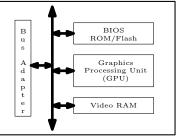

Computer Labs: Lab 1 2º MIEIC

Pedro F. Souto (pfs@fe.up.pt)

September 15, 2011

I/O Devices


- In LCOM, we will work with the PC I/O devices.
- I/O devices provide the interface between the CPU and the outside world.

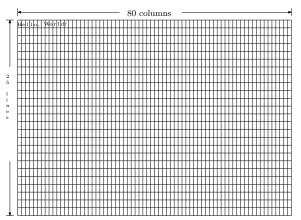
I/O Controllers

- Each I/O device is controlled by an electronic component, usually called controller or adapter.
- I/O controllers typically include three kinds of registers:
 Control: used to request I/O operations
 Status: used to get the state of the device or pending I/O operations
 - Data: used to transfer data to/from the I/O devices
- Programming at the register level may require a detailed knowledge of the device's operation

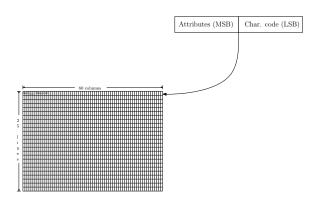
Graphics Adapter

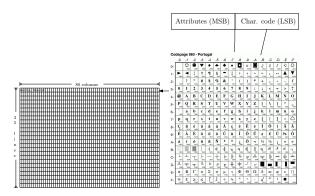
GPU Earlier known as the Graphics Controller:

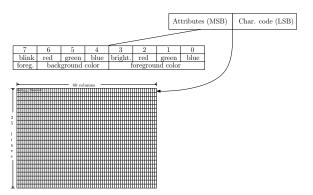
- ► Controls the display hardware (CRT vs. LCD)
- ► Performs 2D and 3D rendering algorithms, offloading the CPU and accelerating graphics applications

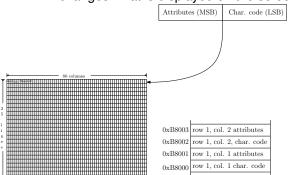

BIOS ROM/Flash ROM/Flash Memory with firmware. Includes code that performs some standardized basic video I/O operations, such as the Video BIOS Extension (VBE)

Video RAM Stores the data that is rendered on the screen. the screen.


▶ It is acessible also by the CPU (at least part of it)


- Used to render mostly text
- Abstracts the screen as a matrix of characters (row x cols)
 - ► E.g. **25x80**, 25x40, 50x80, 25x132
 - Black and white vs color (16 colors)


Each character is represented by two bytes:


- Each character is represented by two bytes:
 - ► The character denoted by the code depends on the character encoding (code page), which can be changed

- Each character is represented by two bytes:
 - ► The character denoted by the code depends on the character encoding (code page), which can be changed
 - The attributes specify mostly the colors

- Video RAM contains a representation of the screen in a matrix of 25x80 16-bit words
 - ▶ In the PC, this matrix is at physical address 0xB8000
 - By changing the contents of this matrix an application changes what is displayed on the screen

Lab 1

Write a set of functions:

```
void vt_fill(char ch, char attr);
void vt_blank(void);
int vt_print_char(char ch, int r, int c, char attr);
int vt_print_string(char *str, int r, int c, char attr);
int vt_print_int(int n, int r, int c, char attr);
int vt_draw_frame(int width, int height, int r, int c, char
```

to output some characters on the screen in text mode, by writing to video RAM (VRAM)

- ▶ No need to configure the video controller/GPU:
 - You'll use the Minix 3 default configuration.
- Need "only" to write to the appropriate positions of VRAM

Virtual and Physical Address Spaces

Issue 1 Most computer architectures support a **virtual address space** that is decoupled from the **physical address space**

- Processes can access physical memory using a logical address that is independent of the physical address (determined by the address bus decoding circuit)
- Most modern operating systems, including Minix, take advantage of this feature to simplify memory management.

