
Computer Labs: Debugging
2o MIEIC

Pedro F. Souto (pfs@fe.up.pt)

November 23, 2010

Bugs and Debugging

Problem To err is human
I This is specially true when the human is a programmer :(

Solution There is none. But we can make it less likely
I By programming carefully
I By heeding the compiler warnings
I By using, if possible, a language different from C/C++

I Otherwise, use assert() generously
I By designing good test programs:

I If a test program does not detect bugs, most likely it was
poorly designed

Using assert()
//#define NDEBUG // uncomment for public release
#include <assert.h>
void bounds(int i) {

static int t[100];
assert(i>=0 && i>100); // abort program if false
...

}

I assert() aborts the program and prints information
showing where, when the condition specified as its
argument is false
po1: po1.c:50: bounds: Assertion ’i>=0 && i<100’ failed
Aborted

I Should not be used in production
I Define the NDEBUG constant
I A program should rarely abort in normal usage
I Even if there is nothing else to do, the information provided

by assert() is not useful to a user
I Be careful when writing the condition for assert()

I A bug in the condition may mislead you in a wasted search
for a non-existing bug

Debugging and the Scientific Method

Degugging is a ludic activity, based on logic
1. Locate/identify the bug (the fun part, sometimes)
2. Fix the bug

Algorithm for identifying a bug:
While the bug has not been found:

1. put forward a hypothesis about where the bug is
2. design a test to prove/reject the hypothesis
3. carry out the test (possibly, changing the code)
4. interpret the test result

Debugging Rule #1: Debug with Purpose

I Don’t just change code and “hope” you’ll fix the problem!
I I’ve seen many of you doing it out of despair!
I (I confess, that I’ve done it, but ... it does not help)

I Use the scientific method
I What is the simplest input that produces the bug?
I What assumptions have I made about the program

operation?
I How does the outcome of this test guide me towards finding

the problem?
I Use pen and paper to keep track of what you’ve done

Debugging Rule #2: Explain it to Someone Else

I Often explaining the bug to “someone” makes your
neurons “click”. The “someone” may be:

I Another group member or colleague
I Even someone that is not familiar with the subject
I If there is nobody available, you can try explain it to yourself

Debugging Rule #3: Focus on Recent Changes

I Ask your self:
I What code did I change recently?

I It helps if you:
I write and test the code incrementally
I use SVN
I do regression testing, to make sure that new changes don’t

break old code
I However, remember that:

I new code may expose bugs in old code

Debugging Rule #4: Get Some Distance ...

I Sometimes, you can be TOO CLOSE to the code to see the
problem

I Go for a walk, or do something else
I “Sleep on the problem”

I May not be an alternative if your deadline is the following
day

Debugging Rule #5: Use Tools

I Sometimes, bug finding can be very easy by using error
detection tools

I You just have to use them properly
I Use gcc flags to catch errors at compile time:

I -Wall, -Wextra, -Wshadow, -Wunreachable-code
I Use a debugger such as gdb
I Use runtime memory debugging tools (not really an option

in LCOM)
I E.g. Electric Fence, Valgrind

Debugging Rule #6: Dump State ...

I For complex programs, reasoning about where the bug is
can be hard, and stepping through in a debugger
time-consuming

I Sometimes, it is easier to just “dump state”, i.e. use
printf(), and scan it for what seems “odd”

I This may help you zero in on the problem

Debugging Rule #7: Think Ahead

Once you’ve fixed such a bug, ask yourself:
I Can a similar bug exist elsewhere in my code?

I Bugs are often a consequence of a misunderstanding of an
API

I How can I avoid a similar bug in the future?
I Maybe coding 36 straight hours before the deadline won’t

help...

Tools of the Trade

Different bugs require different tools:
printf() Can be used to:

I Check simple hypothesis
I Zero in on hard to reproduce or highly complex bugs

gdb
I Very useful when the program crashes with segfault

Debugging with printf(): debug.h

#include <stdio.h>
#define DEBUG // comment/uncomment as needed

#ifdef DEBUG

#define print_ident() fprintf(stderr, \
"At file %d, function %s, line %d\n", \
__FILE__, __FUNCTION__, __LINE__);

#define pring_dbg(...) fprintf(stderr, __VA_ARGS__)

#else // does nothing, not enven generates code!

#define print_ident()
#define print_dbg(...)

