
Computer Labs: Event Driven Design
2o MIEIC

Pedro F. Souto (pfs@fe.up.pt)

November 17, 2011

Contents

Event Driven Design

State Machines

Event Handling

Events and I/O

Event An event is a change in the state

I Virtually all I/O processing is driven by events
I Whether events are detected by interrupts or by polling
I Even video graphics output may depend on events

(synchronization with the vertical “movement” to avoid
visual artifacts)

I Your project will also be event driven:
I Its execution will depend on events generated by the I/O

devices
I Whether you use polling or interrupts for detecting these

events.

Event Driven Design

I This is best addressed by an event driven design:
I That is a design where flow control is determined by the

environment rather than the program itself
I Essentially, the code is executed reactively in response to

events that may occur asynchronously with program
execution

I Event driven design is particularly common in:
I Graphical user interfaces (GUI)
I Embedded systems
I Communications/network software

Simple Event Driven Design

Events The types of events that the different components of
the system have to handle

Event Queues That provide the necessary buffering so that
handling of an event may occur asynchronously to its
occurrence

Event Handlers That process each type of event
Dispatchers That monitor the event queues and call the

appropriate event handlers
I May be implemented as a simple loop that checks for

events

Event Driven Design and Minix 3 DD Design
I We can find these elements of event driven design in the

pattern used in the design of interrupt driven Minix 3 DDs

5: while(1) { /* You may want to use a different condition */
6: /* Get a request message. */
7: if (driver_receive(ANY, &msg, &ipc_status) != 0) {
8: printf("driver_receive failed with: %d", r);
9: continue;

10: }
11: if (is_ipc_notify(ipc_status)) { /* received notification */
12: switch (_ENDPOINT_P(msg.m_source)) {
13: case HARDWARE: /* hardware interrupt notification */
14: if (msg.NOTIFY_ARG & irq_set) { /* subscribed interrupt */
15: ... /* process it */
16: }
17: break;
18: default:
19: break; /* no other notifications expected: do nothing */
20: }
21: } else { /* received a standard message, not a notificatio

Contents

Event Driven Design

State Machines

Event Handling

Event Driven Design and State Machines

I For other than simple designs, it is very helpful to use state
machines in combination with event driven design

I A state machine is useful to handle events that may depend
on the state

I A state machine is itself event driven
I The transition from one state to another depends on the

occurrence of an event

Example: Music Playing

I A music is a succession of notes each with a given
duration, with silence intervals in between

I In a game, the music must be played at the same time as
there is computer animation on the screen

I The program cannot stop while a note is being played

Problem How can we measure the time without blocking, as in
tickdelay()?

Solution A possibility is to use:
I The periodic interruption of the RTC to measure the

time, and
I A state machine to keep track of whether we are playing

a note or pausing

Example: State Machine

Play Sil.

END_TIMER/START_TIMER

END_TIMER/START_TIMER

-/START_MUSIC

I Should also include:
I The configuration of Timer 2 with the appropriate frequency
I The output that enables/disables the speaker

I This state machine is an example of a Measly Machine:
I A state machine where the output depends not only on the

state but also on the input transition
I An alternative state machine is the Moore Machine:

I A state machine where the output depends only on the
state.

I This usually leads to extra states
I In this (simple) case the two machines are structurally equal

Example: State Transition Table

Cur. State Input Next State Output
Play END_TIMER Sil START_TIMER
Sil END_TIMER Play START_TIMER

I This contains essentially the same information as the state
diagram

Example: Implementation Using the RTC’s IH

I The IH needs to know whether or not there is a music
being played

Play Sil.

END_TIMER/START_TIMER

END_TIMER/START_TIMER

-/PLAY_MUSIC

END_MUSIC/STOP_MUSIC

Stop

I The IH needs to keep more state than the state of the state
machine itself
Local state E.g.:

I The timer value – may be a down counter
Global sate E.g.