Issue 2 In modern operating systems, **user-level processes** cannot access **directly** HW resources, including VRAM

Minix 3 handles this by allowing to grant privileged user-level processes the permissions they require to perform their tasks

Nomenclature note A **program** is a sequence of instructions that can be executed by a processor. A **process** is a program in execution.

Mapping Physical Memory to Virtual Address Space

- Each process has its own virtual address space, whose size is usually determined by the processor architecture (32-bit for IA-32)
- The operating system maps regions of the physical memory in the computer to the virtual address spaces of the different processes
 - The details of how this is done are studied in the Operating Systems course.

Lab 1: char *vt_init(vt_info_t vip)

- Mainly, maps VRAM on the address space of a process
 - Returns the address of the first byte of the process' address space region onto which VRAM was mapped
 - Subsequent accesses to that region of the process' address space access VRAM
 - Usually, to change the characters displayed on the screen and/or their attributes.

Issue how can one access a region of a process address space in C?

Lab 1: Preparation

- Read the material provided
 - Lab 1 script;
 - Supporting notes;
 - Class notes.
- Write the functions:
 - vt_fill() which should fill the entire screen with the same character and attribute:
 - vt_blan() which should blank the screen

Lab 1: Key Programming Issue

Given a virtual address, what is the C code that allows a process to access the physical memory mapped to that virtual address?

Character Encodings (Code Pages) ■

► The first 128 characters are the same for all western-language code pages.

Codepage 860 - Portugal																
	-0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-A	-B	-C	-D	-E	-F
0-		333A	363E	2005	\$ 2000	2003	2000	2022	2508	0	O	∂* 2042	Q 2640	1		ķ
1-	2584	2504	‡ 2195	!! 2010	¶	§ 60A7	25AC	<u></u> 2146	† 2191	¥ 2193	→ 2192	← 2190	L 221F	↔ 2194	2462	2580
2-	0020	1 0021	11 0022	# 0003	\$	% ****	&	1 0027	0028)	* 002A	+	9 0000	- 0020		0029
3-	0	1 0001	2	3	4	5	6	7	8	9	: 003A	, 0038	< 0030	= 0030	>	?
4-	@	A	В	C	D	E 0345	F	G	H	I :049	J	K	L	M	N	O
5-	P	Q	R 0052	S 0063	T 0064	U 0066	V	W 0067	X 0058	Y	Z	[1 0060]	A 006E	006F
6-	0060	a	b ::002	C 0063	d 	e	f	g	h	i	j	k coee	l coec	m	n	O
7-	P	q	r 0072	S 0073	t 0074	u	V 0076	W	X 0278	y	Z 007A	{ 0078	0070	}	~	
8-	Ç	ü	é	â	ã	à	Á ((())	Ç 0067	ê OGEA	Ê	è	Í	Ô	ì	Ã	Â
9-	É	À	È	Ô ODF4	Õ	Ò	Ú	ù	Ì	Õ	Ü	¢ □0A2	£ 00A3	Ù	Pts 20A7	Ó
A-	á	í	Ó oors	Ú	ñ	Ñ	<u>a</u> 004A	Q 008A	i ocer	Ò	- 00AC	1/2	1/4 osec	DOAT	≪ 00AB	>> 0000
B-	2591	2580	2593	2502	-	= 2501	1	77	7	1	2661	7	2660 		∃	72510
		工	$\overline{}$	H	_	+	= 	- -	LL 255A	F 2554	<u>⊒L</u>	7500	- 2560	2560	# 25HC	2567
C-	2514	2534	252C	251C	2500	253C										
C- D-	2514	2504	252C	261C	2500 L 2558	F 2552	F 2553	+	+	_ نورون	Γ	2588	2584	2580	2590	2580
	4		2520	L	F			#	‡ 216А Ф		Ω	δ (084	2584 00 2216	Φ 9000	2590 E 0385	2180