
Computer Labs: The PC Keyboard
2o MIEIC

Pedro F. Souto (pfs@fe.up.pt)

October 7, 2011

PC Keyboard Operation (1/2)
IRQ1

0x64

0x60

OUT_PORT

OUT_BUF

IN_PORT

STAT_REG

I/O bus

i8042
(KBC)Keyboard

IN_BUF

I The keyboard has its own controller chip (not shown): the
controller@KBD (C@KBD)

I When a key is pressed the C@KBD generates a scancode
(make code) and puts it in a buffer for sending to the PC

I Usually, a scancode is one byte long
I The same happens when a key is released

I Usually, the scancode when a key is released (break code)
is the make code of that key with the MSB set to 1

I The communication between the C@KBD and the PC is
via a serial line

I I.e. the bits in a byte are sent one after the other over a pair
of wires

PC Keyboard Operation (2/2)
IRQ1

0x64

0x60

OUT_PORT

OUT_BUF

IN_PORT

STAT_REG

I/O bus

i8042
(KBC)Keyboard

IN_BUF

I On the PC side this communication is managed by the
keyboard controller (KBC)

I In modern PCs, the KBC is integrated in the motherboard
chipset

I When OUT_BUF is empty:
1. The KBC signals that via the serial bus
2. The C@KBD sends the byte at the head of its buffer to the

KBC
3. The KBC puts it in the OUT_BUF
4. The KBC generates an interrupt by raising IRQ1

Keyboard Interrupt Handler (IH)

I Needs to read only the byte in the KBC’s OUT_BUF
I Communication between the keyboard and the KBC is

rather slow
I IHs should be as fast as possible

I ... and, of course, to output an EOI to the PIC
I Conversion from a scancode to a character code (ASCII or

some other code) should not be done in the IH
I IHs should be kept to a minimum

I Note that some scancodes may be more than 1 byte long
I But again, this can be taken care of outside the IH

I It is possible to operate the KBC in polling mode, but it is
not very convenient

I Why?

Keyboard Commands (1/2)
I In the early PC models, interface with the keyboard used a

very simple IC at port 0x60
I For compatibility, the KBC provides two registers at that

port:
IN_BUF i.e. Input Buffer
OUT_BUF i.e. Output Buffer
and emulates the old interface:

1. The KBC forwards bytes (commands) written in the
IN_BUF to the C@KBD

2. The C@KBD responds with one of 3 values:
0xFA (ACK), 0xFE (Resend) or 0xFC (Error)

3. The KBC puts the response in the OUT_BUF and raises
IRQ1

Note The names of the registers IN_BUF/OUT_BUF are from
the point of view of the KBC. The processor:

I Writes to the IN_BUF
I Read from the OUT_BUF

Keyboard Commands (2/2)
Command Meaning Args
0xFF Reset KBD
0xF6 Set default values and enable KBD
0xF5 Disable KBD
0xF4 Clear buffer and enable KBD
0xF3 Change KBD repetition rate/delay bits 0-4 rate

bits 5-6 delay
0xED Switch on/off KBD LEDs bits 0-2

Note The arguments of commands that require them have to
be written to the IN_BUF too, and are also acknowledged

I The C@KBD responds with one of 3 values as above.
Thus issuing such a command, requires 4 steps:

1. Write command to the IN_BUF
2. Read KBD response from the OUT_BUF
3. Write argument to the IN_BUF
4. Read KBD response from the OUT_BUF

In the case the KBD response is:
Resend (0xFE) the last byte should be written again
Error (0xFC) the entire sequence should be restarted

Command 0xF3 (Configure Typematic Parameters)
I Is an operating mode in which the keyboard generates a

stream of scancodes when the user holds a key down
I The KBD allows to configure this operation via:

Delay Which specifies the delay for entering typematic
mode, counted from the moment the user presses down
the key;

Rate Which specifies the rate at which scancodes are
generated, once the keyboard switches to typematic
mode.

Command 0xED (Set KBD LEDs)

Bit 2 Caps Lock indicator
Bit 1 Numeric Lock indicator
Bit 0 Scroll lock indicator

I There is no way to read the value of these LEDs
I The code that changes them should remember their state

The KBC Commands (of the PC-AT)

I The KBC added a few commands, the KBC commands,
and two new registers at port 0x64
STAT_REG: for reading the KBC state
Not named for writing KBC commands

I Apparently, this is not different from the IN_BUF at port
0x60

I The value of input line A2 is used by the KBC to
distinguish KBC commands from KBD commands

I That is: the KBC has only one writable register, the
IN_BUF

STAT_REG
I Input from/output to KBC requires reading the STAT_REG

Bit Name Meaning (if set)
7 Parity Parity error - invalid data
6 Timeout Timeout error - invalid data
5 Aux Mouse data
4 INH Inhibit flag: 0 if keyboard is inhibited
3 A2 A2 input line: 0 data byte

1 command byte
2 SYS System flag: 0 if system in power-on reset,

1 if system already initialized
1 IBF Input buffer full

don’t write commands or arguments
0 OBF Output buffer full - data available for reading

I Bits 7 and 6 signal an error in the serial communication line
between the keyboard and the KBC

I Do not write to the INPUT_BUF, if bit 1, i.e. the IBF, is set.

