores are initially calculated 

and then scaled using the mean and the standard 

deviation of the corresponding sample point. These 

scaled scores are plotted against their control limits 

in univariate score plot charts. Similarly to the 

previous approaches, T2 and SPE charts can also be 
constructed. 

 

4. TIME VARYING STATE SPACE MODELL 

 

The underlying idea of this paper is that a batch 
process can be described by a time-varying state 

space (TVSS) model. This new approach was 

recently introduced by Simoglou et al., 2002a. The 

state space model developed takes the form: 

 

tttt wtCt +=
+1

 (9) 

tttt etHy +=  (10) 

 

where are the system states, y are the available 

process measurements, w and e are the state and 

output residuals with covariance matrices Q and R 
respectively. Finally C and H are the state space 

model matrices, which are assumed to be time-

varying since they aim to describe a non-stationary 

process.  To develop the model (9-10) the data are 

initially unfolded and scaled as in MWPCA. The 
procedure to compute the TVSS matrices C and H 

then proceeds through the identification of the system 

states.  For a sample time , past and future of 

the system are considered. The past  (p) is associated 

with the past process measurements of all batches at 

time k up to a specific lag  K : 

t

kt =

 
T

Ktttt ][ 21 −−−
= yyyp L

 
(11) 

 

The choice of K as the length of the past vector 

window is in terms of capturing the relevant 

dynamics of the system being studied. In the case 
considered K=2. The future (f) of the process are the 

current and future process measurements of all 

batches (in practical cases the future horizon, L, can 
be set as one or two): 

 
T

Ltttt ][ 1 ++
= yyyf L

 
(12) 

 

The choice of the length of the moving window L is 

also based on the dynamics of the process being 

studied; too large  and the sensitivity of the process 
malfunction is reduced, whilst too small a window 

would be impacted by process noise. Now, by 
applying any one of either PLS, Principal Component 

Regression (PCR) or Canonical Variate Analysis 

(CVA) between the past (11) and the future (12) of 
the process, new latent variables can be calculated 

which provide a reliable approximation of the true 



system states. PCR scores capture the variability 

between process measurements while PLS and CVA 
latent variables are those linear combinations of the 

past that include the information required to predict 

process future. The result of applying either a PCR, 

PLS or CVA analysis is a weighting matrix  which 

is used to identify the system states through the past 

vector : 

tJ

tp
 

ttt pJt =
 

(13) 

 
Once the system states have been identified the state 

space matrices can be computed using a least squares 

solution, (see Simoglou et al., 2001, for more 
details). 

 

In the next section, the TVSS methodology  is 

validated and compared with the  univariate SPC and 

the multivariate techniques reviewed in section 3 

(MWPCA, BDPCA, BOL) using a comprehensive 
simulation of an industrial white sugar crystallizer.  

 

 

5. ON-LINE SPC OF SUGAR 

CRYSTALLISATION 

 
Data from 14 industrial runs were available from a 

sampling period of 4 months. Batches were 

discriminated as being ‘in-specification’ or ‘out-of-

specification’ based on the final CSD properties. 

Eleven batches were identified as being in-
specification whilst three had CSD values out of the 

specification range.  

 

 Data pre-processing 
 
Prior to developing the statistical models it was 

necessary to make decisions related to the selection 

of the crystallization phases and the process variables 

to be included in the monitoring model. The phases 

to be modelled were selected to be the 
‘crystallisation’ phase and the ‘tightening’ phase. The 

initial operations before seeding (charging and 

concentration) were excluded from the analysis 

because their main objectives are to feed a certain 

initial quantity of juice into the pan and to 

concentrate it until a predefined level as soon as 
possible. Therefore, the main effect of these stages 

on the next operations is the time it takes to reach the 

same initial conditions (supersaturation set point) for 

the crystallization period. Moreover in practice no 

specific faults are observed during this phase of 
process operations. 

The variables included in the analysis were vacuum 

pressure, steam flowrate, steam pressure, steam 

temperature, brix of the solution, supersaturation and 

temperature of the solution. To control the 

supersaturation around the metastable zone, process 
operators periodically open and close the respective 

liquor/syrup flow valve. Thus in the available data set 

there are periods where the feed flowrate is equal to 

zero. Building a statistical model based on this data 
set results in the model being trained on data where 

the feed flow rate is zero. However if for a new 

batch, process conditions force operators to open  the 

feed valve for control purposes, then for this 

particular time point the statistical model will move 

outside of the limits resulting in a possible false 
alarm. The feed variables were thus excluded which 

does not result in a loss of information since their 

effect directly impacts on the other process variables 

(the brix in the solution and the supersaturation) 

included in the data set. A calculated variable 

(supersaturation) was also included as a critical sugar 
crystallisation parameter.  

 
On-line Univariate SPC 
 
On-line univariate SPC was applied to the tree 

batches identified as out of specification. Only Batch 
2 (not depicted in the figure) was clearly detected as 

out-of-spec. Fig.1 shows the most significative 

variables for out-of-spec Batch 1 along with 

univariate, 3, control limits. Note that the variables 

lie within the univariate control limits for most of the 

batch run. Those observations that lie out with the 

limits, for example time point 89 in Fig. 1a, are still 
close to the limits and thus it is concluded that they 

are spurious signals, i.e. on average one in hundred 

observations will lie outside the 99% action limits. 

As a result, the Batch 1 would be classified by this 

method as good. Thus, the univariate SPC cannot 

detect reliably periods of out-of-spec operation. 
 

