Windows |
__Sockets |

Windows Sockets

An Open Interface for
Network Programming under
Microsofto Windows,

Version 1.1

20 January 1993

Martin Hall
Mark Towfiqg
Geoff Arnold

David Treadwell
Henry Sanders

Copyright 0 1992 by Martin Hall, Mark Towfiqg
Geoff Arnold, David Treadwell and Henry Sanders

All rights reserved.

This document may be freely redistributed in any form, electronic or
otherwise, provided that it is distributed in its entirety and that the
copyright and this notice are included. Comments or questions may
be submitted via electronic mail to winsock@microdyne.com.
Requests to be added to the Windows Sockets mailing list should be
addressed to winsock-request@microdyne.com. This
specification, archives of the mailing list, and other information on
Windows Sockets are available via anonymous FTP from the host
microdyne.com, directory /pub/winsock. Questions about products
conforming to this specification should be addressed to the vendors of
the products.

Portions of the Windows Sockets specification are derived from
material which is Copyright (c) 1982-1986 by the Regents of the
University of California. All rights are reserved. The Berkeley
Software License Agreement specifies the terms and conditions for
redistribution.

Revision history:

1.0Rev.A June 11, 1992
1.0Rev.B June 16, 1992
10Rev.C October 12, 1992
11 January, 1993

Windows Sockets
Version 1.1

TABLE OF CONTENTS

TABLE OF CONTENTS.....etittiiiitt ittt sttt sttt b et b b b e bt sb e sb e e b e sbesb e e e e s e sbesbeennesbeenas iii
ACKNOWLEDGMENTS......coitiittitieie sttt sttt sttt sbe b e s bt sb e s st e sbesbesbe e b e s e sbesbeennesrennas Vi
L. INTRODUGCTION ...ttt sttt sttt sttt sttt b e be e eaeesbesbesheeabesbesbeenbesbesbesbeaaeesbesbesbeebesee e 1
1.1 What iSWINCAOWS SOCKELS?ccueeitieiiiiitiiiiie sttt sttt bt sreesr e sreesreesreesree s 1
1.2 BErKEIEY SOCKELS.......eiiieiiiiieieiee ettt ettt bbb e e e sbe e e sbe e saeeas 1
1.3 Microsoft Windows and Windows-SpecifiC eXteNSIONS...........ccveieieiieeiieeniee e 1
1.4 The Status of this SPECITICATIONcuii i 2
L5 REVISION HISLOY ...ueiieiieiitee ettt ettt sh ettt et e e sae e e st e e et e e e sbe e e nbaeesnneas 2
1.5.1 Windows SOCKEIS VErSION 1.0cc.evveiiriiiiiiieieee s 2
1.5.2 Windows SOCKEIS VEISION 1.1c.coieiiiiiiiiieeieee e 2
2. PROGRAMMING WITH SOCKETSccutiiiittitisiieie ettt sttt s sae s ne b b saee s e 4
2.1 Windows Sockets Stack Installation Checkingcccooeiriiieieiiieeneeesee e 4
2.2 SOCKELS......eeteeitee ettt b bbbt bR e e s 4
2.2.1 BASIC CONCEPLS. ...eeeureiateieitieeaiteeateesieeesbe e sateesabeasbe e e sbseesaeeeaabeesabeesabeeesneeesnneas 4
2.2.2 Client-server MOGEooiiiieiieiie e 4
2.2.3 0Ut-0F-DANA BLAL........eeiveeiteeiiee it 5
2.2. 4 BrOAOCASHING. ...t veeeuteeenteee ittt e etee et e s tee ettt e e e be e e sbe e e sbee e sabe e sabeeenbeeesaneesaneas 5
ARG =1 (X @ (o (= g oo IR 6
2.4 SOCKEL OPLIONS......eee ettt ettt ettt ettt ettt et e e he e e sbe e e sate e sabe e e abe e e sabeesmbeesnbeeanbeeesees 6
2.5 DAtaase FIlES.coiiiiiieiitee e 7
2.6 Deviation from Berkel@y SOCKELS.c.oiiiiiiiiei e 7
2.6.1 socket datatype and error VAlUEScooeieiiieiiee e 8
2.6.2 SElECH() @NU FD_* ... e e e 8
2.6.3 Error codes - errno, h_errno & WSAGELLaStError()......cooveeevveeiienenieeiee e, 8
2,84 POINEEIS ...ttt sttt ettt b e b e b e bbb e b e bbb e b e b e e ne e re e 9
2.6.5 ReNaMEd FUNCLIONS......ccuiiiiiiie e 9
2.6.5.1 Close() & ClOSESOCKEL()....vveevveerureriieeeiiiee et 9
2.6.5.210CtI() & 10CHSOCKEL() . eceveeeeieeiieieiie et 9
2.6.6 Blocking routines & EINPROGRESS..............cccociiiiiiiie e 9
2.6.7 Maximum number of SOCKetS SUPPOITE.........coiveriieiiniie e 9
2.6.8 INCIUAE IS, 10
2.6.9 Return values on API allUre..........cooiiiiiiiiciieeee e 10
2.6.10 REBW SOCKELS.....c.veeueetiiteiteeie sttt ettt st sttt see bbb b b e beene b e 10
2.7 Windows Sockets in Multithreaded Versions of Windows............cccocvvviriineeneenennnenne. 10
3. SOCKET LIBRARY OVERVIEWooiiiiiiiiiiiie ettt sttt st b e nesnesne s 12
3.1 SOCKEL FUNCLIONS.eeteiieie ittt ettt 12
3.1.1 Blocking/Non blocking & DataVolatility..........cccocoeeiiiiieniiieinenee e, 12
3.2 Datalase FUNCHIONScciuiiiieiiieeiee sttt 13
3.3 Microsoft Windows-specific EXtension FUNCLIONS..........cccoivieiieiiieienee e 14
3.3.1 Asynchronous select() MeChaniSM............cooueeiiiiiiene e 15
3.3.2 Asynchronous SUPPOrt ROULINESccoieieiiieiiii i 15
3.3.3 Hooking Blocking MethOds...........coiiiiiiiiiiiee s 15
.34 EITOr HandliNg.....ccoveiiiiie ettt 16
3.3.5 Accessing aWindows Sockets DLL from an Intermediate DLL 16
3.3.6 Internal use of Messages by Windows Sockets Implementations...................... 16
3.3.7 Private APl INTEITACES.......ceeiieieeitie ettt 17
4. SOCKET LIBRARY REFERENCE.........cccoioiiiiiitieie ettt s 18

