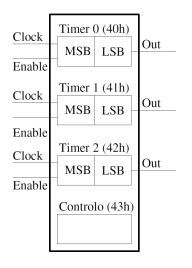
Computer Labs: The i8254 Timer/Counter


Pedro F. Souto (pfs@fe.up.pt)

September 29, 2011

The i8254

- It is a programmable timer/counter
 - Each PC has a functionally equivalent circuit, nowadays it is integrated in the so-called south-bridge
 - Allows to measure time in a precise way, independently of the processor speed
- ▶ It has 3 16-bit counters, each of which
 - May count either in binary or BCD
 - ► Has 6 counting modes

i8254 Block Diagram

- Three independent 16-bit counters
 - Ports 40h, 41h and 42h
 - MSB and LSB addressable separately
 - 6 counting modes
- An 8 bit-control register
 - ▶ Port 43h
 - Programming of each counter independently

i8254 Control Word

Written to the Control Register (0x43)

7,6		
.,.		Counter selection
	00	0
	01	1
	10	2
5,4		Counter Initialization
	01	LSB
	10	MSB
	11	LSB followed by MSB
3,2,1		Counting Mode
	000	0
	001	1
	x10	2
	x11	3
i i	100	4
	101	5
0		BCD
	0	Binary (16 bits)
	1	BCD (4 digits)

Example

► Timer 2 in mode 3

► Couting value: 1234 = 0x04D2

Control Register: 10111110

Timer2 LSB 0xD2

Timer2 MSB 0x04

i8254 Counting Modes

Mode 0 Interrupt on terminal count – for counting events

▶ OUT goes high and remains high when count reaches 0

Mode 1 Hardware retriggerable one-shot

► OUT goes low and remains low until count reaches 0, the counter is reloaded on a rising edge of the ENABLE input

Mode 2 Rate Generator (divide-by-N counter)

► OUT goes low for one clock cycle when count reaches 0, the counter is reloaded with its initial count afterwards, and ...

Mode 3 Square Wave Generator – for Lab 3

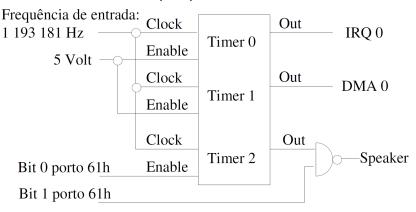
► Similar to mode 2, except for the duty-cycle: OUT will be high for half of the cycle and low for the remaining half of the cycle

i8254: Read-Back Command

- Allows to retrieve
 - ▶ the mode programmed
 - and/or the current counting value

of one or more timers

- Written to the Control Register (0x43)
 - The mode is read from the timer's data register
 - ▶ The 6 LSBs match that of the Control Word


Read-Back Command Format

Bit	Value	Function
7,6		Read-Back Command
	11	
5		COUNT
	0	Read counter value
4		STATUS
	0	Read programmed mode
3		Select Timer 2
	1	Yes
2		Select Timer 1
	1	Yes
0		Select Timer 0
	1	Yes

Read-Back Status Format

Bit	Value	Function
7		Output
6		Null Count
5,4		Counter Initialization
3,2,1		Programmed Mode
0		BCD

i8254: Use in the PC (1/2)

- ► Timer 0 is used to provide a time base.
- Timer 1 is used for DRAM refresh
 - Via DMA channel 0
 (Not sure this is still true.)
- Timer 2 is used for tone generation

i8254: Use in the PC (2/2)

► The i8254 is mapped in the I/0 address space:

```
Timer 0: 0x40
Timer 1: 0x41
Timer 2: 0x42
Control Register: 0x43
```

- Need to use IN/OUT assembly instructions
 - Minix 3 provides the SYS_DEVIO kernel call for doing I/O #include <minix/syslib.h>

```
int sys_inb(port_t port, unsigned long *byte);
int sys_outb(port_t port, unsigned long byte);
```

 Need to write to the control register before accessing any of the timers

Minix 3 and Timer 0

- At start up, Minix 3 programs Timer 0 to generate a square wave with a fixed frequency
 - Timer 0 will generate an interrupt at a fixed rate:
 - ► Its output is connected to IRQ0
- Minix 3 uses these interrupts to measure time
 - The interrupt handler increments a global variable on every interrupt
 - The value of this variable increments at a fixed, known, rate
- Minix 3 uses this variable mainly for:
 - Keeping track of the date/time
 - Implementing SW timers

Lab 3: Part 1 - Generating a Square Wave

```
int timer_set_rate(unsigned long timer, unsigned long rate)
```

Question How can you test it?

- 1. Change the rate at which Timer 0 generates interrupts
- 2. Write control word to configure Timer 0:
 - Select square wave mode (mode 3)
 - Preferably, LSB followed by MSB
- 3. Load Timer 0 with the value of the divisor to generate the frequency corresponding to the desired rate
 - Depends on the previous step

Question So what?

Further Reading

- ► Lab 3 Script
- ► i8254 Data-sheet