
Computer Labs: The PC Keyboard
2o MIEIC

Pedro F. Souto (pfs@fe.up.pt)

October 5, 2012

Lab4: The PC’s Keyboard

I Write functions:
int kbd_test_scan()
int kbd_test_leds(timer_test_int(unsigned long time)

that require programming the PC’s keyboard controller
I These functions are not the kind of functions that you can reuse

later in your project
I The idea is that you design the lower level functions (with the final

project in mind).
I What’s new?

I Program the KBC controller (i8042)

PC Keyboard Operation: Data Input (1/2)
IRQ1

0x64

0x60

OUT_PORT

OUT_BUF

IN_PORT

STAT_REG

I/O bus

i8042
(KBC)Keyboard

IN_BUF

I The keyboard has its own controller chip (not shown): the
controller@KBD (C@KBD)

I When a key is pressed the C@KBD generates a scancode
(make code) and puts it in a buffer for sending to the PC

I Usually, a scancode is one byte long
I The same happens when a key is released

I Usually, the scancode when a key is released (break code)
is the make code of that key with the MSB set to 1

I The communication between the C@KBD and the PC is
via a serial line

I I.e. the bits in a byte are sent one after the other over a pair
of wires

PC Keyboard Operation: Data Input (2/2)
IRQ1

0x64

0x60

OUT_PORT

OUT_BUF

IN_PORT

STAT_REG

I/O bus

i8042
(KBC)Keyboard

IN_BUF

I On the PC side this communication is managed by the
keyboard controller (KBC)

I In modern PCs, the KBC is integrated in the motherboard
chipset

I When OUT_BUF is empty:
1. The KBC signals that via the serial bus
2. The C@KBD sends the byte at the head of its buffer to the

KBC
3. The KBC puts it in the OUT_BUF
4. The KBC generates an interrupt by raising IRQ1

Lab4: kbd_test_scan (1/2)

What Prints the scancodes, both the makecode and the breakcode,
read from the KBC

I Should terminate when it reads the breakcode of the ESC key:
0x81

How Need to subscribe the KBC interrupts
I Upon an interrupt, read the scancode from the OUT_BUF

Note There is no need to configure the KBC
I It is already initialized by Minix

Issue Minix already has an IH installed
I Must be disabled to prevent it from reading the OUT_BUF

before your handler does it
Solution Use not only the IRQ_REENABLE but also the
IRQ_EXCLUSIVE policy in sys_irqsetpolicy()

Lab4: kbd_test_scan (2/2)
KBC interrupt subscription in exclusive mode;
driver_receive() loop (similar to that of lab 3)
Interrupt handler reads the bytes from the KBC’s OUT_BUF

I Can print the scancodes
I But should read only one byte per interrupt

I The communication between the keyboard and the KBC is too
slow

I Later, you may think about including the code that maps the
scancodes to a character code

I IH in Minix are usually out of the critical path
I They are executed with interrupts enabled and after issuing the EOI

command to the PIC
I In many systems this may not be appropriate. For example, in

Linux most DD break interrupt handling in two:
Top half which is in the critical path, and therefore does minimal

processing
Bottom half which is not in the critical path, and therefore may

do additional processing

Keyboard Commands (1/2)
I In the early PC models, interface with the keyboard used a

very simple IC at port 0x60
I For compatibility, the KBC provides two registers at that

port:
IN_BUF i.e. Input Buffer
OUT_BUF i.e. Output Buffer
and emulates the old interface:

1. The KBC forwards bytes (commands) written in the
IN_BUF to the C@KBD

2. The C@KBD responds with one of 3 values:
0xFA (ACK), 0xFE (Resend) or 0xFC (Error)

3. The KBC puts the response in the OUT_BUF and raises
IRQ1

Note The names of the registers IN_BUF/OUT_BUF are from
the point of view of the KBC. The processor:

I Writes to the IN_BUF
I Read from the OUT_BUF

Keyboard Commands (2/2)
Command Meaning Args
0xFF Reset KBD
0xF6 Set default values and enable KBD
0xF5 Disable KBD (set default values

and stop scanning)
0xF4 Clear buffer and enable KBD
0xF3 Change KBD repetition rate/delay bits 0-4 rate

bits 5-6 delay
0xED Switch on/off KBD LEDs bits 0-2

Note The arguments of commands that require them have to be written to
the IN_BUF too, and are also acknowledged

I The C@KBD responds with one of 3 values as above.