4.1 SOCKEL ROULINES ... s 18

I oo = o TSP 19
2 o 1 0o [O PSP RURURORRPRPR 21
4.1.3 ClOSESOCKEL() ... eeeuveeeteeeiuteeetee ettt et ettt ettt sb et e st e st e e et e e e sabe e s e e e beeenees 23
I olo g = TSP 25
4.1.5 QELPEEINAIME() .. veeeteeeiuteeeteeeeteeesteeesib e e be e sbe e sbe e e sabeeeteesbe e e abe e e sabe e snbeesbeeenas 27
4.1.6 ELSOCKNAIME()uveietieeiitie ettt ettt et ettt sb et e s be e st e e e sbe e sabe e snbe e e beeeenes 28
o < £ oo (o] o 1 ST OTR 29
I N 01 (o () TSP 31
I N 010 01) TSRS 32
I O T = = o (o (TS U TP UROPPTPR 33
I 1 1 O 1 (0= ISP 34
I I 2 Lo o1 K= o T L.) ISR P U OPR 35
I 1T 1< o I TSR R PR USSR 37
I 01 o T TR U U URUSTPRRPRP 39
115 NEONS() ettt bbb bbb sre e 40
I LG =Y TR UUR U UR PSP 41
O I A (= oY 1 {0 0 [O SUPOTR 43
A1 18 SEIOCE() - eveveeueertenteeiee ettt sttt bbb bbb bbb b ne e 46
I g o [TSRO UR TSP 48
4.1.20 SENOLO() +.verveeueeterteeieete sttt ettt b bt e bbbt e bbbt bbb e ene e e 50
O A IS < S o0 (o] o USROS 53
4.1.22 SNULAOWN() .ottt sttt sttt b e bt b bbb bbb e e 56
41,23 SOCKEL() v veeueerteeteeieente sttt e ettt b e bt e bbb ae e bt b sb e e bbb ne e e e 58
4.2 Datahase ROULINES..........coiiiiiiiiiiiie it b e b e e 60
4.2.1 gethostbhyaddr().......ooeee e e 60
4.2.2 gethosthYNaME()ooveie i e 62
4.2.3 gEtNOSINAME()nteeeeiie ettt rb e e ae e 63
4.2.4 getprotODYNAME()eee e 64
4.2.5 getprotODYNUMDBEN()c.eeeiieiiiee e 66
4.2.6 getSEIVIYNAME() ...ceoeeieiiiiiie ettt 67
A4.2.7 EtSEIVOYPOIT() «.eveeeeeee et 69
4.3 Microsoft Windows-Specific EXTENSIONS..........cuiiieieiieeiiie ettt et see e sinee e 70
4.3.1 WSAASYNCGEtHOSIBYAAAN()eeeveeeieieeiiee ettt 70
4.3.2 WSAASYNCGEtHOSIBYNEME() ...ccovveeiiiieiiee ettt e 73
4.3.3 WSAASYNCGELPrOtOBYNEME()vveeieieeiiiieriie ettt 76
4.3.4 WSAASyNCGEtProtoBYNUMDEN()coovveeiiiiiieieiee e 79
4.3.5 WSAASYNCGELSErVBYNEME()coveiviriiiiiiie e e 82
4.3.6 WSAASYNCGELSENVBYPOIT()c.veveverieesie sttt 85
A.3.7 WSAASYNCSEIECL() .- veeeieeeeiteee ettt st e be e 88
4.3.8 WSACaNCEl ASYNCREUESE() ... -veeeeeeeiirieiiee ettt ettt 94
4.3.9 WSACancel BIocKiNGCall () ...cceveeerteeeiieeiieeesiie et 96
4.3 10 WSACIEBNUP() -+--veveemeerrertenieesiestesiesieessestesaeeeesbestesseessesbessesseesseseessesseesseseeses 98
4.3 11 WSAGEILASIEITON() .cuveverterieeteriesieeee sttt st bbb e sre b s ne e 100
4.3.12 WSAISBIOCKING() - -veeuvevererueerieriesieeeeeesiesteseesiesresieessesbessesseeseseessesseesseseees 101
4.3.13 WSASEBIOCKINGHOOK().....eeeuveeeieiee ittt 102
4.3. 14 WSASELLESEITON() .evveviiteiiieie ettt 104
4.3 15 WSASEBITUD() «-veveeeeneestesteeee sttt ettt e e b b see et e b b sbe e s sbe b e e e e 105
4.3.16 WSAUNhOOKBIOCKINGHOOK() ..c.uvveeiiieeiiee ettt 109
Appendix A. Error Codes and Header FIlES.........cc.oiiiiiiiiiie e 110
ALLEITOr COUBS. ...ttt sttt et b e e be b e bt e b e st e bbb e re e 110
A2 HEBAEN FIlES..... ettt b bbb b s ee e e 112
A.2.1 Berkeley Header FIlES... ..o 112
A.2.2 Windows Sockets Header File - winsock.h..........cccooviiiiiiiie, 113

Appendix B. Notes for Windows SOCKELS SUPPLIENS.ocueiiiiiiiiei e 125

B.L INEFOTUCTION.cotieitiiitie ittt sttt ettt et r e b sr e e sb e e sbeesbeesreesbeesreesreenreen 125

