
Computer Labs: I/O and Interrupts
2o MIEIC

Pedro F. Souto (pfs@fe.up.pt)

October 3, 2012

I/O Operation

I I/O devices are the interface between the computer and its
environment

I Most of the time, the processor is not synchronized with its
environment

I I/O operations are asynchronous wrt the processor
operation

I Usually, I/O devices are much slower than the processor
I The processor must wait for an I/O device to complete its

current operation before it requests the I/O device a new
one

How Does the Processor Know that an I/O op is done?
Polling The processor polls the I/O device, i.e. reads a status

register, to find out
Response time Highly variable – depends on what the

processor has to do between consecutive polls.
Bandwidth May be high, if:

I the interface bus is fast
I the I/O device has a high-bandwidth or a large buffer,

e.g. a disk
I and the processor polls the I/O device frequently

Interrupts The I/O device notifies the processor, via the
interrupt mechanism
Response time Usually responsive – depends on the time:

I interrupts are disabled or
I higher priority interrupts take to be served

Bandwidth Medium to low. It depends on the amount of data
ready to transfer on each interrupt

The PC Interrupt Hardware

PC Interrupts and Lines

PIC 1 PIC 2 Device Vector
IRQ0 Timer 0x08
IRQ1 Keyboard 0x09
IRQ2 PIC2 0x0A

IRQ0 Real Time Clock 0x70
IRQ1 Replace IRQ2 0x71
IRQ2 Reserved 0x72
IRQ3 Reserved 0x73
IRQ4 Mouse 0x74
IRQ5 Math coprocessor 0x75
IRQ6 Hard disk 0x76
IRQ7 Reserved 0x77

IRQ3 Serial port COM2 0x0B
IRQ4 Serial port COM1 0x0C
IRQ5 Reserved/Sound card 0x0D
IRQ6 Floppy disk 0x0E
IRQ7 Parallel port 0x0F

Interrupt Handlers (IH) in Assembly
I IHs are executed by the HW upon an interrupt

I They run asynchronously wrt other code
I They take no arguments
I They return no values

I IHs used to be written in assembly
I Need to perform I/O operations

I But nowadays, they are usually written in C (for reasons of
portability)

isr_name:
push .. ; save all registers used
... ; IH instructions
mov al, EOI ; signal EOI
out PIC1_CMD, al ; to PIC1
pop ... ; restore all registers used
iretd

Terminology Interrupt handlers are also called interrupt service
routines (ISR).

Interrupt Handling in Minix 3

I An important design decision in Minix 3 was to move the
device drivers to user space

I Device drivers are implemented as user-level processes.

Issue How do you do interrupt handling?
I Interrupt handling requires performing operations that

usually require special privileges
Solution

1. Perform only the bare minimum in the kernel: this is
done by the generic interrupt handler

2. Device specific operations are performed by the device
drivers themselves at user level

I Using kernel calls to perform privileged operations

Minix 3: The Generic Interrupt Handler (GIH)

1. Notifies all the device drivers (DD) interested in an
interrupt, when that interrupt occurs

2. If possible, acknowledges the interrupt by issuing the EOI
command to the PIC.

3. Issues the IRETD instruction

Issue 1 How does the GIH know that a DD is interested in an
interrupt?

Issue 2 How does the GIH notify a DD?
Issue 3 How does a DD receives the notification of the GIH?
Issue 4 How does the GIH know if it can send the EOI to the

PIC?
Issue 5 If the GIH does not send the EOI, who, when and how

is the EOI sent to the PIC?

Issue 1
How does the GIH know that a DD is interested in an
interrupt?

Answer The DD tells it, using kernel call:
int sys_irqsetpolicy(int irq_line, int policy, int *hook_id);

where
irq_line is the IRQ line of the interrupt
policy use IRQ_REENABLE to inform the GHI that it can

give the EOI command
I This answers Issue 4: How does the GIH know if it

can send the EOI to the PIC?
hook_id is both:

input an id to be used by the kernel on the notification
output an id to be used by the DD in other kernel calls on

this interrupt

I sys_irqsetpolicy() can be viewed as an interrupt
notification subscription

Issue 2

How does the GIH notify the DD of the occurrence of an
interrupt?

