
Computer Labs: Introduction to C
2o MIEIC

Pedro F. Souto (pfs@fe.up.pt)

September 13, 2012

C vs. C++

I C++ is a super-set of C
I C++ has classes – facilitates OO programming
I C++ has references – safer and simpler than C pointers

C and Object Oriented Programming

I It is possible, and often desirable, to use OO programming
in C

I A “class” may be implemented in a compilation unit, i.e. a
file

I We can use the keyword static to hide some aspects of
the “class”’ implementation from the other code

I There are yet some issues related to the
visibility/accessibility of the data and functions that we’ll
address later

I For each “class” we can define a header file containing its
public interface

I The function prototypes of its “public methods”
I The data structures defined for the “class” and used in its

public “methods”

I/O in C

I C provides standard streams for I/O:
stdin
stdout
stderr

I But C does not have the cin and cout objects nor the >>
or the << operators

I C does not support classes
I Instead you should use the functions:

scanf
printf or fprintf()

declared in <stdio.h>

printf()
printf("video_txt:: vt_print_string(%s, %lu, %lu, 0x%X)\n",
str, row, col, (unsigned)attr);

I The first argument is the format string, which comprises:
I Standard characters, which will be printed verbatim
I Conversion specifications, which start with a % character
I Format characters, such as \n or \t, for newline and tabs.

I The syntax of the conversion specifications is somewhat
complex, but at least must specify the types of the values
to be printed:

I %c for a character, %x for an unsigned integer in
hexadecimal, %d for an integer in decimal, %u for an
unsigned integer in decimal, %l for a long in decimal, %lu
for an unsigned long in decimal, %s for a string, %p for an
address

I The remaining arguments should:
I Match in number that of conversion specifications;
I Have types compatible to those of the corresponding

conversion specification
I The first conversion specification refers to the 2nd argument,

and so on

scanf()
scanf("Origin: code = %c, attr = 0x%x, row = %d, col = %d",

&ch, &attr, &row, &col);

I The first argument is the format string, which comprises:
I Normal characters, which will be printed verbatim – seldom

used
I Conversion specifications, which start with a % character
I White spaces, which match any number, including zero, of

white space characters (space, tab, newline, etc.)
I The syntax of the conversion specifications is similar to

that of that used in printf(), with minor variations
I The remaining arguments should:

I Match in number that of conversion specifications;
I Be addresses of variables (pointers) of types compatible to

those of the corresponding conversion specification
I The first conversion specification refers to the 2nd argument,

and so on
I Returns the number of items successfully matched and

assigned (returns immediately if a conversion specification
fails)

C Variables and Memory

I C variables abstract memory, and in particular memory
addresses.

I When we declare a variable, e.g.:
int n; /* Signed int variable */

what the compiler does is to allocate a region of the
process’ address space large enough to contain the value
of a signed integer variable, usually 4 bytes;

I Subsequently, while that declaration is in effect (this is
usually called the scope of the declaration), uses of this
variable name translate into accesses to its memory
region:

n = 2*n; /* Double the value of n */

I However, in C, almost any “real world” program must
explicitly use addresses

I C++ provides references which are substitutes of C
addresses that work in most cases

C Pointers

I A C pointer is a data type whose values are memory
addresses.

I Program variables are stored in memory
I Other C entities are also memory addresses

I C provides two basic operators to support pointers:
& to obtain the address of a variable. E.g.

p = &n; /* Initialize pointer p with
the address of variable n */

* to dereference the pointer, i.e. to read/write the
memory positions it refers to.

p = 8; / Assign the value 8 to variable n */

I To declare a pointer (variable), use the * operator:
int *p; /* Variable/pointer p points to integers or

the value pointed to by p is of type int */

I Use of pointers in C is similar to the use of indirect
addressing in assembly code, and as prone to errors.

C Pointers and Arrays
I The elements of an array are stored in consecutive

memory positions
I In C, the name of an array is the address of the first

element of that array:
int a[5];
p = a; /* set p to point to the first element */
p = & (a[0]); /* same as above */

I C supports pointer arithmetic – meaningful only when used
with arrays. E.g. to iterate through the elements of an array
using a pointer:

for(i = 0, p = a; i < 5; i++, p++) {
...

}

or, without using variable i:
for(p = a; p-a < 5; p++) {

...
}

IMP: Pointer p must be declared to point to variables of the
type of the elements of array a.