B.2 WiNndows SOCKELS COMPONENLS.......cciuuiaiuieeiieiarieee et e steeesteesbe e sbee e sabeesbe e sabeesbee e saeeesneeas 125

B.2.1 Devel opment COMPONENLS.......ccuuiiiuiaiieaiieeesiieesieeesieeesbeesbeeesbeeesaeeesneeesbeeens 125

B.2.2 RUN TiMe COMPONENTSceitiiitiie e eieeetieetee et st esbe e sbe e sbeessbee s sabeesbeeens 125

B.3 Multithreadedness and blOCKING FOULINES.c.coiiiieiiiiiii e 125

B.4 DAtaDase FIlEScuiiiieiiiiie e bbb e b e b re 126

BL5 FD _ISSET ...ttt ettt bbb bbbt b b e e b b et n e b b ae b nre 126

BB EITOr COUBS......cctieiteeitie ittt sttt sttt sttt et b sh e sr e e sb e e sb e e sbeesreesbeesreesreenreen 126

B.7 DLL Ordinal NUMDEYS.........coiiiiiiiieitie ittt sttt sre e sr e sreennee 126

B.8 Validalion SUITE........cceeiieiiiieitieitie sttt sttt sre e b b e sbe e sbeenreesreenree 127
Appendix C. FOr FUrther REFEIENCE........coo i 129
Appendix D. Background INfOMMELION..........coiuiiiieiiiiieie ettt nb e seee e 130
D.1 Legal Status of WIiNAOWS SOCKELS.........ccuiiiiiiiiiieiiee it 130

D.2 The Story Behind the Windows SOCKELS ICONcceiiiiiiiiiiiiieie e 130

ACKNOWLEDGMENTS

The authors would like to thank their companies for allowing them the time and resources to make this
specification possible: JSB Corporation, Microdyne Corporation, FTP Software, Sun Microsystems, and
Microsoft Corporation.

Special thanks should also be extended to the other efforts contributing to the success of Windows
Sockets. The original draft was heavily influenced by existing specifications offered and detailed by JSB
Corporation and Net Manage, Inc. The "version 1.0 debate™ hosted by Microsoft in Seattle allowed many
of the members of the working group to hash out final details for 1.0 vis-a-vis.

Sun Microsystems was kind enough to allow first time implementors to "plug and play" beta software
during the first Windows Sock-A-Thon of Windows Sockets applications and implementations at Interop
Fall '92. Microsoft has shared WSAT (the Windows Sockets API Tester) with other Windows Sockets
implementors as a standard Windows Sockets test suite to aid in testing their implementations. Finally,
Sun Microsystems and FTP Software plan to host the Windows Sock-A-Thon 11 in Boston February '93.

Without the contributions of the individuals and corporations involved in the working group, Windows
Sockets would never have been as thoroughly reviewed and completed as quickly. In just one year, several
competitors in the networking business developed a useful specification with something to show for it!
Many thanks to all which participated, either in person or on e-mail to the Windows Sockets effort. The
authors would like to thank everyone who participated in any way, and apologize in advance for anyone

we have omitted.

List of contributors:

Martin Hall (Chairman)
Mark Towfiq (Coordinator)
Geoff Arnold (Editor 1.0)
David Treadwell (Editor 1.1)

Henry Sanders

J. Allard

Chris Arap-Bologna
Larry Backman
Alistair Banks
Rob Barrow

Carl Beame

Dave Beaver
Amatzia BenArtzi
Mark Beyer
Nelson Bolyard
Pat Bonner

Derek Brown
Malcolm Butler
Mike Calbaum
Isaac Chan

Khoji Darbani
Nestor Fesas
Karanja Gakio
Vikas Garg

Gary Gere

JSB Corporation
Microdyne Corporation
Sun Microsystems
Microsoft Corporation
Microsoft Corporation

Microsoft Corporation
Distinct

FTP Software
Microsoft Corporation
JSB Corporation
Beame & Whiteside
Microsoft Corporation
NetManage, Inc.
Ungermann-Bass
Silicon Graphics, Inc.
Hewlett-Packard

FTP Software

ICL

Fronteir Technologies
Microsoft Corporation
Informix

Hughes LAN Systems
FTP Software

Distinct

Gupta

Vi

martinh@jsbus.com
towfig@microdyne.com
geoff@east.sun.com
davidtr@microsoft.com
henrysa@microsoft.com

jallard@microsoft.com
chris@distinct.com
backman@ftp.com
alistair@microsoft.com
robb@jsb.co.uk
beame@mcmaster,ca
dbeaver@microsoft.com
amatzia@netmanage.com
mbeyer@ub.com
nelson@sgi.com
p_bonner@cnd.hp.com
db@weco.ftp.com
mcab@oasis.icl.co.uk
mike@frontiertech.com
isaacc@microsoft.com
khoji@informix.com
nestor@hls.com
karanja@ftp.com
vikas@distinct.com
ggere@gupta.com

Jim Gilroy

Bill Hayes

Paul Hill
TmimaKoren
Hoek Law
Graeme Le Roux
Kevin Lewis
Roger Lin
Terry Lister
Jeng Long Jiang
Lee Murach
Pete Ostenson
David Pool

Bob Quinn
Glenn Reitsma
Brad Rice
Allen Rochkind
Jonathan Rosen
Steve Stokes
Joseph Tsai
James Van Bokkelen
Miles Wu

Boris Y anovsky

Microsoft Corporation
Hewlett-Packard

MIT

Net Manage, Inc.
Citicorp

Moresdawn P/L
Novell

3Com
Hewlett-Packard
Wollongong

Network Research
Microsoft Corporation
Spry, Inc.

