
Computer Labs:
Mixed C and Assembly Programming

2o MIEIC

Pedro F. Souto (pfs@fe.up.pt)

October 27, 2011

Assembly Programming: Why?

Some things can be done only in assembly For example:
I Input/Output operations
I Issue the return from interrupt call

Basically, execute machine instructions that are not used for
general programming.

Sometimes, assembly is better You have total control on the
instructions executed:

I Good for performance (depends on the compiler)
I Good for timing (only for simple architectures)

Assembly Programming: Why Not?

Coding Performance
I Programming in assembly requires a lot more effort from

the programmer
Robustness

I The number of bugs in a program is roughly proportional
to the number of lines of code

Code Portability
I Even Linux device drivers use some C kernel functions

for I/O

Assembly Programming in LCOM

I No “standard” Minix 3 device driver has assembly code
I All lab assignments could be implemented in C only
I However, assembly programming is fairly common in

embedded systems
I Usually, used together with C.

Mixing C and Assembly

Inline Assembly The assembly code fragments are embedded
in C source code.
Example GCC

asm("hlt");

Convenient to optimize a small code fragment.
Linked Assembly Assembly code and C code are written in

separate files.
I The assembly files are assembled separately to object

code
I The executable is built by linking the object code with

that generated by the C compiler
Easier to maintain, especially if the code is supposed to run
in computers with different machine code.

GNU Assembler (Gas)

I Is the assembler used to generate object code from the
output of the GNU C compiler

I Actually, it is a family of assemblers, as gcc supports
several computer architectures.

I GCC supports both
I Inline assembly
I Linked assembly

I Minix 3 build system includes the gas2ack tool
I Translates from GNU assembly to the language accepted

by its default assembler, the ACK assembler
I Requires linked assembly

GNU’s Assembler Conventions (AT&T Syntax)
I Register names are preceded by a %, e.g %eax
I Immediate operands are prefixed with a $, e.g. $8
I The size of the operands is specified by appending the

character b, w, l (byte, word, long) as appropriate to the
instruction mnemonic, e.g. movb

I In two operand instructions the order is: source, destination
movb $8, %ah

I Intel’s convention is: destination, source
I Memory references must be enclosed in parenthesis ():

displacement(base reg., offset reg., scalar multiplier)

instead of:
[base reg. + displacement + offset reg. * scalar multiplier]

I Either or both of the numeric parameters, and either of the
register parameters may be ommitted. E.g.
movl %ecx, 8(,%eax,4)

I Actually, GAS also supports the "Intel syntax", but
apparently gas2ack does not

GAS Key Syntatic Elements (1/2)
Comments C style: /* */

I Also #, for IA-32: comment till the end of the line
Symbol "one or more characters chosen from the set of all

letters (both upper and lower case), digits and the three
characters ‘_.$’”

I “No symbol may begin with a digit.”
I “ Case is significant.”

Statement
I “begins with zero or more labels, optionally followed by a

key symbol which determines what kind of statement it
is.”

I “The key symbol determines the syntax of the rest of the
statement.”

I “If the symbol begins with a dot ‘.’ then the statement is
an assembler directive”

I “If the symbol begins with a letter the statement is an
assembly language instruction”

I “ends at a newline character or line separator character.
(The line separator is usually ‘;”’

GAS Key Syntatic Elements (2/2)

Constants "A constant ... is a value known by inspection,
without knowing any context"
Character Constants Chars just like C chars, e.g. ’0’, \n

Strings just like C strings, e.g. "Hello, World!"
Numbers

Integers May be in binary, octal, decimal or hexadecimal.
I Depending on their prefix: 0b (or 0B), 0, no-prefix, 0x

(or 0X)
I Negative number use the prefix operator -

Flonums represents a floating point number

.byte 74, 0112, 092, 0x4A, 0X4a, ’J, ’\J # All the same value.

.ascii "Ring the bell\7" # A string constant.

.octa 0x123456789abcdef0123456789ABCDEF0 # A bignum.

