
Computer Labs: The PC’s Real Time Clock
(RTC)
2o MIEIC

Pedro F. Souto (pfs@fe.up.pt)

November 24, 2014

The Real Time Clock (RTC)

I Integrated circuit that maintains:
I The date and
I The time of the day

even when the PC is switched-off and unplugged
I In addition, it:

I Includes alarm functionality and can generate interrupts at
specified times of the day;

I Can generate interrupts periodically
I Includes at least 50 non-volatile one-byte registers, which

are usually used by the BIOS to store PC’s configuration
I Modern RTCs are self-contained subsystems, including:

I A micro lithium battery that ensures over 10 years of
operation in the absence of power (when the power is on,
the RTC draws its power from the external power supply)

I A quartz oscillator and support circuitry

Lab 6: The RTC (2013)

I Write functions:
int test_config();
int test_date();
int test_int();

that require interfacing with the RTC
I These functions are not the kind of functions that you can reuse

later in your project
I The idea is that you design the lower level functions (with the final

project in mind).
I What’s new?

I Use the RTC
I Asynchronous concurrent access to shared registers

I Develop interrupt handler in assembly (mixed C-assembly
programming)

I Some details of what you’ll have to implement revealed only in
class

The RTC’s Internal Address Space

I ... is an array of at least 64 one-byte registers, whose
content is non-volatile. Each register can be:

I Addressed individually
I Both read and written

I The first 10 registers are reserved for time-related
functionality

I The following 4 registers are reserved for control of the
RTC

I The remaining registers can be used for arbitrary purposes

Access to the RTC in the PC

I The PC uses two ports to access the RTC’s internal
registers:
RTC_ADDR_REG on port 0x70, which must be loaded with

the address of the RTC register to be accessed
RTC_DATA_REG on port 0x71, which is used to transfer

the data to/from the RTC’s register accessed
I To read/write a register of the RTC requires always:

1. writing the address of the register to the RTC_ADDR_REG
2. reading/writing one byte from/to the RTC_DATA_REG

Time of the Day, Alarm and Date Registers

I It is possible to program whether the data format is binary
or BCD, but this applies to all registers

I It is also possible to program whether the hours range from
0 to 23 or 1 to 12 (plus AM and PM), but this applies both
to the time and the alarm registers

Reading the Date or the Time of the Day (1/2)

Issue The registers with the date and the time of the day are
updated asynchronously by the RTC every second

I These registers are just an image of non-accessible
counters that are updated automatically as determined
by the signal generated by the (internal) quartz oscilator

Problem What if there is an update while we are reading the
time/date?

I E.g. the time updates from 7:32:59 to 7:33:00.
Question How big can the error be?

I Does it matter the order in which registers are read?

Reading the Date or the Time of the Day (2/2)
Solution The RTC offers 3 mechanisms to overcome this issue:

Update in progress flag (UIP) of the RTC
I The RTC sets the UIP of REGISTER_A 244 µs before

starting the update and resets it once the update is
done

Update-ended interrupt of the RTC
I If enabled, the RTC will interrupt at the end of the

update cycle, the next cycle will occur at least 999
ms later

I Register_C should be read in the IH, to clear the
IRQF

Periodic interrupt of the RTC
I Periodic interrupts are generated in such a way that

updates occur sensibly in the middle of the period
(actually, 244µs after)

I As long as the period is long enough
I Thus, after a periodic interrupt occurs, there are at least
P/2 + 244µ seconds before the next update

Contents

Parenthesis: Preemptions and Concurrent DD’s

Preemptions and Races Reading the Time

What if: the DD is preempted while reading
the time, e.g.?

Note The arrows labeled IN(XXX)
represent one output to port 0x70 and
one input from port 0x71

How to prevent this?

I Disable interrupts before starting to
read (what?)

I Enable interrupts again, after reading
I Define assembly functions to

enable/disable interrupts

DD RTC

IN(Reg_A)

UIP==0
IN(hours)

hours++

IN(minutes)

hours

minutes

Other Races caused by Preemptions
What if: the DD is preempted while trying to access the RTC and

the preempting process accesses the RTC?
DD1 RTC

outb(0x70,0x0A)

Reg_C

outb(0x70,0x0C)

inb(0x71)

inb(0x71)

Reg_?

DD2

How to prevent this?
I Disabling interrupts may not work with more than one

processor
I Interrupts are disabled only on one processor/core

I Need not worry with this for the RTC in Minix
I You’ll study concurrency problems in the OS class

Updating the Date or the Time of the Day

Problem Asynchronous updates can also make time/date
updates inconsistent

Solution Set the SET bit of Register_B before updating
I It prevents the RTC from updating the time/date registers

with the values of the date/time keeping counters
I At the end of the update the SET bit should be reset so

that the RTC updates the counters with the values of the
registers

Question Can we use the SET bit of REGISTER_B also for
reading the date/time registers?