Thus issuing such a command, requires 4 steps:

1. Write command to the IN_BUF
2. Read KBD response from the OUT_BUF
3. Write argument to the IN_BUF
4. Read KBD response from the OUT_BUF

If the KBD response is:

Resend (0xFE) the latest byte should be written again
Error (0xFC) the entire sequence should be restarted

Command 0xF3 (Configure Typematic Parameters)
I Typematic is an operating mode in which the keyboard

generates a stream of scancodes when the user holds a key
down

I The KBD uses two parameters for configuring this mode:
Delay Which specifies the delay for entering typematic mode,

counted from the moment the user presses down the key;
Rate Which specifies the rate at which scancodes are

generated, once the keyboard switches to typematic mode.

Command 0xED (Set KBD LEDs)

Bit 2 Caps Lock indicator
Bit 1 Numeric Lock indicator
Bit 0 Scroll lock indicator

I There is no way to read the value of these LEDs
I The code that changes them should remember their state

The KBC Commands (of the PC-AT)
IRQ1

0x64

0x60

OUT_PORT

OUT_BUF

IN_PORT

STAT_REG

I/O bus

i8042
(KBC)Keyboard

IN_BUF

I The KBC added a few commands, the KBC commands,
and two new registers at port 0x64
Status Register for reading the KBC state
Not named for writing KBC commands

I Apparently, this is not different from the IN_BUF at port
0x60

I The value of input line A2 is used by the KBC to
distinguish KBC commands from KBD commands

I That is: the KBC has only one writable register, the
IN_BUF

Status Register
I Input from/output to KBC requires reading the status register

Bit Name Meaning (if set)
7 Parity Parity error - invalid data
6 Timeout Timeout error - invalid data
5 Aux Mouse data
4 INH Inhibit flag: 0 if keyboard is inhibited
3 A2 A2 input line: 0 data byte

1 command byte
2 SYS System flag: 0 if system in power-on reset,

1 if system already initialized
1 IBF Input buffer full

don’t write commands or arguments
0 OBF Output buffer full - data available for reading

I Bits 7 and 6 signal an error in the serial communication line
between the keyboard and the KBC

I Do not write to the IN_BUF, if bit 1, i.e. the IBF, is set.

Keyboard-Related KBC Commands for PC-AT/PS2

I These commands must be written using address 0x64
I Arguments, if any, must be passed using address 0x60
I Return values, if any, are passed in the OUT_BUF

Command Meaning Args (A)/ Return (R)
0x20 Read Command Byte Returns Command Byte
0x60 Write Command Byte
0xAA Check KBC (Self-test) Returns 0x55, if OK

Returns 0xFC, if error
0xAB Check Keyboard Interface Returns 0, if OK
0xAD Disable KBD Interface
0xAE Enable KBD Interface

KBD Interface is the serial interface between the keyboard and
the KBC

I Disabling of the KBD interface is achieved by driving the
clock line low.

I There are several others related to the mouse

(KBC “Command Byte”)

7 6 5 4 3 2 1 0
– – DIS2 DIS – – INT2 INT

DIS2 1: disable mouse
DIS 1: disable keyboard interface
INT2 1: enable interrupt on OBF, from mouse;
INT 1: enable interrupt on OBF, from keyboard
- : Either not used or not relevant for Lab

Read Use KBC command 0x20, which must be written to 0x64

I But the value of the “command byte” must be read from
0x60

Write Use KBC command 0x60, which must be written to 0x64

I But the new value of the “command byte” must be
written to 0x60

Keyboard Programming/Configuration
Status Register @ address 0x64

I Read the KBC state
Input Buffer @ either address 0x64 or address 0x60. Can be used

to write:
Commands to the KBC access via address 0x64;
Arguments of KBC commands access via address 0x60
Commands to the keyboard access via address 0x60
Arguments of keyboard commands access via address 0x60