Answer It uses the standard interprocess communication (IPC)
mechanism used to communicate:

I between processes;
I between the (micro) kernel and a process

More specifically, it uses notifications
Minix 3 IPC This is essentially a message based mechanism

I Processes send and receive messages to communicate
with one another

I A notification is a special kind of message, used to
communicate from the kernel to a user process.

Issue 3

How does the DD receives the notification of the GIH?

Short Answer Just use the IPC mechanism.
Useful Answer Use some library calls provided by the
libdrivers library (see next slide)

Key Observation In Minix 3, a DD is an event driven service
that receives and processes messages

I either interrupt notifications from the kernel (GIH)
I or service requests from other processes

However, in the programs in LCOM are not DD, they do not
receive requests from other processes

1: #include <minix/drivers.h>
2: #include <minix/com.h>
3: int ipc_status;
4: message msg;
5: while(1) { /* You may want to use a different condition */
6: /* Get a request message. */
7: if (driver_receive(ANY, &msg, &ipc_status) != 0) {
8: printf("driver_receive failed with: %d", r);
9: continue;

10: }
11: if (is_ipc_notify(ipc_status)) { /* received notification */
12: switch (_ENDPOINT_P(msg.m_source)) {
13: case HARDWARE: /* hardware interrupt notification */
14: if (msg.NOTIFY_ARG & irq_set) { /* subscribed interrupt */
15: ... /* process it */
16: }
17: break;
18: default:
19: break; /* no other notifications expected: do nothing */
20: }
21: } else { /* received a standard message, not a notification */
22: /* no standard messages expected: do nothing */
23: }
24: }

Why: msg.NOTIFY_ARG?
I Interrupt handlers take no arguments (and return no

values)
Answer True, but usually the IH know which interrupt request

they are handling
I Minix 3 allows a DD to subscribe notifications on several

interrupt lines
What is its value?
Answer It is based on the input value of hook_id passed by

the DD in the sys_irqsetpolicy().
I If a given interrupt is pending then bit hook_id of
msg.NOTIFY_ARG is set.

I Why not just the hook_id?

Lab3: timer_test_int()

What to do? Print one message per second, for a time interval
whose duration is specified in its argument.

1. Subscribe Timer 0 interrupts
2. Handler should print message
3. Unsubscribe Timer 0 at the end

How to design it? It is not easy to come up with an API that can
be used in the project

I Implement int timer_subscribe_int() to hide
from other code i8254 related details, such as the IRQ
line used

I It returns the bit number that will be set in
msg.NOTIFY_ARG upon a TIMER 0 interrupt

I Implement the interrupt handler also in timer.c
I Implement the “interrupt loop” in timer_test_int()

Issue 5 (and Last)

What if the GIH does not send the EOI?

I I.e., if a DD does not set the IRQ_REENABLE policy in its
interrupt subscription request (sys_irqsetpolicy())

Answer The DD will have to do it, as soon as possible
I In most cases, you’ll want to set the IRQ_REENABLE

policy
I In Lab 3, certainly

How can a DD send the EOI to the PIC?
I By calling sys_irqenable(int *hook_id)

I Note that here hook_id should point to the value
returned by the kernel.

That is, the EOI will be sent by the kernel, upon request of
the DD.

Minix 3: Other Interrupt Related Kernel Calls

sys_irqrmpolicy(int *hook_id) Unsubscribes a
previous interrupt notification, by specifying a pointer to the
hook_id returned by the kernel

sys_irqdisable(int *hook_id) Masks an interrupt line
associated with a previously subscribed interrupt notification,
by specifying a pointer to the hook_id returned by the kernel

Minix 3: Interrupt Sharing

I Minix 3 already includes its own Timer 0 IH
I By subscribing interrupts on IRQ line 0, the IH of your

driver will not replace the IH of the kernel
I Upon an interrupt generated by Timer 0, the kernel:

1. executes its own IH, and
2. notifies your driver

I This behavior stems from the need to share the interrupt
lines among devices

I In systems with the PIC (i8259), there are only 15 interrupt
lines available

I And many of them are actually hardwired, e.g. IRQ 0, which
means that they cannot be shared among devices

IMP Using two IH for the same device is seldom what you want
I But is just what we need for Lab 3.

Further Reading

I Using Interrupts

http://www.beyondlogic.org/interrupts/interupt.htm

