
Computer Labs
The Minix 3 Operating System

2o MIEIC

Pedro F. Souto (pfs@fe.up.pt)

September 11, 2012



LCOM Labs

I One of the goals of LCOM is that you learn to use the HW-level
interface of the most common PC I/O devices

CPU-memory bus

CPU Bus adapter

DiskMonitor NetworkKeyboard Mouse

Main memory

I/O bus

I/O
contr.

I/O
contr.

I/O
contr.

I/O
contr.

I/O
contr.



Operating System

I In most modern computer systems, access to the HW is
mediated by the operating system (OS)

Application and System Programs

Operating System

Hardware

Application and
System Programs

I I.e. user programs are not able to access directly the HW



Parenthesis: Layered Structure

I Structure typically used to address complex problems
I It allows us to think about the what without worrying about the

how (this is usually called abstraction)
I This has several advantages

Decomposition An “intractable” problem is decomposed in
smaller problems that can be solved

Modularity Facilitates adding new functionality or changing the
implementation, as long as the interfaces are preserved

I Your project will be a somewhat complex piece of code
I To structure it in several layers may be very important for your

success

Video
Driver

Keyboard
Driver

Timer
Driver

Mouse
Driver

Other SW layers



Parenthesis: Program vs. Process

Program Piece of code, i.e. a set of instructions, that can be executed
by a processor

Process OS abstraction of a program in execution
int main(int argc, char *argv[], char* envp[])}

0x0

args

data

text

heap

stack
args Arguments passed in the command line

and environment variables
stack Activation records for invoked functions
heap Memory region allocated dynamically

with malloc.
data Memory region allocated statically by

the compiller (e.g., a string “Hello,
World!”)

text Program instructions



Operating System (repeated)

I In most modern computer systems, access to the HW is
mediated by the operating system (OS)

Application and System Programs

Operating System

Hardware

Application and
System Programs

I I.e. user processes are not able to access directly the HW



Access to the HW-level Interface

Application and System Programs

Operating System

Application and
System Programs

Instruction Set Architecture (ISA)
Level

Lower HW Layers

I Most of the HW interface, actually the processor instruction set,
is still available to user processes

I A few instructions however are not directly accessible to user
processes

I Thus preventing user processes from interfering with:
Other user processes most OSs are multi-process
The OS which manages the HW resources

I Instead, the operating system offers its own “instructions”, which
are known as system calls.



OS API: Its System Calls

Hides some ISA instructions
Extends the ISA instructions with a set of “instructions” that support

concepts at a higher abstraction level
Process A program in execution
User Typically a person, but it can also be a role
File A data source/sink
Offering an interface that is more convenient to use



Processor Privilege Levels

I Modern computer architectures provide mechanisms to
ensure that applications do not bypass the OS interface

I Most OS support multiple processes
I Many of them associated to different users

I Applications should not be allowed to access directly OS
code and data

I These mechanisms are usually:
I At least two execution modes

I Privileged (kernel) vs. non-privileged (user)
I A mechanism to change in a controlled way between the

execution modes
I The execution mode (privilege level) determines

I The set of instructions that the processor can execute
I The range of memory addresses that can be accessed



Kernel-level vs. User-level space

I This partitions a process address space
in user-level and kernel-level spaces

I The kernel level address space can be
accessed only when the processor
executes in privileged mode

I I.e. kernel code
I The kernel level address space is

shared among all processes

User-level
address space

Kernel-level
address space

0x0

0xFF..F

I To support the implementation of system calls, modern
processor architectures provide instructions that

I Switch to privileged execution mode;
I Transfer execution control (jump) to specific locations in the

kernel address space
I An example is the software interrupt instruction INT of the

IA-32 architecture.



