
Computer Labs: The PC’s Real Time Clock
(RTC)
2o MIEIC

Pedro F. Souto (pfs@fe.up.pt)

October 19, 2011

The Real Time Clock (RTC)

I Integrated circuit that maintains:
I The date and
I The time of the day

even when the PC is switched-off and unplugged
I In addition, it:

I Includes alarm functionality and can generate interrupts at
specified times of the day;

I Can generate interrupts periodically
I Includes at least 50 non-volatile one-byte registers, which

are usually used by the BIOS to store PC’s configuration
I Modern RTCs are self-contained subsystems, including:

I A micro lithium battery that ensures over 10 years of
operation in the absence of power (when the power is on,
the RTC draws its power from the external power supply)

I A quartz oscillator and support circuitry

The RTC’s Internal Address Space

I ... is an array of at least 64 one-byte registers, whose
content is non-volatile. Each register can be:

I Addressed individually
I Both read and written

I The first 10 registers are reserved for time-related
functionality

I The following 4 registers are reserved for control of the
RTC

I The remaining registers can be used for arbitrary purposes

Access to the RTC in the PC (1/2)

I The PC uses two ports to access the RTC’s internal
registers:
RTC_ADDR_REG on port 0x70, which must be loaded with

the address of the RTC register to be accessed
RTC_DATA_REG on port 0x71, which is used to transfer

the data to/from the RTC’s accessed
I To read/write a register of the RTC requires always:

1. writing the address of the register to the RTC_ADDR_REG
2. reading/writing one byte from/to the RTC_DATA_REG

Access to the RTC in the PC (2/2)

Issue What if other code runs between the writing of
RTC_ADDR_REG and the access to the RTC_DATA_REG?

I And that code modifies the RTC_ADDR_REG?
Solution Disable interrupts on the processor. It prevents:

I IH code from running
I Other programs (processes) from running.

(Multi-Tasking)

I Modern OSs support the concurrent execution of multiple
processes

I ...

Time of the Day, Alarm and Date Registers

I It is possible to program whether the data format is binary
or BCD, but this applies to all registers

I It is also possible to program whether the hours range from
0 to 23 or 1 to 12 (plus AM and PM), but this applies both
to the time and the alarm registers

Reading the Date or the Time of the Day (1/2)

Issue The registers with the date and the time of the day are
updated asynchronously by the RTC every second

I These registers are just an image of non-accessible
counters that are updated automatically as determined
by the signal generated by the (internal) quartz oscilator

Problem What if there is an update while we are reading the
time/date?

Question How big can the error be?
I Does it matter the order in which registers are read?

Reading the Date or the Time of the Day (2/2)
Solution The RTC offers 3 mechanisms to overcome this issue:

Update in progress flag (UIP) of the RTC
I The RTC sets the UIP of REGISTER_A 244 µs before

starting the update and resets it once the update is
done

Update-ended interrupt of the RTC
I If enabled, the RTC will interrupt at the end of the

update cycle, the next cycle will occur at least 999
ms later

I Register_C should be read in the IH, to clear the
IRQF

Periodic interrupt of the RTC
I Periodic interrupts are generated in such a way that

updates occur sensibly in the middle of the period
(actually, 244µs after)

I For periodic interrupts whose period is long enough
I Thus, after a periodic interrupt occurs, there are at least
P/2 + 244µ seconds before the next update

Updating the Date or the Time of the Day

Problem Asynchronous updates can also make time/date
updates inconsistent

Solution Set the SET bit of Register_B before updating
I It prevents the RTC from updating the time/date registers

with the values of the date/time keeping counters
I At the end of the update the SET bit should be reset so

that the RTC updates the counters with the values of the
registers

Question Can we use the SET bit of REGISTER_B also for
reading the date/time registers?

Alarm Registers

I The alarm registers allow to configure an alarm
I When the time of day registers match the corresponding

alarm registers, the RTC alarm generates an alarm
interrupt, if that interrupt is enabled at the RTC

I Bit AIE (5) of REGISTER_B
I The RTC supports don’t care values – values with the 2

MSB set – for alarm registers
I These values match any value of the corresponding

register of the time of day register set
I This makes it possible to configure alarms for multiple times

of the day, without changing the contents of the alarm
registers

I For example, if all 3 alarm registers are set to “don’t care”,
then the RTC will generate an alarm every second

Interrupts
I The RTC can generate on 3 different events

Alarm interrupts (AI)
Update interrupts (UI)
Periodic interrupts (PI) with a period between 122 µs and

0.5 s, as determined by bits RS0-RS3 in REGISTER_A
I Each of the interrupts can be enabled/disabled individually,

using bits AIE, UIE and PIE of REGISTER_B
I The RTC has only one IRQ line, which is connected to line

IRQ0 of PIC2, i.e. IRQ8.
I The source of the interrupt can be determined by checking

the flags AF, UF and PF of REGISTER_C
I Note that more than one of these flags may be set

simultaneously
I REGISTER_C must be read to clear these flags, even if

there is only one enabled interrupt
I Flags AF, UF and PF of REGISTER_C are activated even if

the corresponding interrupts are disabled
I It is possible to use polling to check for the corresponding

events

Control Registers

REGISTER_A
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
UIP DV2 DV1 DV0 RS3 RS2 RS1 RS0

