
Computer Labs: Processes
2o MIEIC

Pedro F. Souto (pfs@fe.up.pt)

October 30, 2012



(Sequential) Process

Abstracts a running program

int main(int argc, char *argv[], char* envp[])}

0x0

args

data

text

heap

stack

args Command line args and
environment variables de
ambiente.

stack Activation frames/records
corresponding to function calls

heap Dynamically allocated memory
(e.g using malloc)

data Memory allocated statically (by
the compiler) (e.g. the “Hello,
World!” string)

text Machine instructions



Minix is a multitasking OS

$ ps ax | more
PID TTY TIME CMD

(-4) ? 0:46 idle
(-3) ? 0:00 clock
(-2) ? 0:00 system
(-1) ? 0:00 kernel

5 ? 0:00 pm
7 ? 0:01 vfs
4 ? 0:00 rs
8 ? 0:00 memory
9 ? 0:00 log

10 ? 0:00 tty
3 ? 0:00 ds

12 ? 0:00 vm
13 ? 0:00 pfs
6 ? 0:00 sched
1 ? 0:00 init

-- more (43 in all)

I And so are Linux and all Windows OSs since XP (at least)

OS support multiple processes (multiprogramming)
for reasons of efficiency



Multiprogramming and Efficiency

Problem Processes need to access to I/O devices (monitor,
keyboard, mouse, disk, network ...)

Parameter Time
CPU cycle 1 ns (1 GHz)
Cache access ~ 2ns
Memory access ~ 10 ns
Disk access ~10 ms

Solution while a process waits for an I/O operation to complete,
the OS can allocate the processor to another processor:

I Upon completion of the I/O operation, the I/O device can
generate an interrupt



Multi-process Execution (1/2)

I In a multiprocessor/multicore system (i), each
processor/core can execute a different process

I In a uniprocessor system (ii), the OS allocates the
processor to the diferent processes (the processor is a
resource shared by the different processes):
pseudo-parallelism.

P1

CPU1

MEM

P1

CPU2

P1

CPU4

P1

CPU3

(i)

P1

P3

P4

P2

t
(ii)



Multi-process Execution (2/2)

A

B

C

D

D

C

B

A

Process
switch

One program counter
Four program counters

P
ro

ce
ss

Time

B C DA

(a) (b) (c)

I The processor is shared by 4 processses;
I The OS creates the illusion that each process executes in

its own CPU, i.e. that each process executes in its virtual
CPU



States of a Process

I In its lifetime, a process can be in 1 of 3 states:

running

waitingready

1

2

3

4

1. The OS allocates a CPU to the process;

2. The OS allocates the CPU to another
process;

3. The process blocks waiting for some event
(usually I/O)

4. An event the process was waiting for
occurs

Running the CPU executes the process’s instructions a
executar as instruções do processo;

Waiting the process is waiting for an event (usually the end
of an I/O operation)

Ready the process is waiting for the OS to allocate it a
CPU, which is executing instructions of another process



Further Reading

I Sections 2, 2.1
Andrew Tanenbaum, Modern Operating Systems, 2nd
Ed.