.float 0f-314159265358979323846264338327\
95028841971.693993751E-40 # - pi, a flonum

GAS: Symbols

I Are used by programmers to name things
Label “represents the current value of the active location

counter”
I A symbol followed by a colon :
I Can be used as:
I The name of a function
I The name of a variable
I The name of a constant/literal

Dot ’.’ “refers the current address that as is assembling
into”

I Can be assigned an arbitrary value

GAS Expressions

Def: “specifies an address or numeric value.”
Integer Exprs

Operators Essentially, C operators: arithmetic, shift,
bitwise boolean, comparison, logic boolean

Arguments Can be symbols, numbers or subexpressions,
which are delimited by ’(’ and ’)’

GAS Sections

Def: “a section is a range of addresses, with no gaps; all data
“in” those addresses is treated the same for some particular
purpose. For example there may be a “read only” section. “

I They are used to ensure that the linker keeps related
“entities” together

I An object file generated by as has at least 3 sections, any
of which may be empty:
text code (program) section
data initialized data section
bss uninitialized data section

I Space can be allocated in the bss
I No initial value can be assigned to it.
I The run time may initialize it to 0, when the program starts

running

(Some) GAS Directives/Pseudo Ops (1/4)

Section specification specifies the section the assembly code
will be assembled into
.text code (program) section
.data initialized data section
.bss uninitialized data section
.section <section_name> for defining an arbitrarily

named section. Not clear this is supported by Minix 3.
Symbol related
.global/.globl makes symbol visible to linker
.extern not needed: GAS “treats all undefined symbols as

external”
.bss uninitialized data section
.section <section_name> for defining an arbitrarily

named section. Not clear this is supported by Minix 3.

(Some) GAS Directives/Pseudo Ops (2/4)

Data definiton ... in the .data section
.ascii/.asciz ASCII strings (/zero terminated)
.byte byte
.hword/.short 16-bit number
.int/.long 4 bytes (depends on architecture)
.double floating point (FP) number (depends on

configuration)
.float/.single FP number (depends on configuration)
IMPORTANT IA-32 architecture is little endian

prompt_str:
.ascii "Enter Your Name: "

var:
.int 40

array:
.byte 89, 10, 67, 1, 4, 27, 12,

34, 86, 3

(Some) GAS Directives/Pseudo Ops (3/4)

Space Allocation ... in the .bss section
I It makes no sense to define data in the uninitialized

section

.lcomm “Reserve length (an absolute expression) bytes for
a local common denoted by symbol.”

.comm Also reserves space, but with a twist. You can check
the documentation.

.bss
Reserve 32 bytes of memory
.lcomm buff, 32

(Some) GAS Directives/Pseudo Ops (4/4)

.equ/.set “Sets the value of a symbol to expression. I.e.
defines a symbolic constant

prompt_str:
.ascii "Enter Your Name: "

pstr_end:
.set STR_SIZE, pstr_end - prompt_str

Note Could have used ., i.e. the dot symbol, rather than
defining the pstr_end symbol.

.rept/.endr Repeat the sequence of lines in the “reptition
block”

.rept 3

.long 0

.endr

GAS, GCC and Include Files (1/2)

I GAS does not include a pre-processor
I It is possible to take advantage of GCC’s pre-processor:

I Invoke gas via gcc
I The name of the file should have the suffix .s

I In Minix 3, the default C compiler also behaves like gcc
I ENTRY is a macro defined in <machine/asm.h>

GAS, GCC and Include Files (2/2)
/* void set_timer2_freq(); */
/* using an initialized global variable for the frequency */
#include <machine/asm.h>
#include "i8254.h"

.global _freq

.data
_freq:

.short 0

ENTRY(set_timer2_freq)
movw _freq, %cx /* read the frequency from the global variable */
movb $(SEL_T2 | LSB_MSB | SQR_WAVE | BIN_MODE), %al /* configure Timer 2 for square wave */
outb $TIMER_CTRL
movl $((TIMER_FREQ) & 0x0000FFFF), %eax /* compute the divisor: TIMER_FREQ/freq */
movl $((TIMER_FREQ >>16) & 0x0000FFFF), %edx
div %cx
movb %cl,%al /* load LSB */
outb $TIMER_2
movb %ch,%al /* load MSB */
outb $TIMER_2
ret

Further Reading

I Dr. Paul Carter, PC Assembly Language
I Section 1.3: Assembly Language
I Section 1.4: Creating a Program

I OSdev.org: Inline Assembly
I GAS Syntax Chapter of the x86 Assemby Wikibook
I Ram Narayan. “Linux assemblers: A comparison of GAS

and NASM, IBM DeveloperWorks, 17 Oct. 2007
I “An Introduction to the GNU Assembler
I “Using as, the official documentation from GNU

http://www.drpaulcarter.com/pcasm/
http://wiki.osdev.org/Inline_Assembly
http://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax
http://www.ibm.com/developerworks/linux/library/l-gas-nasm/index.html
http://www.ibm.com/developerworks/linux/library/l-gas-nasm/index.html
http://www.cse.unsw.edu.au/~cs3221/labs/assembler-intro.pdf
http://sourceware.org/binutils/docs-2.21/as/index.html