Alarm Registers

I The alarm registers allow to configure an alarm
I When the time of day registers match the corresponding

alarm registers, the RTC alarm generates an alarm
interrupt, if that interrupt is enabled at the RTC

I Bit AIE (5) of REGISTER_B
I The RTC supports don’t care values – values with the 2

MSB set (11XXXXXX)– for alarm registers
I These values match any value of the corresponding

register of the time of day register set
I This makes it possible to configure alarms for multiple times

of the day, without changing the contents of the alarm
registers

I For example, if all 3 alarm registers are set to “don’t care”,
then the RTC will generate an alarm every second

Interrupts
I The RTC can generate interrupts on 3 different events

Alarm interrupts (AI)
Update interrupts (UI)
Periodic interrupts (PI) with a period between 122 µs and

0.5 s, as determined by bits RS0-RS3 in REGISTER_A
I Each of the interrupts can be enabled/disabled individually,

using bits AIE, UIE and PIE of REGISTER_B
I The RTC has only one IRQ line, which is connected to line

IRQ0 of PIC2, i.e. IRQ8.
I The source of the interrupt can be determined by checking

the flags AF, UF and PF of REGISTER_C
I Note that more than one of these flags may be set

simultaneously
I REGISTER_C must be read to clear these flags, even if

there is only one enabled interrupt
I Flags AF, UF and PF of REGISTER_C are activated upon

the corresponding events even if interrupts are disabled
I It is possible to use polling to check for the corresponding

events

Control/Status Register A

REGISTER_A

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
UIP DV2 DV1 DV0 RS3 RS2 RS1 RS0

UIP If set to 1, update in progress. Do not access time/date
registers

I More precisely, this bit is set to 1, 244µs before an
update and reset immediately afterwards

DV2-DV0 Control the couting chain (not relevant)
RS3-RS0 Rate selector – for periodic interrupts and square

wave output

Control/Status Register B
REGISTER_B

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
SET PIE AIE UIE SQWE DM 24/12 DSE

SET Set to 1 to inhibit updates of time/date registers.
PIE, AIE, UIE Set to 1 to enable the corresponding

interrupt source
SQWE Set to 1 to enable square-wave generation
DM Set to 1 to set time, alarm and date registers in binary.

Set to 0, for BCD.
24/12 Set to 1 to set hours range from 0 to 23, and to 0 to

range from 1 to 12
DSE Set to 1 to enable Daylight Savings Time, and to 0 to

disable
I Useless: supports only old US DST ...

IMPORTANT Do not change DM, 24/12 or DSE, because it
may interfere with the OS

I In any case, changes to DM or 24/12 require setting
the registers affected by those changes

Control/Status Registers C and D

REGISTER_C

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
IRQF PF AF UF 0 0 0 0

IRQF IRQ line active
PF Periodic interrupt pending
AF Alarm interrupt pending
UE Update interrupt pending

REGISTER_D

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
VRT 0 0 0 0 0 0 0

VRT Valid RAM/time – set to 0 when the internal lithium
battery runs out of energy – RTC readings are
questionable

Lab 6 (2013): test_config()

What? Read and display the configuration of the RTC
I The time of day is the state, not the configuration
I The value of the alarm registers ... should be considered as

state, not as configuration
For class preparation need not display the configuration in a fancy

way
I Just show the value of the registers in hexadecimal

Lab 6 (2013): test_date()

What? Display the date and time, in a human readable way
I Need not support all formats, only those the RTC is configured

with
I The mechanism to be used to ensure consistency will be told

in class
I Your implementation can use another mechanism, but you will

be penalized (between 50 and 67%)

For class preparation need not display the configuration in a fancy
way

I Just show the value of the registers in hexadecimal

Example Code: Waiting for Valid Time/Date

void wait_valid_rtc(void) {
unsigned long regA = 0;

do {
disable();
sys_outb(RTC_ADDR_REG, RTC_REG_A);
sys_inb(RTC_DATA_REG, ®A);
enable();

} while (regA & RTC_UIP);
}

I Assuming that functions enable()/disable()
enable/disable processor interrupts

I May not be what you want!!!
I What if code is preempted or interrupted?

Lab 6 (2013): test_int()

What? Handle one of the 3 types of interrupts
I Which one will be told in class

I Your implementation can handle a different one, but you will be
penalized (between 50 and 67%)

How? Need to implement the handler partially in assembly
I At least the I/O part, and may be something else
I The variables to be used in the communication between the

assembly code and C code must be declared in assembly
I If you prefer the Intel’s syntax, check if it is supported

Example Code: RTC IH in C

void rtc_ih(void) {

int cause;
unsigned long regA;

sys_outb(RTC_ADDR_REG, RTC_REG_C);
cause = sys_inb(RTC_DATA_REG, ®A);

if(cause & RTC_UF)
handle_update_int();

if(cause & RTC_AF)
handle_alarm_int();

if(cause & RTC_PF)
handle_periodic_int();

}

Lab6 (2013): Hints for a successful test_int()

Read Register C to clear any pending interrupt
I For example, the interrupt may have occurred the last time

you run lab6, but it was not processed because lab6 was
already out of the interrupt dispatching loop.

Write it in C first and only afterwards in assembly
Assembly file must have .S (upper case ’s’) extension

I Otherwise, gcc does not call the C pre-processor
Header files used in assembly should include only #defines

I In particular, the assembler is not aware of C function
prototypes and will generate an error

sys_iopenable() must be called, otherwise if you try to
execute protected instructions you’ll get a somewhat weird
message, such as:
lab6 255949 0x2ec6 0x22d1 0x28b3 0x100a

Further Reading

I Data sheet of a relatively recent RTC IC
I Lab 6 Handout

href="http://www.datasheetcatalog.org/datasheet/maxim/DS12887.pdf
href="http://web.fe.up.pt/~pfs/aulas/lcom2013/labs/lab6.html

	Parenthesis: Preemptions and Concurrent DD's