#endif // DEBUG

Debugging with printf(): Usage
#include "debug.h"
int main() {

print_ident();
print_dbg("dir=%s, count=%d\n", "popo", 5);
print_dbg("bye\n");
print_ident();
return 0;

}

At file po.c, function main, line 18
dir=popo, count=5
bye
At file po.c, function main, line 21

I Macros do not genarate code, if DEBUG is not defined
I It is not necessary to comment/uncomment printf() in

code
I It may be conveninent to define different DBG_XXX

constants, by using bit-masks you can print debugging
messages related to different aspects

GDB: The GNU Debugger

Run a program and:
I see where it crashes
I suspend its execution to examine program state

Two ways to run it:
1. gdb binary: to run binary inside of gdb
2. gdb binary core-file: to debug a crashed program

I If you are using bash, you can issue:
ulimit -a to find out the size limits for different

resources
ulimit -c unlimited to remove any size limit for core

dumps

Do not forget, you need to compile your programs with
I the -g option and
I NO optimizations

GDB Commands

For Controlling Execution

I run <cmd-line args>

I break <func>

I step

I next

I control-c

For Getting Info

I backtrace/where

I print <expr>

I info locals

I list

I up/down

Suspending Program Execution

Breakpoints
Suspend a program at a given execution point, p.ex. to check
that the program executes a given instruction

I break <fun. name>, e.g. break draw_pixel

I break <file name>:<line num>, e.g.
break graphics.c:57

Obs.- There are several other ways to specify breakpoints in
gdb

Watchpoints
Suspend a program when the value of an expression changes
watch <expr> , e.g. watch sum == 15

Other Operations on Breakpoints/Watchpoints

info break/watch info about breakpoints/watchpoints;
clear <breakpoint> deletes a breakpoint, that must be

specified as in the break command;
delete <breakpoint_no> deletes the breakpoint whose

number is specified;
disable <breakpoint_no> disables the breakpoint whose

number is specified;
enable <breakpoint_no> enables a breakpoint

Examining Variables

Question What is the value of program variables?
Answer Use one of the following commands:
print /F EXP where EXP is a C language expression,

whose value one wishes to evaluate. /F is optional, and
allows to specifiy the format to use to show the value. E.g.:

print /x ptr
display /F EXP shows the value of expression EXP

everytime the program pauses. (Use undisplay to undo
the effect of display.)

printf format-string, arg1, arg2, ... similar to
the C standard library printf, but without parenthesis:
printf ‘‘%s \n", msg

Examining the Stack

Question How did we get to this breakpoint/watchpoint?
Solution Use the command backtrace (or bt), or where

which lists the frames in the stack.
Other useful commands are:
frame shows the contents of the current frame
up [N] move N frames up in the stack: when foo()

invokes bar() its frame is above bar()’s frame
down [N] smove N frames down the stack
Obs.- The frame corresponding to the PC has number 0

Obs.- a synonymous of bt is where

Start/Continue Program Execution

r {args} run program with args, if any;
c [N] continues the program execution, ignoring the N

passages by this breakpoint
n [N] executes the following N C instructions;
s [N] similar to n, except that it steps into a function call;
Obs.- For the last 3 commands N=1, if omitted
Ctrl-C allows to suspend an out of control program (e.g.

executing an endless loop): gdb does not terminate

A gdb Session (1/11): Entering and Exiting gdb

> gcc -g programa.c -o programa
> gdb protrama
(gdb) run arg1 arg2 ..
(gdb) help

List of classes of commands:

breakpoints -- Making program stop at certain points
data -- Examining data
files -- Specifying and examining files
running -- Running the program
stack -- Examining the stack
status -- Status inquiries
tracepoints -- Tracing of program execution without stopping the program

[...]
(gdb) quit

The program is running. Exit anyway? (y or n) y

A gdb Session (2/11): where

Shows the stack trace

(gdb) run
...
Program received signal SIGABRT, Aborted.
0xffffe410 in __kernel_vsyscall ()
(gdb) where
#0 0xffffe410 in __kernel_vsyscall ()
#1 0x4005b541 in raise () from /lib/tls/libc.so.6
#2 0x4005cdbb in abort () from /lib/tls/libc.so.6
#3 0x40054925 in __assert_fail () from ...
#4 0x08048759 in bounds (i=283) at po1.c:50
#5 0x0804869f in main (argc=1, argv=0xbf943fe4) at po1.c:31

A gdb Session (3/11): break

Sets a breakpoint, thus suspending a program’s execution at
specified point/function

(gdb) break fact // pause when fact() is invoked
Breakpoint 1 at 0x8048680: file po1.c, line 36.
(gdb) run 5 // run program with arg 5
Starting program: /home/jcard/tmp/po1 5
Breakpoint 1, fact (n=5) at po1.c:36
36 if (n <= 1)
(gdb) info break // show info about breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x0804868d in fact at
po1.c:36
(gdb) delete 1 // remove breakpoint 1
(gdb) disable 1 // inhibit, but does not remove, breakpoint 1

A gdb Session: Conditional Pause (4/11)

Pauses program execution at specified point/function if
condition is true

(gdb) break fact if n==10 // pause in fact()
// only if argument (n) is 10

Breakpoint 1 at 0x8048680: file po1.c, line 36.
(gdb) run 2 5 7 10
Starting program: /home/jcard/tmp/po1 2 5 7 10
Factorial of program args:
n=2.000000 n!=2.000000
n=5.000000 n!=120.000000
n=7.000000 n!=5040.000000
Breakpoint 1, fact (n=10) at po1.c:36
36 if (n <= 1)

A gdb Session: watch (5/11)