System Call Implementation

ordinary
return

ordinary
call

trap 
return

user program

C library function

system call

trap

user space

kernel space

I Uses special processor instructions (call
gates ou sw interrupts, in the case of IA32
architecture) that switch automatically the
execution mode

I But this is hidden from the programmer
I Programs call a C library function, which

in turn executes the special instruction



ssize_t read(int fd, void *buf, size_t
count)

Return to caller

4
10

6

0

9

7 8

3
2
1

11

Dispatch
Sys call
handler

Address
0xFFFFFFFF

User space

Kernel space
 (Operating system)

Library
procedure
read

User program
calling read

Trap to the kernel
Put code for read in register

Increment SP
Call read
Push fd
Push &buffer
Push nbytes

5



Steps in the execution of read()

1, 2, 3 push arguments to the stack ;
4 call C library function read;
5 setup of register with the system call #;
6 switch the processor execution mode;
7 dispatch to the appropriate handler ;
8 execution of the handler ;
9 possible return to the C library function;

10 return from the C library function read;
11 stack adjustment



OS vs. Kernel
I Usually, when we mention the OS we mean the kernel
I An OS has several components

Application and
System ProgramsUtilities

Kernel

System Library

Hardware

Kernel Which implements the OS services
Library Which provides an API so that programs can use

the OS services
Utilities A set of “basic” programs, that allows a “user” to

use the OS services



How is an OS/Kernel implemented?

Monolithic All OS services are implemented at kernel level by
the kernel

I Usually, the kernel is developed in a modular fashion
I However, there are no mechanisms that prevent one

module from accessing the code, or even the data, of
another module

Micro-kernel Most OS services are implemented as modules
that execute in their own address spaces

I A module cannot access directly data or even code of
another module

I There is however the need for some functionality to be
implemented at kernel level, but this is minimal (hence
the name)



Monolithic Implementation

I Virtually all “main stream” OSs use this architecture
I It has lower overheads, and is faster



Minix 3: Micro-kernel Based

I It has a very small size kernel (about 6 K lines of code,
most of it C)

I Most of the OS functionality is provided by a set of
privileged user level processes:
Services E.g. file system, process manager, VM server,

Internet server, and the ressurection server.
Device Drivers All of them are user-level processes

Issue OS services and device drivers need to execute
instructions that are allowed only in kernel mode

I But now, they are executed at user-level



Kernel Calls

Solution The (micro-)kernel provides a set of kernel calls
I These calls allow privileged processes to execute

operations that:
I Can be executed only when running in privileged/kernel

mode;
I That are needed for them to carry out their tasks

Examples from Labs 1 and 2
I vm_map_phys()
I sys_int86()

Note Kernel calls are (conceptually) different from system calls
I Any process can execute a system call
I Only privileged processes are allowed to execute a

kernel call
However, they use the same basic mechanism:

I An instruction that switches to privileged execution mode



Minix 3 Privileged Processes and the Service Utility
I A process must be initiated by the service utility in order to

become privileged
I service reads the privileges of a privileged process from

I either the /etc/system.conf
I or a file in /etc/system.conf.d/

service at_wini {
io

1f0:8 # Controller 0
3f6 # Also controller 0
170:8 # Controller 1
376 # Also controller 1
;

irq
14 # Controller 0
15 # Controller 1
;

system
UMAP # 14
IRQCTL # 19
DEVIO # 21
SDEVIO # 22
VDEVIO # 23
READBIOS # 35
;

pci class
1/1 # Mass storage / IDE
1/80 # Mass storage / Other (80 hex)
1/4 # Mass storage / RAID
;

};



Minix 3: Non-Privileged vs. Privileged User Processes

Minix 3 micro-kernel

System-call API

Kernel call API

Unpriviliged
process

System library

Unpriviliged
process

System library

Priviliged
process

System library

Priviliged
process

System library



LCOM Lab Programs

I In LCOM, you’ll use Minix 3 and its kernel-API to develop
privileged programs:

I Akin to device-drivers
I They will access/control I/O devices

I Different from device drivers. Your programs:
I Will be self-contained

Whereas each device driver:
I Manages a class of I/O devices
I Provides an interface so that other processes can access I/O

devices of that class
I The use of Minix 3 simplifies the development

I These processes do not belong to the kernel
I Their actions can be controlled

Thus, bugs are much less harmful