I The music to be played music_t

(Defining a music)

/*** Example of a music definition

*
* C does not have classes: use structures

*/

typedef struct {
int freq; // note’s frequency
int time; // note’s duration

} note_t;

typedef struct {
int length; // number of notes in song
int cur; // index of next note to be played
int pause; // pause between notes (in ms)
note_t *notes; // pointer to array of notes

} music_t;

I Plus a set of methods to simplify the design and the
implementation of the system

Example: Playing a Note and “Time” Events
music_t *music; // the notes queue
enum states {PLAY, PAUSE, STOPPED}; // states of the

// "playing machine"
void rtc_ih() {

static int state = STOPPED; // current state
static int count; // counts interrupts: keeps track of time
...
if(cause & RTC_PF) { // periodic interrupt

switch(state) {
case STOPPED:

if((nt = (note_t *) music_get(music)) != NULL) {
timer_load(2, TIMER_CLK/nt->freq);
speaker_on();
state = PLAY;
count = nt->time/RTC_PERIOD;

}
break;

case PLAY:
count--;
...

Contents

Event Driven Design

State Machines

Event Handling

Event Processing

I I/O devices’ events are processed by the corresponding
interrupt handlers

I The IHs may be
Application Dependent As in the case above of the RTC

used for playing a music;
Application Independent Like the code you have

developed for the labs ... or may be not

Example

Let’s consider a program that plays a note in response to a key
pressed in by the user on the keyboard.

IO Devices Keyboard, RTC (and speaker)
Events and event handlers

I Scancodes generated by the keyboard are handled by
the KBC IH, and forwarded to the main program

I Time ticks generated by the RTC are handled by the
RTC IH

State
I State of the “playing machine”

Example: A Solution

I Keyboard input is handled by an application independent
IH

I Need to define an application dependent event handler
I Need to specify how the IH “communicates” with this event

handler
I How the data received from the keyboard is passed to the

event handler?
I When is the event handler executed?

I Music playing is handled completely by the RTC IH using a
state machine as done above, but with a twist:

I The notes to play, and the silence duration, are determined
by the user rather than by some “music score”.

I Use a queue for the notes to be played rather than the
struct music

Example: Handling Events from Keyboard

queue_t *kbd_q; // for communication with event handler

setup_keyboard() {
kbd_q = new_q(...); // setup queue for ih
set_handler(KBD_IRQ, kbd_ih);

}

void kbd_ih() {
unsigned long u;
event |= KBD_EVT; // signal pending event
sys_inb(RTC_DATA_REG, &u);
q_put(kbd_q, u); // save in queue

}

I kbd_ih() is application independent
I Can be used virtually by all applications
I Can use the code developed in Lab 4, if ...

Example: Handling Keyboard Events
I Application dependent processing must be performed

separately
I In principle, this code will be different for each application

gqueue_t *music_q; // For passing notes to the RTC IH

void handle_kbd() {
int n;
char c;
q_get(kbd_q, &n); // not a critical section in Minix 3
c = scancode2ascii(n);
switch(c) {
case ’q’:

exit(0);
default:

...
gq_put(music_q, note); // put note on a queue

// rtc_ih() will play it
...
}

}

Minix 3 and Application Independent IHs
5: while(1) { /* You may want to use a different condition */
6: /* Get a request message. */
7: if (driver_receive(ANY, &msg, &ipc_status) != 0) {
8: printf("driver_receive failed with: %d", r);
9: continue;

10: }
11: if (is_ipc_notify(ipc_status)) { /* received notification */
12: switch (_ENDPOINT_P(msg.m_source)) {
13: case HARDWARE: /* hardware interrupt notification */
14: if (msg.NOTIFY_ARG & irq_set) { /* subscribed interrupt */
15: ... /* process it */
16: }
17: ...
18: }
19: } else { /* received a standard message, not a notificatio
20: ...
21: }
22: /* Now, do application dependent event handling */
23: if (event & KBD_EVT) {
24: handle_kbd();
25: } else if (event &

Application Independent vs Application Dependent IH

In General
I Can be reused

I Operating systems IH is independent of applications
I Introduces a level of indirection

I May add flexibility
I May be more responsive
I Requires more code
I Has higher overhead

In Minix 3
driver_receive() is a blocking call

I Application dependent processing must be done in the
same loop iteration as application independent processing

I It is not possible to delay application dependent processing
until there are no interrupts to handle

I It does not afford as much flexibility as in the general case

Thanks to:

I.e. shamelessly translated (some) material by:

I João Cardoso (jcard@fe.up.pt)

Further Reading

I Máquinas de Estado em C

http://www.sergioprado.org/2010/02/06/maquina-de-estados-em-c/

	Event Driven Design
	State Machines
	Event Handling