A watchpoint is a breakpoint that pauses execution when the
value of an expression changes

(gdb) watch sum==15 // pauses whem sum == 15 changes
Hardware watchpoint 2: sum == 15
(gdb) cont // continue program execution
Continuing.
Hardware watchpoint 2: sum == 15
Old value = 0
New value = 1
sum (n=8) at po1.c:55
55 for (i=0; i<n; i++)
(gdb) print i
$2 = 5
(gdb) print sum
$3 = 15

A gdb Session: print value of expression (6/11)

Show the value of an expression

Breakpoint 2, bounds (i=283) at po1.c:45
45 count ++;
(gdb) list -5 // show previous 5 lines of source code
40
41 void bounds(int i) {
42 static int t[100];
43 static int count=0;
44
(gdb) print i // print the value of local variable i
$8 = 293
(gdb) print count // print the value of local variable count
$9 = 4
(gdb) print t[4]
$10 = 23
(gdb) print t[i]
$11 = 45

A gdb Session: set Value of Program Variable (7/11)
Evaluates expression and assigns its value to program variable,
without displaying it

gdb) print count
$9 = 4
(gdb) set count=34 // assign local variable count the value 34
(gdb) pr count // gdb accepts abbreviations,

// as long as they are not ambiguous
$13 = 34
(gdb) cont // cont(inue) execution
Continuing.
Breakpoint 2, bounds (i=235) at po1.c:45
45 count ++;
(gdb) print count
$14 = 35
(gdb) set var i=5 // alternative to set i=5
(gdb) set var t[i]=34 // set is used for other purposes

set is used also for setting the values of GDB’s internal
parameters

A gdb Session: Execute next line (8/11)

Executes next line, including any function calls

(gdb) run 5 3 7 // executes program with args list 5, 3 e 7
Breakpoint 1, main (argc=4, argv=0xbf937b04) at po1.c:12
12 printf("Factorial of program args:\n");
(gdb) next // reached breakpoint: execute next line
Factorial of program args:
13 for (i=1; i<argc; i++)
(gdb) next // and next one
14 foo(atof(argv[i]));
(gdb) // pressing enter, repeats last command
n=5.000000 n!=120.000000
13 for (i=1; i<argc; i++)
(gdb)
14 foo(atof(argv[i]));
(gdb)
n=3.000000 n!=6.000000
13 for (i=1; i<argc; i++)

A gdb Session: step through code (9/11)

Executes until another line is reached, possibly in another
function

(gdb) run 5 3 7
Breakpoint 1, main (argc=4, argv=0xbffd8984) at po1.c:12
12 printf("Factorial of program args:\n");
(gdb) step // breakpoint reached, execute until next line
Factorial of program args:
13 for (i=1; i<argc; i++)
(gdb) // <Enter>: repeats previous command
14 foo(atof(argv[i]));
(gdb) step // Pauses at foo’s first line
foo (i=5) at po1.c:32
32 printf("n=%f n!=%f\n", i, fact(i));
(gdb)
fact (n=5) at po1.c:36
36 if (n <= 1)
(gdb)
38 return n*fact(n-1);

A gdb Session: finish Function (10/11)

Run until the selected stack fame returns

Breakpoint 1, sum (n=100) at po1.c:50
50 int i, sum=0;
(gdb) next
... depois de vários next
(gdb) print i
$3 = 7
... repetir next mais 100 vezes?
(gdb) finish // run until the end of the selected stack frame
Run till exit from #0 sum (n=100) at po1.c:51
0x0804852e in main (argc=1, argv=0xbf94e4a4) at po1.c:11
11 sum(100);
Value returned is $4 = 4950
(gdb)

A gdb Session: call Function (11/11)

Executes the specified function with the specified argument

(gdb) list foo
31 void foo(float i) {
32 printf("n=%f n!=%f\n", i, fact(i));
33 }
35 float fact(float n) {
36 if (n <= 1)
37 return 1;
38 return n*fact(n-1);
39 }
(gdb) call fact(5) // invoke function fact() with argument 5
$17 = 120
(gdb) call foo(5) // invoke foo()

Conclusion

I Debugging is wasteful but unavoidable
I Program carefully, to reduce the likelihood of bugs

I The use of a debugger like gdb may help finding most
bugs rather quickly

I However, learning how to use gdb to its full extent is hard
(the user manual is over 500 pages)

I The use of GUI’s, such as ddd may help
I The most insidious bugs are those

I In the logic of complex programs
I Or that are hard to reproduce, such as race conditions

In this case, the use of printing macros may be essential to
zero in the bug

Thanks to:

I.e. shamelessly copied material by:
I Dave Andersen (dga@cs.cmu.edu)

I Debugging rules

I João Cardoso (jcard@fe.up.pt)
I assert(), printf() and gdb session

Further Reading

I On gdb
I GDB’s Manual
I GDB’s v4 Reference Card

http://sourceware.org/gdb/current/onlinedocs/gdb/
http://refcards.com/docs/peschr/gdb/gdb-refcard-a4.pdf