FTP Software

Hughes LAN Systems
Age

3Com

IBM

Novell

3Com

FTP Software
Wollongong
NetManage, Inc.

vii

jamesg@microsoft.com
billh@hpchdpc.cnd.hp.com
pbh@athena.mit.edu
tmima@netmanage.com
law@dcec.tti.com

kevinl @novell.com
roger_lin@3mail.3com.com
tel @cnd.hp.com
long@twg.com
|lee@nrc.com
peteo@microsoft.com
dave@spry.com
rcq@ftp.com
glennr@hls.com
rice@age.com

jrosen@vnet.ibm.com
stoke@novell.com

joe_tsal @3mail.3com.com
jbvb@ftp.com
wu@twg.com
boris@netmanage.com

Introduction 1

1. INTRODUCTION

1.1 What is Windows Sockets?

The Windows Sockets specification defines a network programming interface for Microsoft Windowst
which is based on the "socket” paradigm popularized in the Berkeley Software Distribution (BSD) from
the University of Californiaat Berkeley. It encompasses both familiar Berkeley socket style routines and
a set of Windows-specific extensions designed to allow the programmer to take advantage of the
message-driven nature of Windows.

The Windows Sockets Specification is intended to provide asingle API to which application developers
can program and multiple network software vendors can conform. Furthermore, in the context of a
particular version of Microsoft Windows, it defines a binary interface (ABI) such that an application
written to the Windows Sockets API can work with a conformant protocol implementation from any
network software vendor. This specification thus defines the library calls and associated semantics to
which an application developer can program and which a network software vendor can implement.

Network software which conforms to this Windows Sockets specification will be considered "Windows
Sockets Compliant”. Suppliers of interfaces which are "Windows Sockets Compliant” shall be referred to
as "Windows Sockets Suppliers’. To be Windows Sockets Compliant, a vendor must implement 100% of
this Windows Sockets specification.

Applications which are capable of operating with any "Windows Sockets Compliant” protocol
implementation will be considered as having a"Windows Sockets Interface" and will be referred to as
"Windows Sockets Applications".

This version of the Windows Sockets specification defines and documents the use of the API in
conjunction with the Internet Protocol Suite (IPS, generally referred to as TCP/IP). Specificaly, all
Windows Sockets implementations support both stream (TCP) and datagram (UDP) sockets.

While the use of this API with alternative protocol stacksis not precluded (and is expected to be the
subject of future revisions of the specification), such usage is beyond the scope of this version of the
specification.

1.2 Berkeley Sockets

The Windows Sockets Specification has been built upon the Berkeley Sockets programming model which
isthe de facto standard for TCP/IP networking. It isintended to provide a high degree of familiarity for
programmers who are used to programming with socketsin UNIX2 and other environments, and to
simplify the task of porting existing sockets-based source code. The Windows Sockets API is consistent
with release 4.3 of the Berkeley Software Distribution (4.3BSD).

Portions of the Windows Sockets specification are derived from material which is Copyright (c) 1982-

1986 by the Regents of the University of California. All rights are reserved. The Berkeley Software
License Agreement specifies the terms and conditions for redistribution.

1.3 Microsoft Windows and Windows-specific extensions

1 Windows s atrademark of Microsoft Corporation.
2 UNIX isatrademark of Unix System Laboratories, Inc.

Introduction 2

This API isintended to be usable within all implementations and versions of Microsoft Windows from
Microsoft Windows Version 3.0 onwards. It thus provides for Windows Sockets implementations and
Windows Sockets applications in both 16 and 32 bit operating environments.

Windows Sockets makes provisions for multithreaded Windows processes. A process contains one or
more threads of execution. In the Windows 3.1 non-multithreaded world, atask corresponds to a process
with asinglethread. All references to threads in this document refer to actual "threads’ in multithreaded
Windows environments. In non multithreaded environments (such as Windows 3.0), use of the term
thread refers to a Windows process.

The Microsoft Windows extensions included in Windows Sockets are provided to allow application
developers to create software which conforms to the Windows programming model. It is expected that
this will facilitate the creation of robust and high-performance applications, and will improve the
cooperative multitasking of applications within non-preemptive versions of Windows. With the
exception of WSAStartup() and WSACleanup() their use is not mandatory.

1.4 The Status of this Specification

Windows Sockets is an independent specification which was created and exists for the benefit of
application devel opers and network vendors and, indirectly, computer users. Each published (non-draft)
version of this specification represents afully workable API for implementation by network vendors and
programming use by application developers. Discussion of this specification and suggested improvements
continue and are welcomed. Such discussion occurs mainly viathe Internet electronic mail forum
winsock@microdyne.com. Meetings of interested parties occur on an irregular basis. Details of these
meetings are publicized to the electronic mail forum.

1.5 Revision History

1.5.1 Windows Sockets Version 1.0

Windows Sockets Version 1.0 represented the results of considerable work within the vendor and user
community as discussed in Appendix C. Thisversion of the specification was released in order that
network software suppliersand application devel opers could begin to construct implementations and
applications which conformed to the Windows Sockets standard.

1.5.2 Windows Sockets Version 1.1

Windows Sockets Version 1.1 follows the guidelines and structure laid out by version 1.0, making
changes only where absolutely necessary as indicated by the experiences of a number of companies that
created Windows Sockets implementations based on the version 1.0 specification. Version 1.1 contains
several clarifications and minor fixesto version 1.0. Additionally, the following more significant changes
were incorporated into version 1.1:

o Inclusion of the gethostname() routine to simplify retrieval of the host' s name and address.

o Definition of DLL ordinal values below 1000 as reserved for Windows Sockets and ordinals
above 1000 as unrestricted. This allows Windows Sockets vendors to include private interfaces
to their DLLs without risking that the ordinals chosen will conflict with a future version of
Windows Sockets.

o Addition of areference count to WSAStartup() and WSACleanup(), requiring
correspondences between the calls. This alows applications and third-party DLLsto make use
of a Windows Sockets implementation without being concerned about the calls to these APIs
made by the other.

Introduction 3

0 Change of return type of inet_addr () from struct in_addr to unsigned long. Thiswas
required due to different handling of four-byte structure returns between the Microsoft and
Borland C compilers.

