
Computer Labs: Program Generation and
Libraries
2o MIEIC

Pedro F. Souto (pfs@fe.up.pt)

December 18, 2011

Contents

Program Generation and Loading

Libraries

Further Reading and Aknowledgments

Annex: GNU Tools

Program Generation and Loading

Linking and Loading

Linking Essentially, this is the last step of the executable
generation process.

I An executable is often generated from several object
files

I Linking is the process of combining several object files in
one single executable file

Loading This is one of the first steps upon execution. It
consists of:

I Putting the executable to main memory. In systems with
virtual memory:

I There is no need to read the entire executable to main
memory

I It is enough to map the executable in the process’s
address space

It is executed by the loader, which is part of the operating
system.

Linking Tasks
Address space allocation

I Usually, each object file is generated as if the code was
placed at address 0

I The linker must rearrange the code location, and, if
necessary, change absolute addresses used in jumps,
loads and stores

Symbol Resolution
I The linked object files reference each other by means of

symbols (names of variables/functions)
I The linker must resolve these cross-referencing

symbols
Notes

I The GNU linker is known as ld
I It is able to combine object files in a single

non-executable object file that can later be linked with
other object files

I When invoked with the -o option, gcc invokes
automatically ld

Program Generation: Example
foo.c

#include <math.h>
#include <stdio.h>

double foo(int i) {
extern int k;
return pow(i,k);

}

test.c
#include <stdio.h>
#include <math.h>

int k = 5;
int main(int argc, char *argv[]) {

int n;
n = foo(argc); // error: foo() returns a double
printf("foo(%d) = %d \n", argc, n);
return n;

}

Essentially, this program computes argck = argc5

Compilation (ACK on Minix3)
Compilation

$ cc -c *.c
"test.c", line 7: (warning) implicit declaration of function foo

Linking
I The executable cannot be generated from test.c only:

$ cc test.o -o test
Undefined:

_foo

I Actually, both test.o and foo.o have some symbols
that have to be resolved by the linker:

anm test.o
0 3 S .bss
0 2 S .data
0 1 S .rom
0 0 S .text
0 U E _foo
0 2 E _k
0 0 E _main
0 U E _printf

anm foo.o
0 3 S .bss
0 U E .cif8
0 2 S .data
0 1 S .rom
0 0 S .text
0 U E __fp_hook
0 0 E _foo
0 U E _k
0 U E _pow

Linking Continued (ACK on Minix 3)

I One more try:
$ cc test.o foo.o -o test

I What about printf() and pow()? We didn’t define them
and we didn’t tell the linker where to find them.

I printf() belongs to the C standard library and it is
automatically linked when generating an executable

I pow() belongs to the C math libray, which is automatically
linked by the ACK (gcc does not do it).

I Let’s run it:
$./test 2
foo(2) = 0

This is not right!!! We expected to get 25 = 32

What’s the Problem? (ACK on Minix 3)

I foo() returns a double, but in the compilation of test.c
the compiler assumes that it returns an integer:

I In C, if a function is not declared/defined in a compilation
unit, it is assumed to take as arguments integers and to
return an integer

I The IA32 architecture uses different representations and
different instructions for integral types and floating point
types

I For foo.c the compiler generates code that returns a
double, but for test.c the compiler assumes that the
value returned is an int, misreading the returned value

I Note that the compiler gave a warning, but we ignored it:
$ cc -c *.c
"test.c", line 7: (warning) implicit declaration of function foo

I You should always compile without warnings.

How to Fix it?
I Must declare the type of every function before that function

is invoked. E.g. in test.c:
#include <stdio.h>
#include <math.h>

double foo(int i);
...

