
Computer Labs: C for Lab 2
2o MIEIC

Pedro F. Souto (pfs@fe.up.pt)

September 22, 2011

Contents

Bitwise Operators and Shifts

C Unions

Bitwise Operations

I Bitwise operations
I are boolean operations, either binary or unary
I take integral operands, i.e. one of the following types char,
short, int, long, whether signed or unsigned

I apply the operation on every bit of these operands

op

xnyn x0x1

z0

y0

z0z1

y1

zn

Bitwise Operations

I Bitwise operations
I are boolean operations, either binary or unary
I take integral operands, i.e. one of the following types char,
short, int, long, whether signed or unsigned

I apply the operation on every bit of these operands

op

xnyn x0x1

z0

y0

z0z1

y1

zn

Bitwise Operations

I Bitwise operations
I are boolean operations, either binary or unary
I take integral operands, i.e. one of the following types char,
short, int, long, whether signed or unsigned

I apply the operation on every bit of these operands

op

xnyn x0x1

z0

y0

z0z1

y1

zn

Bitwise Operations

I Bitwise operations
I are boolean operations, either binary or unary
I take integral operands, i.e. one of the following types char,
short, int, long, whether signed or unsigned

I apply the operation on every bit of these operands

op

xnyn x0x1

z0

y0

z0z1

y1

zn

Bitwise Operators

I Bitwise operators:

& bitwise AND
| bitwise inclusive OR
^ bitwise exclusive OR
~ one’s complement (unary)

I Do not confuse them with the logical operators which
evaluate the truth value of an expression:

&& logical and
|| logical or
! negation

Bitwise Operators: Application

I Use with bit masks:
uchar mask = 0x80; // 10000000b
...
if (flags & mask) // test value of flags MS bit

...
flags = flags | mask; // set flags MS bit
flags ^= mask; // toggle flags MS bit
mask = ~mask; // flags becomes 01111111b
flags &= mask; // reset flags MS bit

I In Lab 1, you can use the | operator to compose the
attribute byte:
#define RED 0x04 // Foreground color RED
#define GREEN_BACK 0x20 // Background color GREEN

uchar ch_attr = RED | GREEN_BACK;

Shift Operators

I Similar to corresponding assembly language shift
operations
>> left shift of left hand side (LHS) operand by the

number of bits positions given by the RHS operand
I Vacated bits on the left are filled with:

0 if the left operand is unsigned (logical shift)
either 0 or 1 (machine/compiler dependent] if the left

operand is signed
<< right shift

I Vacated bits on the right are always filled with 0’s

I LHS operand must be of an integral type
I RHS operand must be non-negative

Shift Operators: Application

I Integer multiplication/division by a power of 2:
unsigned int n;

n <<= 4; // multiply n by 16 (2^4)
n >>= 3; // divide n by 8 (2^3)

I In Lab 1, we can use them to avoid mistakes in the
definition of the attributes:
#define BLUE (1<<0)
#define GREEN (1<<1)
#define RED (1<<2)
#define BACK_SHIFT 4
#define GREEN_BACK (GREEN << BACK_SHIFT)

Contents

Bitwise Operators and Shifts

C Unions

C Unions

I Syntatically, a union data type appears like a struct:
union reg_a {

unsigned char a; // 8080 A register
unsigned short ax; // 8086 AX register
unsigned long eax; // 80386 EAX register

} xax;

I Access to a union’s members is via the dot operator

I However semantically, there is a big difference:
Union contains space to store any of its members, but not

all of its members simultaneously
I The name union stems from the fact that a variable of

this type can take any

Struct contains space to store all of its members
simultaneously

Question What are unions good for?

C Union and Type Conversion

union reg_a {
struct {

unsigned char al, ah, _eax[2]; // access as 8-bit reg.
} b;
struct {

unsigned short ax, _eax; // access as 16-bit register
} w;
struct {

unsigned long eax; // access as 32-bit register
} l;

} ia32_a;

I This allows us to initialize the union as a 32-bit register
ia32_a.l.eax = 0xD0D0DEAD;

I And later access any of the smaller registers available in
the IA 32 architecture

printf("EAX = 0x%p \t AX = 0x%x \t AH = 0x%x \t AL = 0x%x \n",
ia32_a.l.eax, ia32_a.w.ax, ia32_a.b.ah, ia32_a.b.al);

Question What are the assumptions underlying this code?

	Bitwise Operators and Shifts
	C Unions