0 Change of WSAAsyncSelect() semantics from "edge-triggered” to "level-triggered”. The
level-triggered semantics significantly simplify an application' s use of thisroutine.

0 Change the ioctlsocket() FIONBIO semanticsto fail if aWSAAsyncSelect() call is
outstanding on the socket.

0 Addition of the TCP_NODELAY socket option for RFC 1122 conformance.

All changes between the 1.0 and 1.1 specifications are flagged with change bars at the left of the page.

Programming with Sockets 4

2. PROGRAMMING WITH SOCKETS

2.1 Windows Sockets Stack Installation Checking

To detect the presence of one (or many) Windows Sockets implementations on a system, an application
which has been linked with the Windows Sockets Import Library may simply call the WSAStartup()
routine. If an application wishes to be alittle more sophisticated it can examine the $PATH environment
variable and search for instances of Windows Sockets implementations (WINSOCK.DLL). For each
instance it can issue aL oadL ibrary() call and use the WSAStartup() routine to discover implementation
specific data.

This version of the Windows Sockets specification does not attempt to address explicitly the issue of
multiple concurrent Windows Sockets implementations. Nothing in the specification should be
interpreted as restricting multiple Windows Sockets DLLs from being present and used concurrently by
one or more Windows Sockets applications.

For further details of where to obtain Windows Sockets components, see Appendix B.2.

2.2 Sockets

The following material is derived from the document "An Advanced 4.3BSD Interprocess Communication
Tutorial" by Samuel J. Leffler, Robert S. Fabry, William N. Joy, Phil Lapsley, Steve Miller, and Chris
Torek.

2.2.1 Basic concepts

The basic building block for communication is the socket. A socket is an endpoint of communication to
which aname may be bound. Each socket in use has a type and an associated process. Sockets exist
within communication domains. A communication domain is an abstraction introduced to bundle
common properties of threads communicating through sockets. Sockets normally exchange data only
with sockets in the same domain (it may be possible to cross domain boundaries, but only if some
tranglation process is performed). The Windows Sockets facilities support a single communication
domain: the Internet domain, which is used by processes which communicate using the Internet Protocol
Suite. (Future versions of this specification may include additional domains.)

Sockets are typed according to the communication properties visibleto auser. Applications are
presumed to communicate only between sockets of the same type, although there is nothing that prevents
communication between sockets of different types should the underlying communication protocols
support this.

Two types of sockets currently are availableto auser. A stream socket provides for the bi-directional,
reliable, sequenced, and unduplicated flow of data without record boundaries.

A datagram socket supports bi-directional flow of datawhich is not promised to be sequenced, reliable,
or unduplicated. That is, a process receiving messages on a datagram socket may find messages
duplicated, and, possibly, in an order different from the order in which it was sent. An important
characteristic of a datagram socket is that record boundaries in data are preserved. Datagram sockets
closely model the facilities found in many contemporary packet switched networks such as Ethernet.

2.2.2 Client-server model

The most commonly used paradigm in constructing distributed applications is the client/server model. In
this scheme client applications request services from a server application. Thisimplies an asymmetry in
establishing communication between the client and server.

Programming with Sockets 5

The client and server require awell-known set of conventions before service may be rendered (and
accepted). This set of conventions comprises a protocol which must be implemented at both ends of a
connection. Depending on the situation, the protocol may be symmetric or asymmetric. In asymmetric
protocol, either side may play the master or slave roles. In an asymmetric protocol, one side is

immutably recognized as the master, with the other asthe slave. An example of a symmetric protocol is

the TELNET protocol used in the Internet for remote terminal emulation. An example of an asymmetric
protocol isthe Internet file transfer protocol, FTP. No matter whether the specific protocol used in
obtaining a service is symmetric or asymmetric, when accessing a service thereisa"client process ' and a

"server process

A server application normally listens at a well-known address for service requests. That is, the server
process remains dormant until a connection is requested by aclient' s connection to the server' s address.
At such atime the server process "wakesup' ' and services the client, performing whatever appropriate
actions the client requests of it. While connection-based services are the norm, some services are based
on the use of datagram sockets.

2.2.3 Out-of-band data

Note: The following discussion of out-of-band data, also referred to as TCP Urgent data, follows the
model used in the Berkeley software distribution. Users and implementors should be aware of the fact
that there are at present two conflicting interpretations of RFC 793 (in which the concept is introduced),
and that the implementation of out-of-band datain the Berkeley Software Distribution does not conform
to the Host Requirements laid down in RFC 1122. To minimize interoperability problems, applications
writers are advised not to use out-of-band data unless thisis required in order to interoperate with an
existing service. Windows Sockets suppliers are urged to document the out-of-band semantics (BSD or
RFC 1122) which their product implements. It is beyond the scope of this specification to mandate a
particular set of semantics for out-of-band data handling.

The stream socket abstraction includes the notion of "out of band' ' data. Out-of-band dataisalogically
independent transmission channel associated with each pair of connected stream sockets. Out-of-band
datais delivered to the user independently of normal data. The abstraction defines that the out-of-band
data facilities must support the reliable delivery of at least one out-of-band message at atime. This
message may contain at least one byte of data, and at |east one message may be pending delivery to the
user at any onetime. For communications protocols which support only in-band signaling (i.e. the
urgent data is delivered in sequence with the normal data), the system normally extracts the data from the
normal data stream and storesit separately. This allows users to choose between receiving the urgent
datain order and receiving it out of sequence without having to buffer al the intervening data. It is
possibleto "peek’ ' at out-of-band data.