Keyboard-Related KBC Commands for PC-AT/PS2

I These commands must be written using address 0x64
I Arguments, if any, must be passed using address 0x60
I Return values, if any, are passed in the OUT_BUF

Command Meaning Args (A)/ Return (R)
0x20 Read Command Byte Returns Command Byte
0x60 Write Command Byte
0xAA Check KBC (Self-test) Returns 0x55, if OK

Returns 0xFC, if error
0xAB Check Keyboard Interface Returns 0, if OK
0xAD Disable KBD Interface Inhibits KBD from sending data
0xAE Enable KBD Interface

I There are several others related to the mouse

(KBC “Command Byte”)

7 6 5 4 3 2 1 0
– – DIS2 DIS – – INT2 INT

DIS2 1: disable mouse
DIS 1: disable keyboard
INT2 1: enable interrupt on OBF, from mouse;
INT 1: enable interrupt on OBF, from keyboard
- : Either not used or not relevant

Read Use KBC command 0x20, which must be written to 0x64

Write Use KBC command 0x60, which must be written to 0x64

Keyboard Programming/Configuration

STAT_REG: @ address 0x64
I Read the KBC state

IN_BUF: Can be used to write:
Commands to the KBC access via address 0x64;
Commands to the keyboard access via address 0x60
Arguments of either commands access via address 0x60

OUT_BUF: Can be used to read:
Scandcodes both make and break, received from the

keyboard;
Return values from KBC commands;
Return values from keyboard commands;
Confirmation protocol messages ACK, Resend Error

Note These addresses belong to the I/O address space
I Need to use IN/OUT assembly instructions or the library

functions sys_inb()/sys_outb() of the kernel API

Issuing a Command to the KBC
#define STAT_REG 0x64
#define KBC_CMD_REG 0x64

while(1) {
sys_inb(STAT_REG, &stat); /* assuming it returns OK */
/* loop while 8042 input buffer is not empty */
if((stat & IBF) == 0) {

sys_outb(KBC_CMD_REG, cmd); /* no args command */
return 0;

}
delay(WAIT_KBC);

}

Note 1 Cannot output to the KBC_CMD_REG while the input
buffer is full

Note 2 Code leaves the loop only when it succeeds to output
the data to the KBC_CMD_REG

I To make your code resilient to failures in the
KBC/keyboard, it should give up after “enough time” for
the KBC to send a previous command/data to the KBD.

Reading Return Value/Data from the KBC

while(1) {
sys_inb(STAT_REG, &stat); /* assuming it returns OK */
/* loop while 8042 output buffer is empty */
if(stat & OBF) {

sys_inb(OUT_BUF, &data); /* assuming it returns OK */

if ((stat &(PAR_ERR | TO_ERR)) == 0)
return data;

else
return -1;

}
delay(WAIT_KBC);

}

Note 1 Code leaves the loop only upon some input from the
OUT_BUF.

I It is not robust against failures in the KBC/keyboard
Note 2 Must mask IRQ1, otherwise the keyboard IH may run

before we are able to read the OUT_BUF

KBC Programming Issues

Interrupts If the command have responses, and interrupts are
enabled, the IH will “steal” them away from other code

I The simplest approach is just to disable interrupts.
Timing KBD/KBC responses are not immediate.

I Code needs to wait for long enough, but not indefinitely
Concurrent Execution The C@KBD continuously scans the

KBD and may send scancodes, while your code is writing
commands to the KBC:

I How can you prevent accepting a scancode as a
response to a command?

I It is easier to solve this for KBC commands than for KBD
commands.

Further Reading

I IBM’s Functional Specification of the 8042 Keyboard
Controller (IBM PC Technical Reference Manual)

I W83C42 Data Sheet, Data sheet of an 8042-compatible
KBC

I Adam Chapweske’s The AT-PS/2 Keyboard Interface
I Andries Brouwer’s The AT keyboard controller, Ch. 11 of

Keyboard scancodes
I Andries Brouwer’s Keyboard commands, Ch. 12 of

Keyboard scancodes
I Randal Hyde’s The PC Keyboard, Ch. 20 of the Art of

Assembly Language

http://zet.aluzina.org/images/d/d4/8042.pdf
http://zet.aluzina.org/images/d/d4/8042.pdf
http://pdf1.alldatasheet.com/datasheet-pdf/view/144616/WINBOND/W83C42.html
http://www.computer-engineering.org/ps2keyboard/
http://www.win.tue.nl/~aeb/linux/kbd/scancodes-11.html
http://www.win.tue.nl/~aeb/linux/kbd/scancodes-11.html
http://www.win.tue.nl/~aeb/linux/kbd/scancodes-12.html
http://www.win.tue.nl/~aeb/linux/kbd/scancodes-12.html
http://maven.smith.edu/~thiebaut/ArtOfAssembly/CH20/CH20-1.html
http://maven.smith.edu/~thiebaut/ArtOfAssembly/CH20/CH20-1.html