C Pointers and Pointer Arithmetic: vt_fill()
I Actually, pointer arithmetic may be used when we want to

access a collection of data items of the same type that are
layed consecutively in memory. E.g., the characters and its
attributes of VRAM in text mode.

static char *video_mem; /* Address to which VRAM is mapped */
static unsigned scr_width; /* Width of screen in columns */
static unsigned scr_lines; /* Height of screen in lines */

void vt_fill(char ch, char attr) {
int i;
char *ptr;
ptr = video_mem;

for(i = 0; i< scr_width*scr_lines; i++, ptr++) {

I Variables video_mem, etc. are global, but static
I ptr++ takes advantage of pointer arithmetic (here just

adds one, because in C each character takes only 1 byte)

Strings and Pointers in C: vt_print_string()
I A string is an array of characters terminated by character

code 0x00 (zero), also know as end of string character.
I In C, a string is completely defined by the address of its first

character
#define HELLO "Hello, World!"
...
char *p = HELLO; /* Set p to point to string HELLO */
for(len = 0; *p != 0; p++, len++);

I The C standard library provides a set of string operations,
that are declared in <string.h>

#include <string.h>
...
char *p = HELLO; /* Set p to point to string HELLO */
len = strlen(p);

I Array names and string literals are constants not variables.
The following is WRONG:

char a[20];
a = HELLO; /* This is similar to 2 = 5; */
HELLO = a; /* Same as above */

may use instead:
strncpy(a, HELLO, 20); /* If strncpy is not ... */

Structs and Pointers: The -> operator

I C structs can be used to define structured types:
struct vt_info {

/* VRAM info */
unsigned long vram_size; /* size in bytes of VRAM */
void * vram_base; /* VRAM physical address */
/* Text mode resolution */
unsigned scr_width; /* # columns of the screen */
unsigned scr_lines; /* # lines of the screen */

};
struct vt_info vi, *vip;

I To access to a struct’s member use the . operator:
vi.scr_width = NO_COLS;

Using a pointer to a struct:
vip = &vi;
(*vip).scr_width = NO_COLS;

or more readable (better):
vip->scr_width = NO_COLS;

Structs and Typedef
I To initialize on declaration is simpler:

struct vt_info vi = { VRAM_SIZE, VRAM_PHYS,
NO_COLS, NO_LINES };

I C structs are often used with typedef, a construct that
allows to define new names for a type. For example:
typedef struct vt_info vt_info_t;

vt_info_t vi, *vip;

I Basically, this means that instead of writing
struct vt_info, we can write only vt_info_t

I Actually, with typedef we need not give a name to the
struct:
typedef struct {

/* VRAM info */
unsigned long vram_size; /* size in bytes of VRAM */
void * vram_base; /* VRAM physical address */
/* Text mode resolution */
unsigned scr_width; /* # columns of the screen */
unsigned scr_lines; /* # lines of the screen */

} vt_info_t;

Lab Preparation: Again

I It is a good practice to test your code gradually as you
write it

Issue How can you test vt_fill() and vb_blank() before
class, if you do not have Minix 3 installed yet?

Solution I’ve written a few functions that emulate VRAM
I They use only standard C functions
I They have been tested in Linux (but it should be

possible to develop and test in Windows)
I They require a terminal emulator (Linux terminal)

Emulation Environment

VRAM Is emulated as a two-dimensional array in vt_info.c.
static char video_mem[NO_LINES][NO_COLUMNS*2];

I Note that although the name is the same, there are not
name conflicts with the variable declared in
video_txt.c

I They are both declared static in different source files,
thus their scope is disjoint

I The function vt_info_get() has been changed
accordingly

I Thus, changes that would be done to VRAM are now
done in this array

Screen updating This is done by means of function
vt_update_display() in video_txt.c

I It copies the content of the video_mem array to the
standard output.

Changes to the Code Provided
I With exception of vt_info.c, there is only one version of

the source files and of the header files
I The file vt_info.c is provided for emulation purposes, in

Minix 3, you’ll use a library: libvt.a
I However, changes to the code were still necessary
lab1.c This includes main()

I Include files at the top
I Invocation of vt_update_display() at the end of
main(), rather than sef_startup()

I Different versions for print_usage()
I Blanking the screen requires writing a printable character

video_txt.c This is the file you need to complete
I Include files at the top
I vt_init() which does not require mappings

I In any case, you need to develop your code as if you
were writing to VRAM

I That code should work fine in the emulation environment
I Conversely, if your code does not work in the emulation

environment, it will not work in Minix 3.

Code Generation

I To use a single file of each source code file, we have used
the #ifdef and #ifndef directives of the C
pre-processor

I Thus to compile the code in the emulation environment,
you need to define the constant EMUL

I We already provide you with the necessary Makefile.
I In Linux, all you need is to type make. (This is likely to work

in the MacOS as well.)
I In Windows, you may have to invoke the C compiler in a

different way.
I The Makefile for Minix 3 is different:

I We take advantage of the build system for device drivers
provided in Minix 3

I It is included in the VMware VM image

C Program Compilation
I A C program source code may be in different files

I In each lab assignment you’ll be asked to write a set of
functions, usually in a single file

I In addition, we’ll provide the file for testing in a different file

IMP: Following this approach, at the end of the lab
assignments you’ll have the I/O code for your project

I To compile each file to object code use the -c switch. E.g.:
> gcc -DEMUL -Wall -c video_txt.c

I gcc requires a C source file to have the .c extension
I -DEMUL defines the EMUL macro, to compile for emulation
I Always use the -Wall option, so that gcc reports all

warnings
I To link all the object code files and generate the executable

program use the -o switch. E.g.:
> gcc vt_info.o video_txt.o lab1.o -o lab1

I Finally, you can run the program, by invoking it:
> ./lab1