An application may prefer to process out-of-band data "in-line", as part of the normal data stream. This
is achieved by setting the socket option SO_OOBINLINE (see section 4.1.21, setsockopt()). Inthis case,
the application may wish to determine whether any of the unread datais "urgent” (the term usually
applied to in-line out-of-band data). To facilitate this, the Windows Sockets implementation will
maintain alogical "mark" in the data stream indicate the point at which the out-of-band data was sent.
An application can use the SSIOCATMARK ioctlsocket() command (see section 4.1.12) to determine
whether there is any unread data preceding the mark. For example, it might use this to resynchronize
with its peer by ensuring that all data up to the mark in the data stream is discarded when appropriate.

The WSAAsyncSelect() routineis particularly well suited to handling notification of the presence of out-
of-band-data.

2.2.4 Broadcasting

Programming with Sockets 6

By using a datagram socket, it is possible to send broadcast packets on many networks supported by the
system. The network itself must support broadcast: the system provides no simulation of broadcast in
software. Broadcast messages can place a high load on a network, since they force every host on the
network to service them. Consequently, the ahility to send broadcast packets has been limited to sockets
which are explicitly marked as allowing broadcasting. Broadcast is typically used for one of two reasons:
itisdesired to find aresource on alocal network without prior knowledge of its address, or important
functions such as routing require that information be sent to all accessible neighbors.

The destination address of the message to be broadcast depends on the network(s) on which the message
isto be broadcast. The Internet domain supports a shorthand notation for broadcast on the local network,
the address INADDR_BROADCAST. Received broadcast messages contain the senders address and
port, as datagram sockets must be bound before use.

Some types of network support the notion of different types of broadcast. For example, the |IEEE 802.5
token ring architecture supports the use of link-level broadcast indicators, which control whether
broadcasts are forwarded by bridges. The Windows Sockets specification does not provide any
mechanism whereby an application can determine the type of underlying network, nor any way to control
the semantics of broadcasting.

2.3 Byte Ordering
The Intel byte ordering is like that of the DEC VAX3, and therefore differs from the Internet and 68000%-
type processor byte ordering. Thus care must be taken to ensure correct orientation.

Any reference to |P addresses or port numbers passed to or from a Windows Sockets routine must be in
network order. Thisincludesthe IP address and port fields of astruct sockaddr_in (but not the
sin_family field).

Consider an application which normally contacts a server on the TCP port corresponding to the "time"
service, but which provides a mechanism for the user to specify that an aternative port isto be used. The
port number returned by getservbyname() is already in network order, which is the format required
constructing an address, so no translation isrequired. However if the user electsto use a different port,
entered as an integer, the application must convert this from host to network order (using the htons()
function) before using it to construct an address. Conversely, if the application wishes to display the
number of the port within an address (returned via, e.g., getpeer name()), the port number must be
converted from network to host order (using ntohs()) before it can be displayed.

Sincethe Intel and Internet byte orders are different, the conversions described above are unavoidable.
Application writers are cautioned that they should use the standard conversion functions provided as part
of the Windows Sockets API rather than writing their own conversion code, since future implementations
of Windows Sockets are likely to run on systems for which the host order isidentical to the network byte
order. Only applications which use the standard conversion functions are likely to be portable.

2.4 Socket Options

The socket options supported by Windows Sockets are listed in the pages describing setsockopt() and
getsockopt(). A Windows Sockets implementation must recognize all of these options, and (for
getsockopt()) return plausible values for each. The default value for each option is shown in the
following table.

3VAX isatrademark of Digital Equipment Corporation.
4 68000 is a trademark of Motorola, Inc.

Programming with Sockets 7

Value Type Meaning Default Note
SO_ACCEPTCONN | BOOL Socket islisten()ing. FALSE unlessa
listen() has been
performed
SO BROADCAST BOOL Socket is configured for the FALSE
transmission of broadcast
Messages.
SO _DEBUG BOOL Debugging is enabled. FALSE (i)
SO _DONTLINGER | BOOL If true, the SO_LINGER option | TRUE
is disabled.
SO _DONTROUTE | BOOL Routing is disabled. FALSE (i)
SO ERROR int Retrieve error status and clear. 0
SO _KEEPALIVE BOOL Keepalives are being sent. FALSE
SO _LINGER struct linger | Returnsthe current linger |_onoff is0
FAR* options.
SO_OOBINLINE BOOL Out-of-band data is being FALSE
received in the normal data
stream.
SO_RCVBUF int Buffer size for receives Implementation (i)
dependent
SO REUSEADDR BOOL The address to which this socket | FALSE
is bound can be used by others.
SO_SNDBUF int Buffer size for sends Implementation (i)
dependent
SO _TYPE int The type of the socket (e.g. As created via
SOCK_STREAM). socket()
TCP_NODELAY BOOL Disables the Nagle algorithm Implementation
for send coalescing. dependent
Notes:
(i) An implementation may silently ignore this option on setsockopt() and return a

constant value for getsockopt(), or it may accept avalue for setsockopt() and return the
corresponding value in getsockopt() without using the value in any way.

2.5 Database Files

The getXbyY ()°> and WSAAsyncGetXByY () classes of routines are provided for retrieving network
specific information. The getXbyY () routines were originally designed (in the first Berkeley UNIX
releases) as mechanisms for looking up information in text databases. Although the information may be
retrieved by the Windows Sockets implementation in different ways, a Windows Sockets application
reguests such information in a consistent manner through either the getXbyY () or the
WSAAsyncGetXByY () class of routines.

2.6 Deviation from Berkeley Sockets

There are afew limited instances where the Windows Sockets API has had to divert from strict adherence
to the Berkeley conventions, usually because of difficulties of implementation in a Windows
environment.

5 This specification uses the function name getXbyY () to represent the set of routines gethostbyaddr (),
gethostbyname(), etc. Similarly WSAAsyncGetXByY () represents WSAAsyncGetHostByAddr (), etc.

Programming with Sockets 8

2.6.1 socket data type and error values

A new datatype, SOCKET, has been defined. The definition of this type was necessary for future
enhancements to the Windows Sockets specification, such as being able to use sockets as file handlesin
Windows NTS. Definition of this type also facilitates porting of applications to a Win/32 environment, as
the type will automatically be promoted from 16 to 32 bits.

