Laboratórios de Computadores: Apresentação Computer Labs: Introduction 2º MIEIC

Pedro F. Souto (pfs@fe.up.pt)

September 11, 2012

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Staff

Instructors

- Claudia Chituc
- Tiago Boldt
- Pedro Ferreira do Souto

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Lab Technicians

- Rui Fernandes
- Nuno Sousa

Objectives

Upon successful completion of this class you should be able to:

- 1. Program at the HW interface level of the most common PC I/O Devices
- 2. Develop system-level programs
- 3. Use software tools typical of large programming projects

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Prerequisites

Programação

- You'll program a lot, mostly in C
- Microprocessadores e Computadores Pessoais

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

- but also in assembly
- ▶ ... for the IA-32 architecture
- Arquitectura de Computadores

Syllabus

I/O devices C programming with assembly Programming tools

Method

Learn by doing

"I hear, I forget. I see, I remember. I do, I understand"

Seven short lab assignments each of which

- On a different I/O device
- In one lab class
- Requiring a preparation of about 5 hours (excluding classes)

One integration project

- Must use at least 3 different I/O devices
- Must use interrupts
- Must use both C and assembly
- Should require about 9 hours per week (during 5 weeks)

Note: Both lab assigments and project should be done in groups of 2 students.

Work Load

- LCOM has 6 ECTS, i.e. about 160 hours
 - Assuming 1 ECTS equal to 27 hours
 - Check out the European Credit Transfer and Accumulation System (ECTS)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Bibliography and Other Resources

- PC HW is well documented on several books and online resources
- Book mentioned in SIFEUP

Mazidi, Muhammad, The 80x86 IBM PC and Compatible Computers: Assembly Language, Design and Interfacing, 4th Ed., Prentice-Hal

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Note that it does not cover all the subjects, and that, on the other hand, it has a lot more material than needed for this class.

Grading

- 1. Each lab assignment, but the first, is graded. The grade depends on:
 - Lab preparation (20%);
 - Objectives met (80%);

Grading will be done off-line on code you submit to an SVN repository.

2. The final project must be demonstrated in a date to be announced in the 2nd, 3rd and 4th of January.

Formula $\sum c_i * 0.1 + 0.4 \text{ FP} + 0.10 \text{ AP}$

where c_i is the ith grade (assuming decreasing order) of the lab assignments, and i ranges from 1 to 5

That is, we'll use the best 5 grades of the 6 graded lab assignments.

Final Project Grading (1/2)

Execution: 40%

Code: 25%

- Modularity
- Documentation (use Doxygen)
- Names and comments
- Indentation
- Compilation warnings

Final Report: 20%

Summary of what is and what is not implemented;

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Usage instructions
- Description of the program's architecture
- Relevant aspects about the implementation
- Function call diagram

Tools: 10%

Project Specification: 5%

Final Project Grading (2/2)

- To the grade obtained by applying the above criteria, we'll apply:
 - **Difficulty Factor**
 - Several aspects
 - number and type of I/O devices
 - features used of the I/O devices
 - the techniques used (interrupt vs. polling)
 - use and extent of assembly programming

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Originality Factor

Final Project Milestones

Project proposal: Beginning of 7th lab class (week starting 12th November)

- Half to one page description of the functionalities desired, of the devices used and their role in the program
- Must be rewritten in class, if the instructor does not accept it

Project specification: Beginning of 8th lab class (1st project class)

- Refinement of the proposal, specifying the work to be carried out in the remaining classes
- Should include the objectives to be met at the end of each of that and of the remaining classes
- Must be rewritten in class, if the instructor does not accept it

Project submission: December 15th

Project presentation: January 2nd, 3rd and 4th.

Project Examples

- Games (graphical mode and mouse)
- Two user games (text mode and serial port)
- Electronic calendar (text mode, keyboard, mouse, RTC and timer)
- Music composer/player (graphical mode, keyboard, mouse and timer)
- Text editor (text mode, keyboard, mouse, timer)
- Typing tutor (text mode, keyboard, mouse, timer)
- File transfer between PCs (text mode, keyboard, serial port)
- Chat between PCs (text mode, keyboard, serial port)

TEs Grading

Labs 4 of the 6 graded labs, each with a weight of 12.5%

- Submission until the last lab class of that lab
- Presentation/discussion in the week of that lab class
 - Student must get in touch with me (pfs@fe.up.pt) to arrange for an hour, at least 5 days in advance

Project Similar of that of the other students, but with a weight of 50%.