On-line multivariate SPC  
 

The TVSS approach presented in section 4 and the  

multivariate SPC techniques of MWPCS, BOL, and 
BDPCA discussed in section 3 were then used to 

‘monitor’ the real process data. Having built and 

validated the four models from in-specification 

process data, the next step was to evaluate their 

ability to detect the out-of-specification batches and 

provide information as to the variable(s) responsible 
for the out-of-specification signal. The results for 

out-of-spec Batch 1 are summarised in Fig.2 to Fig.5. 

T2 statistics are shown alongside their corresponding 

contribution plots. The contribution plots shows the 

contribution of the original seven process variables to 

the maximum out of control value. In all the control 
charts, the values shown were scaled so that the run-

time control limits were equal to unity for the whole 

batch run. This way of presenting the control charts 

is more user-friendly for process operators. It also 

allows the four statistical methods to be compared on 
a common basis as the degree to which the T2  

exceeds the limits can be quantified. 

In general it was observed that the four methods 

identify periods of out-of-specification operation 

during the run in all three batches (not depicted in the 

figures) for the T2 control charts. Thus by applying 
multivariate SPC as opposed to univariate SPC, 



periods of out-of-specification operation can be 

detected. 
In Fig. 2a, the MWPCA based T2 control chart for 

Batch 1, there is a period of out-of-specification 

operation around time point 89. The univariate 

control charts indicated out-of-specification 

operation for the time period 88-90. More 

specifically the univariate control charts of vacuum 
pressure (Fig. 1a) and the temperature of the solution 

(Fig. 1c) move outside the limits for these time 

points. In the multivariate T2 control chart, out-of-

spec operation is detected earlier and takes its 

maximum value at time point 89. The T2 contribution 

plot for time point 89 (Fig.2b) indicates that variable 
1 (vacuum pressure) is responsible for the out-of-

control signal. This conclusion is in accordance with 

the univariate SPC control charts. 

 

T2 control charts of Batch 1, applying BDPCA (Fig. 

3a), BOL (Fig.4a) and TVSS (Fig. 5a), provided 
maximum T2 out-of-control signals for the time 

period around point 345. Univariate SPC provides an 

out-of-control signal for the brix of the solution for 

this time period (Fig.1b). However the fault is not 

detected as early as for the multivariate control charts 
and the level of excursion outside the limits is 

smaller for the univariate control charts. The 

contribution plot for TVSS (Fig. 5b) indicates that 

the steam temperature and the brix of the solution are 

mainly responsible for the out-of-control signal. The 

respective contribution plots for BDPCA (Fig. 3b) 
and BOL (Fig. 4b) also indicate that the brix of the 

solution is mainly responsible for the out-of-control 

signal.  

 

The four multivariate monitoring techniques of 

MWPCS, BOL, BDPCA and TVSS exhibit similar 
performance and capability in terms of distinguishing 

between in and out-of-specification behaviour. 

However the TVSS approach captures the underlying 

dynamic relationship between the process variables 

more clearly than the other three approaches.  For 
example according to the control charts in Fig.1d, an 

abnormal situation arises around time interval 325-

375. Examining the time trajectories of the measured 

variables for Batch 1, it is observed that for the same 

period the steam pressure (Fig.1b) that operationally 

should be kept at around 1.9-2.2. bar for safety 
reasons, goes outside of this limit. This causes a rapid 

decrease in the brix (Fig.5b) and subsequently 

supersaturation moves out of the metastable zone 

(decreases) which results in the dissolution of the 

existing crystals. These variations are captured by the 

contribution plot (Fig. 5b) and an alarm signal 
generated by the monitoring scheme is justified.  

 

 
5. CONCLUSIONS 

 

A novel modelling approach was proposed to model 
an industrial sugar crystallization fed-batch process 

using a time varying state space (TVSS) model. The 

process itself is challenging since it is carried out in 

multiple phases and there exists strong non-linear and 
dynamic effects between the variables. The TVSS 

methodology was compared with current state-of-the-

art monitoring schemes as Moving Window Principal 

Component Analysis (MWPCA), Batch Dynamic 

Principal Component Analysis (BDPCA) and Batch 

Observation Level (BOL). The monitoring schemes 
were applied in an on-line mode for three batches 

whose final product was out-of-specification. It was 

found that all methods could identify clearly periods 

of bad operation for all three batches and perform 

better than the traditional univariate SPC. However, 

the results obtained demonstrate the superior 
performance of the TVSS approach to successfully 

detect abnormal events and periods of out-of-spec 

operation. The TVSS methodology is much more 

effective in handling varying batch lengths, non-

linear data, and presence of serial correlation 

between measurements.  
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a) Vacuum Pressure 

 

 
b) Brix of the solution 

 

 
c) Temperature of the solution 

 

 
d) Steam pressure 
Fig.1 Time series plots (bold line) and control limits 

of bad Batch1 

 

 
a) T2 control chart 

 

 
b) T2 Contribution Plot 

Fig.2 MWPCA on-line monitor. for out-of-spec 

Batch1 

 
a) T2 control chart 

 

 
b) T2 Contribution Plot 

Fig.3 BDPA on-line monitor. for out-of-spec Batch1 

 

 
a) T2 control chart 

 

 
b) T2 Contribution Plot 
Fig.4 BOL on-line monitoring for out-of-spec Batch1 

 

 
a) T2 control chart 

 

 
b) T2 Contribution Plot 

Fig.5 TVSS on-line monitoring for out-of-spec 

Batch1 