In UNIX, all handles, including socket handles, are small, non-negative integers, and some applications
make assumptions that thiswill be true. Windows Sockets handles have no restrictions, other than that
the value INVALID_SOCKET isnot avalid socket. Socket handles may take any value in the range O to
INVALID_SOCKET-1.

Because the SOCKET type is unsigned, compiling existing source code from, for example, a UNIX
environment may lead to compiler warnings about signed/unsigned data type mismatches.

This means, for example, that checking for errors when the socket() and accept() routines return should
not be done by comparing the return value with -1, or seeing if the value is negative (both common, and
legal, approachesin BSD). Instead, an application should use the manifest constant INVALID_SOCKET
as defined in winsock.h. For example:

TYPICAL BSD STYLE:
s = socket(...);

if (s ==-1) /* or s <0 */
{...}
PREFERRED STYLE:
s = socket(...);
if (s == I NVALI D_SOCKET)
{...}

2.6.2 select() and FD_*

Because a SOCKET is no longer represented by the UNIX-style "small non-negative integer”, the
implementation of the select() function was changed in the Windows Sockets API. Each set of socketsis
still represented by the fd_set type, but instead of being stored as a bitmask the set is implemented as an
array of SOCKETs. To avoid potential problems, applications must adhere to the use of the FD_XXX
macros to set, initialize, clear, and check the fd_set structures.

2.6.3 Error codes - errno, h_errno & WSAGetLastError()

Error codes set by the Windows Sockets implementation are NOT made available via the errno variable.
Additionally, for the getXbyY () class of functions, error codes are NOT made available viathe h_errno
variable. Instead, error codes are accessed by using the WSAGetL astError() API described in section
4.3.11. Thisfunction is provided in Windows Sockets as a precursor (and eventually an alias) for the
Win32 function GetL astError(). Thisisintended to provide areliable way for athread in a multi-
threaded process to obtain per-thread error information.

For compatibility with BSD, an application may choose to include aline of the form:

#defi ne errno WBAGet Last Error ()

Thiswill allow networking code which was written to use the global errno to work correctly in asingle-
threaded environment. There are, obviously, some drawbacks. If a source file includes code which
inspects errno for both socket and non-socket functions, this mechanism cannot be used. Furthermore, it
is not possible for an application to assign a new value to errno. (In Windows Sockets the function
WSASetL astError () may be used for this purpose.)

6 NT and Windows/NT are trademarks of Microsoft Corporation.

Programming with Sockets 9

TYPICAL BSD STYLE:
rr =recv(...);

if (r = -
&& errno == EWOULDBLOCK)
{...}
PREFERRED STYLE:
r- =recv(...);
if (r == - [* (but see below) */
&& WBAGet Last Error () == EWOULDBLOCK)
{...}

Although error constants consistent with 4.3 Berkeley Sockets are provided for compatibility purposes,
applications should, where possible, use the "WSA" error code definitions. For example, a more accurate
version of the above source code fragment is:

rr- =recv(...);
if (r == - /* (but see below) */
&& WBAGet Last Error () == WSAEWOULDBLOCK)
{...}

2.6.4 Pointers
All pointers used by applications with Windows Sockets should be FAR. To facilitate this, data type
definitions such as LPHOSTENT are provided.

2.6.5 Renamed functions
In two cases it was necessary to rename functions which are used in Berkeley Socketsin order to avoid
clashes with other APIs.

2.6.5.1 close() & closesocket()

In Berkeley Sockets, sockets are represented by standard file descriptors, and so the close() function can
be used to close sockets as well asregular files. While nothing in the Windows Sockets API prevents an
implementation from using regular file handles to identify sockets, nothing requiresit either. Socket
descriptors are not presumed to correspond to regular file handles, and file operations such asread(),
write(), and close() cannot be assumed to work correctly when applied to sockets. Sockets must be
closed by using the closesocket() routine. Using the close() routine to close a socket is incorrect and the
effects of doing so are undefined by this specification.

2.6.5.1ioctl() & ioctlsocket()

Various C language run-time systems use the ioctl() routine for purposes unrelated to Windows Sockets.
For this reason we have defined the routine ioctlsocket() which is used to handle socket functions which
in the Berkeley Software Distribution are performed using ioctl() and fentl().

2.6.6 Blocking routines & EINPROGRESS

Although blocking operations on sockets are supported under Windows Sockets, their useis strongly
discouraged. Programmers who are constrained to use blocking mode — for example, as part of an
existing application which is to be ported — should be aware of the semantics of blocking operationsin
Windows Sockets. See section 3.1.1 for more details.

2.6.7 Maximum number of sockets supported
The maximum number of sockets supported by a particular Windows Sockets supplier is implementation
specific. An application should make no assumptions about the availability of a certain number of

Programming with Sockets 10

sockets. Thistopic is addressed further in section 4.3.15, WSAStartup(). However, independent of the
number of sockets supported by a particular implementation is the issue of the maximum number of
sockets which an application can actually make use of.

The maximum number of sockets which a Windows Sockets application can make use of is determined at
compile time by the manifest constant FD_SETSIZE. Thisvalueisused in constructing the fd_set
structures used in select() (see section 4.1.18). The default value in winsock.h is64. If an application is
designed to be capable of working with more than 64 sockets, the implementor should define the
manifest FD_SETSIZE in every source file before including winsock.h. One way of doing this may be to
include the definition within the compiler options in the makefile, for example adding -
DFD_SETSIZE=128 as an option to the compiler command line for Microsoft C. It must be emphasized
that defining FD_SETSIZE as a particular value has no effect on the actual number of sockets provided
by a Windows Sockets implementation.

2.6.8 Include files

For ease of portability of existing Berkeley sockets based source code, a number of standard Berkeley
include files are supported. However, these Berkeley header files merely include the winsock.h include
file, and it is therefore sufficient (and recommended) that Windows Sockets application source files
should simply include winsock.h.