- Presentation/discussion of proposal and specification in the same week as that of the other students
 - Student must get in touch with me (pfs@fe.up.pt) to arrange for a date and hour, at least 5 days in advance
- Submission by the same deadline as other students
- Presentation/discussion in the same period as for other students (from the 2nd to the 4th of January).

Grading in "Época Especial"

- Project Similar to that of the other students, but with a weight of 100%
 - Presentation/discussion of proposal and specification
 - Student must get in touch with me (pfs@fe.up.pt) to arrange for a date and hour, at least 5 days in advance

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 Submission and presentation/discussion within 7 days of approval of the specification

Academic Integrity

- The UP and we take this issue very seriously
 - We believe that the majority of you follow the rules
 - But, one "bad apple" is enough to risk the credibility of a whole course
- You are allowed to discuss the labs
 - For each lab and for the project, there will be a discussion forum on Moodle
- However, all code submitted should be either:
 - Developed by the group members
 - Provided by me
- We will use tools to automatically detect common code
 - All groups with common code will be penalized
 - You may still help your colleagues, but you should not share code
- The penalty may range:
 - From a zero in that lab **and** a penalty of "2 valores" in your final grade;
 - To failing the course

Important Dates

Labs

Lab	1st class	Last class	Comments
Lab 1	20-09 (Thu)	25-09 (Tue)	No classes Mon. and Tue.
Lab 2	27-09 (Thu)	02-10 (Tue)	
Lab 3	04-10 (Thu)	12-10 (Fri)	5 Oct. is holiday
Lab 4	11-10 (Thu)	19-10 (Fri)	
Lab 5	18-10 (Thu)	02-11 (Fri)	FEUP's week: 22 Set.
Lab 6	05-11 (Mon)	09-11 (Fri)	
Lab 7	12-11 (Mon)	16-11 (Fri)	

Project

What	1st class	Last class	Comments
Proposal	12-11 (Mon)	16-11 (Fri)	Lab 7
Specification	19-11 (Mon)	23-11 (Fri)	
Submission	14-12	14-12 (Fri)	
Presentation	02-01 (Wed)	04-01 (Fri)	2013

Project submissions up to 31-12 will not be penalized.

Acknowledgments

Prof. António Miguel Pimenta Monteiro (who designed the course)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Prof. João Cardoso (who perfected it)
- The lab technicians:
 - Rui Fernandes
 - Nuno Sousa

Thank You!

Questions?

Platform

MINIX 3

Operating system that allows privileged user processes to:

- Access every memory address
- Access directly I/O devices
- Process interrupts

Linux

- MINIX 3 is installed in a VMware Player VM
 - Can be used for development and testing

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Software

Eclipse with the Remote System Explorer plugin

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- GNU C compiler and assembler
- Other SW development tools
 - make
 - ► SVN
 - doxygen
 - ▶ ar
 - diff/patch

Announcements

Classes

- Start 10 minutes after the hour, i.e. 9:10.
- ► We'll make a 5/10 minutes break around 10:00.

Labs

Start Thursday next week, i.e. September 20.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

All sections will have 11 lab classes

Advice

For Lecture Preparation

- Read the material before the lecture:
 - In the lecture that precedes the first class of each lab, I'll present:
 - The concepts and the information required to complete the lab
 - Provide hints to address the key issues of the lab
 - The class slides will be available since the beginning of the week of that lecture, i.e. at least 2 days before, at http://web.fe.up.pt/ pfs/aulas/lcom2012/
 - The lab handout will be also available at about the same time via the same URL

so that you can:

- Understand better the lecture
- Participate more actively in the lecture
- Get your questions answered before the lab class
- If I'm late and you cannot wait, use last year material available at http://web.fe.up.pt/ pfs/aulas/lcom2011/