I Usually, this is done using header/include files, which are
included in the source files by the C pre-processor

I In principle, for each C source file, you should define a
header file with its interface

I The declaration of external symbols defined in the source
file

I Public functions, i.e. functions that may be called by other
modules

I Public, i.e. non-static, global variables
I The definition of symbolic constants, by means of
#define, that may be used by the interface

I IMP. A header file is NOT a library

Naming Conflicts (ACK on Minix 3)

I Object files linked together cannot define the same symbol
foo.c:

int f1(int i) {
return 2*i;

}
test.c:

#include <stdio.h>

int f1(int i) { //
return 4*i;

}
int main() {

printf("%d\n", f1(4));
}

$ cc foo.c test.c -o test
/usr/lib/em_led: /tmp/acd8105/h.o: _f1: multiply defined (error)

Contents

Program Generation and Loading

Libraries

Further Reading and Aknowledgments

Annex: GNU Tools

What is a Library?
Generally Is a collection of modules (files/functions/classes)

that can be used to structure code, for reasons
I Modularity
I Code reuse

In C, we can think of libraries as a structuring mechanism
above that of files (modules).

More narrowly
“A “program library” is simply a file containing
compiled code (and data) that is to be incorporated
later into a program; program libraries allow
programs to be more modular, faster to recompile,
and easier to update.”

David Wheeler

I’d add that they also make it easier to distribute code
IMPORTANT In portuguese we should say Biblioteca rather

than “livraria” (bookstore)

Naming Resolution and Libraries

1. If a name is defined in an object file, use that definition
I If the same name is defined in a library, that definition will

be ignored
2. If a name is not defined in an object file, use the definition

found in the first library
I The same name may be defined in different libraries
I If the same name is defined in different libraries, its

resolution will depend on the order in which the libraries are
specified

3. If a name is not defined in an object file, and it is defined in
different modules of a given library use the first definition
found

I The same name may be defined in different modules that
comprise a library

I That name’s resolution depends on the order in which they
are added to the library

I All definitions but the first will be hidden

Static vs. Shared Libaries
Static the library code/data is included in the executable when

the code is linked (i.e. at compile time)
I Program is self-contained

Shared the library code/data is not included in the executable
when the code is linked.

I Some of the actions typically performed by the linker
must be carried out by the loader, when the program is
“brought” to memory

I Leads to smaller executables
I Makes it easier to update libraries

Static libraries
$ gcc -static -o stat_fact *.o
$ ls -l stat_fact
... 579173 ... st_fact
$ nm stat_fact.o
...
08048d40 T printf
...

Shared libraries
$ gcc -o dyn_fact *.o
$ ls -l dyn_fact
... 8322 ... dyn_fact
$ nm dyn_fact
...
080483e4 T main

U printf@@GLIBC_2.0

System vs. User Libaries
System libraries Those that are part of the “system”
User libraries Those that are developed by a programmer

Static Library Generation with aal (ACK)
I The aal utility can be used to generate a static library and

to execute different operations on such a library
Create a library with (several) object files

$ aal rv liblm.a low_mem.o
aal: creating liblm.a
a - low_mem.o

List the object files in a library
$ aal tv liblm.a
rw-r--r-- 0/0 1353 Dec 12 13:31 2011 low_mem.o

Extract a file from an archive, does not delete it
$ aal xv liblm.a low_mem.o
x - low_mem.o

Delete a file from an archive
$aal dv liblm.a low_mem.o
d - low_mem.o
$aal tv liblm.a

Add/replace a file to an archive
$aal rv liblm.a low_mem.o
a - low_mem.o
$aal tv liblm.a
rw-r--r-- 0/0 1353 Dec 12 13:36 2011 low_mem.o

Shared (Dynamic) Library Generation

I Minix 3 does not support shared libraries currently
I In the Linux world it is easier to use gcc to generate a

shared library
I Although you can also invoke directly ld with the -shared

option
I For details check Chapter 3 – Shared Libraries – of David

Wheeler’s Program Library HOWTO

http://tldp.org/HOWTO/Program-Library-HOWTO/index.html

Linking with a User Library

gcc -o pong pong.o -L. -lpong -lm

-l<name> means that the compiler should use a library with
name lib<name>.a or lib<name>.so (shared library) to
resolve symbols, if necessary

-L. specifies that the linker should search for libraries in the
current directory, in addition to the default directories, which
depend on the system

Alternatively, you can specify the full name of the library:

gcc -o pong pong.o libpong.a -lm

IMP. Note that the executable includes only the object files in
the libraries that are needed for symbol resolution

Contents

Program Generation and Loading

Libraries

Further Reading and Aknowledgments

Annex: GNU Tools

Further Reading and Acknowledgments

Further Reading

I Brian Gough, An Introduction to GCC, Network
Theory Ltd.

