
Computer Labs: BIOS and VBIOS Access
2o MIEIC

Pedro F. Souto (pfs@fe.up.pt)

September 22, 2011

PC BIOS

I Basic Input-Output System is:
I A firmware interface for accessing PC HW resources
I The implementation of this interface
I The non-volatile memory (ROM, more recently flash-RAM)

containing that implementation
I It is used mostly when a PC when it starts up

I It is 16-bits: even IA-32 processors start in real-mode
I It is used essentially to load the OS (or part of it)
I Once the OS is loaded, it usually uses its own code to

access the HW not the BIOS

BIOS Calls

I Access to BIOS services is via the SW interrupt instruction
INT xx

I The xx is 8 bit and specifies the service.
I Any arguments required are passed via the processor

registers
I Standard BIOS services:

Interrupt vector (xx) Service
10h video card
11h PC configuration
12h memory configuration
16h keyboard

BIOS Call: Example

I Set Video Mode: INT 10h, function 00h
; set video mode

MOV AH, 0 ; function
MOV AL, 3 ; text, 25 lines X 80 columns, 16 colors
INT 10h

BIOS Call: From Minix 3

Problem
I The previous example is in real address mode
I Minix 3 uses protected mode with 32-bit

Solution
I Use Minix 3 kernel call SYS_INT86

“Make a real-mode BIOS on behalf of a user-space device
driver. This temporarily switches from 32-bit protected
mode to 16-bit real-mode to access the BIOS calls.”

http://wiki.minix3.org/en/DevelopersGuide/KernelApi#SYS_INT86#page.24

BIOS Call in Minix 3: Example
#include <machine/int86.h>
int vg_exit() {
struct reg86u reg86;

reg86.u.b.intno = 0x10;
reg86.u.b.ah = 0x00;
reg86.u.b.al = 0x03;

if(sys_int86(®86) != OK) {
printf("vg_exit(): sys_int86() failed \n");
return 1;

}
return 0;

}

I struct reg86u is a struct with a union of structs
b is the member to access 8-bit registers
w is the member to access 16-bit registers
l is the member to access 32-bit registers

I The names of the members of the structs are the standard
names of IA-32 registers.

Video BIOS Extension (VBE)

I The BIOS specification supports only VGA graphics modes

I VGA stands for Video Graphics Adapter
I Specifies very low resolution: 640x480 @ 16 colors and

320x240 @ 256 colors
I The Video Electronics Standards Association (VESA)

developed the Video BIOS Extension (VBE) standards in
order to make programming with higher resolutions
portable

I Early VBE versions specify only a real-mode interface
I Later versions added a protected-mode interface, but:

I In version 2, only for some time-critical functions;
I In version 3, supports more functions, but they are optional.

VBE INT 0x10 Interface

I VBE still uses INT 0x10, but to distinguish it from basic
video BIOS services

I AH = 4Fh - BIOS uses AH for the function
I AL = function

I VBE graphics mode 105h, 1024x768@256, linear mode:
struct reg86u r;
r.w.ax = 0x4F02; // VBE call, function 02 -- set VBE mode
r.w.bx = 1<<14|0x105; // set bit 14: linear framebuffer
r.b.intno = 0x10;
if(sys_int(&r) != OK) {

printf("set_vbe_mode: sys_int86() failed \n");
return 1;

}

Video Card in Graphics Mode
I Like in text mode, the screen can be abstracted as a matrix

I Now, a matrix of points, or pixels, instead of characters
I For each pixel, the VRAM holds its color

HRES pixels

V

R

E

S

p

i

x

e

l

s
color (0,0)

color (1,0)

color (Hres,0)

color (0,1)

I With a linear framebuffer, addressing of a pixel is very
easy. Need only know:

I The base address of the frame buffer
I The coordinates of the pixel
I The number of bytes required to encode the color

Accessing the Linear Frame Buffer

1. Obtain the physical memory address
1.1 Using a hard-coded address (0xD0000000), first;
1.2 Using Function 0x01 Return VBE Mode Information, once

everything else has been completed.

2. Map the physical memory region into the process’ address
space

I Steps 2 was already described in the Lab 1 slides

http://web.fe.up.pt/~pedro/aulas/lcom2011/at/1lab.pdf#page.24

Obtaining the Physical Memory Address with VBE

I VBE Function 01h - Return VBE Mode Information:
Input

AX = 4F01h Return VBE Mode Information
CX = Mode number
ES:DI = Pointer to ModeInfoBlock structure

Ouput
AX = VBE return status

I The ModeInfoBlock includes among other information:
1. The mode attributes, which comprise a set of bits that

describe some general characteristics of the mode,
including whether:

I it is supported by the adapter
I the linear frame buffer is available

2. The screen resolution of the mode
3. The physical address of the linear frame buffer

http://www.phatcode.net/downloads.php?id=221&action=get&file=vbe20.pdf#page.23

Obtaining the Physical Memory Address with VBE

Problem
I The ModeInfoBlock structure must be accessible both in

protected mode and in real mode
I VBE Function 01h is a real mode function

Solution
I Use the liblm.a library

I Provides a simple interface for applications:
lm_init()
lm_alloc()
lm_free()

I Hides some non-documented functions provided by Minix 3
I The mmap_t (already used in Lab 1) includes both:

I The physical address, for use by VBE
I The virtual address, for use in Minix 3

Obtaining the Physical Memory Address with VBE

int vbe_get_mode_info(unsigned short mode, phys_bytes buf) {
struct reg86u r;

r.u.w.ax = 0x4F01; /* VBE get mode info */
/* translate the buffer linear address to a far pointer */
r.u.w.es = PB2BASE(buf); /* set a segment base */
r.u.w.di = PB2OFF(buf); /* set the offset accordingly */
r.u.w.cx = mode;
r.u.b.intno = 0x10;
if(sys_int86(&r) != OK) { /* call BIOS */

PB2BASE Is a macro for computing the base of a segment, a
16-bit value, given a 32-bit linear address;

PB2OFF Is a macro for computing the offset with respect to the
base of a segment, a 16-bit value, given a 32-bit linear
address;

Obtaining the Physical Memory Address with VBE

Problem (Last) The ACK-based C compiler does not support
packed structs.

I GCC supports this via the
__attribute__ ((packed)) extension;

I In principle, this should be handled by the #pragma
directive

Solution Use the function provided
vbe_unpack_mode_info()

I Copies the data in the VBE ModeInfoBlock struct, to a
C struct with the same fields.

I Use of the C struct is less error prone than using the
unpacked buffer.

Obtaining the Physical Memory Address with VBE

typedef struct
{

unsigned short ModeAttributes;
[...]
unsigned short XResolution;
unsigned short YResolution;
[...]
unsigned char BitsPerPixel;
[...]
unsigned long PhysBasePtr;
[...]

} vbe_mode_info_t;

