
Computer Labs: Lab 1
2o MIEIC

Pedro F. Souto (pfs@fe.up.pt)

September 13, 2012



I/O Devices

I In LCOM, we will work with the PC I/O devices.
I I/O devices provide the interface between the CPU and the

outside world.
CPU-memory bus

CPU Bus adapter

DiskMonitor NetworkKeyboard Mouse

Main memory

I/O bus

I/O
contr.

I/O
contr.

I/O
contr.

I/O
contr.

I/O
contr.



I/O Controllers

I Each I/O device is controlled by an electronic component,
usually called controller or adapter.

I I/O controllers typically include three kinds of registers:
Control: used to request I/O operations
Status: used to get the state of the device or pending I/O

operations
Data: used to transfer data to/from the I/O devices

I Programming at the register level may require a detailed
knowledge of the device’s operation



Graphics Adapter

Graphics
Processing Unit

(GPU)

BIOS
ROM/Flash

Video RAM

B
u
s

A
d
a
p
t
e
r

GPU Earlier known as the Graphics Controller:
I Controls the display hardware (CRT vs. LCD)
I Performs 2D and 3D rendering algorithms, offloading the

CPU and accelerating graphics applications
BIOS ROM/Flash ROM/Flash Memory with firmware. Includes

code that performs some standardized basic video I/O
operations, such as the Video BIOS Extension (VBE)

Video RAM Stores the data that is rendered on the screen.
I It is acessible also by the CPU (at least part of it)



PC’s Graphics Adapter Text Modes (1)

I Used to render mostly text
I Abstracts the screen as a matrix of characters (row x cols)

I E.g. 25x80, 25x40, 50x80, 25x132
I Black and white vs color (16 colors)

80 columns

2
5

l
i
n
e
s

He l l o, Wor l d!



PC’s Graphics Adapter Text Modes (2)

I Each character is represented by two bytes:

I The character denoted by the code depends on the
character encoding (code page ), which can be changed

I The attributes specify mostly the colors

Attributes (MSB) Char. code (LSB)

80 columns

2
5

l
i
n
e
s

He l l o, Wor l d!



PC’s Graphics Adapter Text Modes (2)

I Each character is represented by two bytes:
I The character denoted by the code depends on the

character encoding (code page ), which can be changed

I The attributes specify mostly the colors

Attributes (MSB) Char. code (LSB)

80 columns

2
5

l
i
n
e
s

He l l o, Wor l d!



PC’s Graphics Adapter Text Modes (2)

I Each character is represented by two bytes:
I The character denoted by the code depends on the

character encoding (code page ), which can be changed
I The attributes specify mostly the colors

Attributes (MSB) Char. code (LSB)

80 columns

2
5

l
i
n
e
s

He l l o, Wor l d!

7 6 5 4 3 2 1 0
blink red green blue bright. red green blue
foreg. background color foreground color



PC’s Graphics Adapter Text Modes (2)

I Video RAM contains a representation of the screen in a
matrix of 25x80 16-bit words

I In the PC, this matrix is at physical address 0xB8000
I By changing the contents of this matrix an application

changes what is displayed on the screen
Attributes (MSB) Char. code (LSB)

80 columns

2
5

l
i
n
e
s

He l l o, Wor l d!

0xB8000

0xB8001

0xB8002

0xB8003

row 1, col. 1 char. code

row 1, col. 1 attributes

row 1, col. 2, char. code

row 1, col. 2 attributes



Lab 1

I Write a set of functions:
void vt_fill(char ch, char attr);
void vt_blank(void);
int vt_print_char(char ch, int r, int c, char attr);
int vt_print_string(char *str, int r, int c, char attr);
int vt_print_int(int n, int r, int c, char attr);
int vt_draw_frame(int width, int height, int r, int c, char attr);

to output some characters on the screen in text mode, by
writing to video RAM (VRAM)

I No need to configure the video controller/GPU:
I You’ll use the Minix 3 default configuration.

I Need “only” to write to the appropriate positions of VRAM



Virtual and Physical Address Spaces
Issue 1 Most computer architectures support a virtual

address space that is decoupled from the physical address
space

I Processes can access physical memory using a logical
address that is independent of the physical address
(determined by the address bus decoding circuit)

I Most modern operating systems, including Minix, take
advantage of this feature to simplify memory
management.

Issue 2 In modern operating systems, user-level processes
cannot access directly HW resources, including VRAM

I Minix 3 handles this by allowing to grant privileged
user-level processes the permissions they require to
perform their tasks

Nomenclature note A program is a sequence of instructions
that can be executed by a processor. A process is a
program in execution.



Mapping Physical Memory to Virtual Address Space

I Each process has its own virtual address space, whose
size is usually determined by the processor architecture
(32-bit for IA-32)

I The operating system maps regions of the physical
memory in the computer to the virtual address spaces of
the different processes

I The details of how this is done are studied in the Operating
Systems course.



Lab 1: char *vt_init(vt_info_t vip)

I Mainly, maps VRAM on the address space of a process
I Returns the address of the first byte of the process’ address

space region onto which VRAM was mapped
I Subsequent accesses to that region of the process’

address space access VRAM
I Usually, to change the characters displayed on the screen

and/or their attributes.

Issue how can one access a region of a process address
space in C?



Lab 1: Preparation

I Read the material provided
I Lab 1 script;
I Supporting notes;
I Class notes.

I Write the functions:
vt_fill() which should fill the entire screen with the

same character and attribute;
vt_blank() which should blank the screen



Lab 1: Key Programming Issue

Given a virtual address, what is the C code that allows a
process to access the physical memory mapped to that
virtual address?



Character Encodings (Code Pages)

I The first 128 characters are the same for all
western-language code pages.