I David A. Wheeler Program Library HOWTO

Thanks to
I João Cardoso on whose transparencies these ones

rely heavily

http://www.network-theory.co.uk/docs/gccintro/index.html
http://www.network-theory.co.uk/docs/gccintro/index.html
http://tldp.org/HOWTO/Program-Library-HOWTO/index.html
mailto:jcard@fe.up.pt

Contents

Program Generation and Loading

Libraries

Further Reading and Aknowledgments

Annex: GNU Tools

Compilation (gcc on Linux)

Compilation
$ gcc -c *.c

Linking
I The executable cannot be generated from test.c only:

$ gcc test.o -o test
test.o: In function ‘main’:
test.c:(.text+0x10): undefined reference to ‘foo’
collect2: ld returned 1 exit status

I Actually, both test.o and foo.o have some symbols
that have to be resolved by the linker:

nm test.o
U foo

00000000 D k
00000000 T main

U printf

nm foo.o
00000000 T foo

U k
U pow

Linking Continued (gcc on Linux)
I One more try:

$ gcc test.o foo.o -o test
foo.o: In function ‘foo’:
foo.c:(.text+0x3c): undefined reference to ‘pow’
collect2: ld returned 1 exit status

The problem is that the linker could not find the definition of
pow

I pow is a function of the system math library and we must
tell the linker to use it:
$ gcc test.o foo.o -lm -o test

I What about printf()? We didn’t define it and we didn’t
tell the linker where to find it.

I printf() belongs to the C standard library and it is
automatically linked when generating an executable

I Let’s run it:
$./test 2
foo(2) = 1

This is not right!!! We expected to get 25 = 32

What’s the Problem? (gcc on Linux)

I foo() returns a double, but in the compilation of test.c
the compiler assumes that it returns an integer:

I In C, if a function is not declared/defined in a compilation
unit, it is assumed to take as arguments integers and to
return an integer

I The IA32 architecture uses different representations and
different instructions for integral types and floating point
types

I For foo.c the compiler generates code that returns a
double, but for test.c the compiler assumes that the
value returned is an int, misreading the returned value

I Note that the compiler didn’t even give a warning, but it
was our fault:
$ gcc -Wall -c test.c
test.c: In function ‘main’:
test.c:8: warning: implicit declaration of function ‘foo’

Naming Conflicts (gcc on Linux)

I Object files linked together cannot define the same symbol
foo.c:

int f1(int i) {
return 2*i;

}
test.c:

#include <stdio.h>

int f1(int i) { //
return 4*i;

}
int main() {

printf("%d\n", f1(4));
}

$ gcc foo.c test.c -o test
/tmp/cc58HGQT.o: In function ‘f1’:
test.c:(.text+0x0): multiple definition of ‘f1’
/tmp/cc0Lny9A.o:foo.c:(.text+0x0): first defined here

Static Library Generation with ar (GNU)
I The ar utility can be used to generate a static library and

to execute different operations on such a library
Create a library with several object files

$ ar cr libmy.a foo.o bar.o

List the object files in a library
$ ar tv libpong.a
rw-r--r-- 42/42 676 Mar 7 15:15 2006 unmap_video.o
...
rw-r--r-- 42/42 695 Mar 7 15:15 2006 move_block.o

Extract a file from an archive, does not delete it
$ ar x libpong.a read_xpm.o
x - read_xpm.o

Delete a file from an archive
ar dv libpong.a read_xpm.o
d - read_xpm.o

Add/replace a file to an archive
ar rv libpong.a read_xpm.o
a - read_xpm.o
ar rv libpong.a read_xpm.o
r - read_xpm.o

	Program Generation and Loading
	Libraries
	Further Reading and Aknowledgments
	Annex: GNU Tools