Output Buffer @ address 0x60. Can be used to read:
Scandcodes both make and break, received from the keyboard;
Return values from KBC commands;
Return values from keyboard commands;
Confirmation protocol messages ACK, Resend and Error

Note These addresses belong to the I/O address space
I Need to use IN/OUT assembly instructions or the library

functions sys_inb()/sys_outb() of the kernel API

Issuing a Command to the KBC

#define STAT_REG 0x64
#define KBC_CMD_REG 0x64

while(1) {
sys_inb(STAT_REG, &stat); /* assuming it returns OK */
/* loop while 8042 input buffer is not empty */
if((stat & IBF) == 0) {

sys_outb(KBC_CMD_REG, cmd); /* no args command */
return 0;

}
delay(WAIT_KBC);

}

Note 1 Cannot output to the 0x64 while the input buffer is full
Note 2 Code leaves the loop only when it succeeds to output

the data to the 0x64
I To make your code resilient to failures in the

KBC/keyboard, it should give up after “enough time” for
the KBC to send a previous command/data to the KBD.

Reading Return Value/Data from the KBC
#define OUT_BUF 0x60

while(1) {
sys_inb(STAT_REG, &stat); /* assuming it returns OK */
/* loop while 8042 output buffer is empty */
if(stat & OBF) {

sys_inb(OUT_BUF, &data); /* assuming it returns OK */

if ((stat &(PAR_ERR | TO_ERR)) == 0)
return data;

else
return -1;

}
delay(WAIT_KBC);

}

Note 1 Code leaves the loop only upon some input from the
OUT_BUF.

I It is not robust against failures in the KBC/keyboard
Note 2 Must mask IRQ1, otherwise the keyboard IH may run

before we are able to read the OUT_BUF

KBC Programming Issues

Interrupts If the command have responses, and interrupts are
enabled, the IH will “steal” them away from other code

I The simplest approach is just to disable interrupts.
Timing KBD/KBC responses are not immediate.

I Code needs to wait for long enough, but not indefinitely
Concurrent Execution The C@KBD continuously scans the

KBD and may send scancodes, while your code is writing
commands to the KBC:

I How can you prevent accepting a scancode as a
response to a command?

I It is easier to solve this for KBC commands than for KBD
commands.

I Assume that all scancode bytes generated by the KBD
are different from the KBD responses

Lab4: kbd_test_leds()

What? Toggle the keyboard LEDs – some portable computers do not
have all, or even any of the LEDs

How? Use keyboard command 0xED (set keyboard LEDs)
I Note that this command has one argument, which are the

value with which the LEDs must be set.
Hint Try to design a solution based on layers that allows you to issue

any keyboard or KBC command, not just command 0xED

Bottom layer Functions that read/write the KBC registers. Deals
with the details of the KBC HW interface. E.g.:

I Checks the IBF flag before writing
I Waits for the acks to the bytes of a KBD command

Top layer Functions to issue either KBC commands or KBD
commands

I Knows about the commands and the protocol, writing
parameters as necessary and waiting for responses

Further Reading

I IBM’s Functional Specification of the 8042 Keyboard
Controller (IBM PC Technical Reference Manual)

I W83C42 Data Sheet, Data sheet of an 8042-compatible
KBC

I Andries Brouwer’s The AT keyboard controller, Ch. 11 of
Keyboard scancodes

I Andries Brouwer’s Keyboard commands, Ch. 12 of
Keyboard scancodes

I Randal Hyde’s The PC Keyboard, Ch. 20 of the Art of
Assembly Language

http://zet.aluzina.org/images/d/d4/8042.pdf
http://zet.aluzina.org/images/d/d4/8042.pdf
http://pdf1.alldatasheet.com/datasheet-pdf/view/144616/WINBOND/W83C42.html
http://www.win.tue.nl/~aeb/linux/kbd/scancodes-11.html
http://www.win.tue.nl/~aeb/linux/kbd/scancodes-11.html
http://www.win.tue.nl/~aeb/linux/kbd/scancodes-12.html
http://www.win.tue.nl/~aeb/linux/kbd/scancodes-12.html
http://maven.smith.edu/~thiebaut/ArtOfAssembly/CH20/CH20-1.html
http://maven.smith.edu/~thiebaut/ArtOfAssembly/CH20/CH20-1.html