UIP If set to 1, update in progress. Do not access time/date
registers

I More precisely, this bit is set to 1, 244µs before an
update and reset immediately afterwards

DV2-DV0 Control the couting chain (not relevant)
RS3-RS0 Rate selector – for periodic interrupts and square

wave output

Control Registers
REGISTER_B

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
SET PIE AIE UIE SQWE DM 24/12 DSE

SET Set to 1 to inhibit updates of time/date registers.
PIE, AIE, UIE Set to 1 to enable the corresponding

interrupt source
SQWE Set to 1 to enable square-wave generation
DM Set to 1 to set time, alarm and date registers in binary.

Set to 0, for BCD.
24/12 Set to 1 to set hours range from 0 to 23, and to 0 to

range from 1 to 12
DSE Set to 1 to enable Daylight Savings Time, and to 0 to

disable
I Useless: supports only old US DST ...

IMPORTANT Do not change DM, 24/12 or DSE, because it
may interfere with the OS

I In any case, changes to DM or 24/12 require setting
the registers affected by those changes

Control Registers

REGISTER_C
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
IRQF PF AF UF 0 0 0 0

IRQF IRQ line active
PF Priority interrupt pending
AF Alarm interrupt pending
UE Update interrupt pending

REGISTER_D
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
VRT 0 0 0 0 0 0 0

VRT Valid RAM/time – set to 0 when the internal lithium
battery runs out of energy – RTC readings are
questionable

Example Code: Waiting for Valid Time/Date

void wait_valid_rtc(void) {
int enabled;
unsigned long regA = 0;

do {
enabled= disable(); // globally disable interrupts
sys_outb(RTC_ADDR_REG, RTC_REG_A);
sys_inb(RTC_DATA_REG, ®A);
if(enabled)

enable();
} while (regA & RTC_UIP);

}

I Assuming that functions enable() (disable()) enable
(disable) processor interrupts

I May not be what you want!!!
I What if code is preempted or interrupted?

Example Code: RTC IH in C
void rtc_isr(void) {

int cause;
unsigned long regA;

sys_outb(RTC_ADDR_REG, RTC_REG_C);
cause = sys_inb(RTC_DATA_REG, ®A);

if(cause & RTC_UF)
handle_update_int();

if(cause & RTC_AF)
handle_alarm_int();

if(cause & RTC_PF)
handle_periodic_int();

}

Question Should we disable interrupts while reading
REGISTER_C?

Minix 3 Notes

I In Minix 3, like in most OSs, each device is controlled by at
most one device driver

I Minix 3 by default does not have any driver for the RTC
I Need not worry about interference from such a driver
I The issue raised in the last slide is void

I However, the possibility of the process being preempted or
interrupted is not.

Minix 3 Notes: I/O In Assembly

Problem How can assembly code execute I/O operations?
I Minix 3 device drivers, and your programs, execute at

user-level.
Solution Two possible solutions:

1. Use sys_inX()/sys_outX() kernel calls
2. Use the I/O privilege field in the EFLAGS register, via

the sys_iopenable() kernel call

Minix 3 Notes: sys_iopenable() (1/2)

sys_iopenable()

“Enable the CPU’s I/O privilege level bits for the given
process, so that it is allowed to directly perform I/O in
user space.”

I/O privilege level (IOPL) field (2 bits) in the EFLAGS register
I Specifies the privilege level of a process, so that it can

perform the following operations
I IN/OUT
I CLI (disable interrupts)
I STI (enable interrupts)

Minix 3 Notes: sys_iopenable() (2/2)

Note sys_iopenable() is a blunt mechanism
I The process is granted the permission to perform I/O on

any I/O port
I With sys_inX()/sys_outX() the I/O operations are

executed by the (micro)kernel and it is possible to grant
permission to only a few selected I/O ports (as
determined by /etc/system.conf)

Minix 3 Notes: driver_receive() is not Polling
driver_receive() is a blocking call. If ther process’s “IPC

queue” is empty:
I The OS will move it to the WAIT state
I The state will be changed to READY, only when a

message (or notification) is sent to the process

5: while(1) { /* You may want to use a different condition */
6: /* Get a request message. */
7: if (driver_receive(ANY, &msg, &ipc_status) != 0) {
8: printf("driver_receive failed with: %d", r);
9: continue;

10: }
11: if (is_ipc_notify(ipc_status)) { /* received notification */
12: switch (_ENDPOINT_P(msg.m_source)) {
13: case HARDWARE: /* hardware interrupt notification */
14: if (msg.NOTIFY_ARG & irq_set) { /* subscribed interrupt */
15: ... /* process it */
16: }
17: break;
18: default:
19: break; /* no other notifications expected: do nothing */
20: }
21: } else { /* received a standard message, not a notificatio

Further Reading

I Folha de características dum RTC recente

href="http://www.datasheetcatalog.org/datasheet/maxim/DS12887.pdf