2.6.9 Return values on API failure

The manifest constant SOCKET_ERROR is provided for checking API failure. Although use of this
constant is not mandatory, it is recommended. The following exampleillustrates the use of the
SOCKET_ERROR constant:

TYPICAL BSD STYLE:
r- =recv(...);
if (r == - [* or r <0 */
&& errno == EWOULDBLOCK)
{...}
PREFERRED STYLE:
r- =recv(...);
if (r == SOCKET_ERROR
&& WBAGet Last Error () == WSAEWOULDBL OCK)
{...}

2.6.10 Raw Sockets

The Windows Sockets specification does not mandate that a Windows Sockets DLL support raw sockets,
that is, sockets opened with SOCK_RAW. However, a Windows Sockets DLL is alowed and
encouraged to supply raw socket support. A Windows Sockets-compliant application that wishesto use
raw sockets should attempt to open the socket with the socket() call (see section 4.1.23), and if it fails
either attempt to use another socket type or indicate the failure to the user.

2.7 Windows Sockets in Multithreaded Versions of Windows

The Windows Sockets interface is designed to work for both single-threaded versions of Windows (such
as Windows 3.1) and preemptive multithreaded versions of Windows (such as Windows NT). Ina
multithreaded environment the sockets interface is basically the same, but the author of a multithreaded
application must be aware that it is the responsibility of the application, not the Windows Sockets
implementation, to synchronize access to a socket between threads. Thisisthe samerule as appliesto
other forms of 1/0 such asfile I/O. Failure to synchronize calls on a socket leads to unpredictable results;
for example if there are two simultaneous calls to send(), there is no guarantee as to the order in which
the data will be sent.

10

Programming with Sockets 11

Closing a socket in one thread that has an outstanding blocking call on the same socket in another thread
will cause the blocking call to fail with WSAEINTR, just as if the operation were canceled. Thisalso
appliesif thereis aselect() call outstanding and the application closes one of the sockets being selected.

There is no default blocking hook installed in preemptive multithreaded versions of Windows. Thisis
because the machine will not be blocked if a single application iswaiting for an operation to complete

and hence not calling PeekM essage() or GetM essage() which cause the application to yield in
nonpremptive Windows. However, for backwards compatibility the W SASetBlockingHook() call is
implemented in multithreaded versions of Windows, and any application whose behavior depends on the
default blocking hook may install their own blocking hook which duplicates the default hook' s semantics,
if desired.

11

Socket Library Overview 12

3. SOCKET LIBRARY OVERVIEW

3.1 Socket Functions
The Windows Sockets specification includes the following Berkeley-style socket routines:

accept() * An incoming connection is acknowledged and associated
with an immediately created socket. The original socket is
returned to the listening state.

bind() Assign alocal name to an unnamed socket.

closesocket() * Remove a socket from the per-process object reference
table. Only blocksif SO LINGER is set.

connect() * Initiate a connection on the specified socket.

getpeer name() Retrieve the name of the peer connected to the specified
socket.

getsockname() Retrieve the current name for the specified socket

getsockopt() Retrieve options associated with the specified socket.

htonl() Convert a 32-bit quantity from host byte order to network
byte order.

htons() Convert a 16-bit quantity from host byte order to network
byte order.

inet_addr() Converts a character string representing a number in the
Internet standard "." ' notation to an Internet address value

inet_ntoa() Converts an Internet address value to an ASCII string in
"' ' notationi.e. "ab.cd ' .

ioctlsocket() Provide control for sockets.

listen() Listen for incoming connections on a specified socket.

ntohl() Convert a 32-bit quantity from network byte order to host
byte order.

ntohs() Convert a 16-bit quantity from network byte order to host
byte order.

recv() * Receive data from a connected socket.

recvfrom() * Recelve data from either a connected or unconnected
socket.

select() * Perform synchronous 1/O multiplexing.

send() * Send data to a connected socket.

sendto() * Send data to either a connected or unconnected socket.

setsockopt() Store options associated with the specified socket.

shutdown() Shut down part of afull-duplex connection.

socket() Create an endpoint for communication and return a socket.

* = The routine can block if acting on a blocking socket.

3.1.1 Blocking/Non blocking & Data Volatility

One major issue in porting applications from a Berkeley sockets environment to a Windows environment
involves "blocking"; that is, invoking a function which does not return until the associated operation is
completed. The problem arises when the operation may take an arbitrarily long time to complete: an
obvious exampleis arecv() which may block until data has been received from the peer system. The
default behavior within the Berkeley sockets model is for a socket to operate in a blocking mode unless
the programmer explicitly requests that operations be treated as non-blocking. It isstrongly
recommended that programmers use the nonblocking (asynchronous) operationsif at all possible, as
they work significantly better within the nonpreemptive Windows environment. Use blocking

12

Socket Library Overview 13

| operations only if absolutely necessary, and carefully read and understand this section if you must use
blocking operations.

Even on a blocking socket, some operations (e.g. bind(), getsockopt(), getpeer name()) can be completed
immediately. For such operations there is no difference between blocking and non-blocking operation.
Other operations (e.g. recv()) may be completed immediately or may take an arbitrary time to complete,
depending on various transport conditions. When applied to a blocking socket, these operations are
referred to as blocking operations. All routines which can block are listed with an asterisk in the tables

| above and below.

Within a Windows Sockets implementation, a blocking operation which cannot be completed
immediately is handled asfollows. The DLL initiates the operation, and then enters aloop in which it
dispatches any Windows messages (yielding the processor to another thread if necessary) and then checks
for the completion of the Windows Sockets function. If the function has completed, or if

W SACancelBlockingCall() has been invoked, the blocking function completes with an appropriate
result. Refer to section 4.3.13, WSASetBlockingHook(), for a complete description of this mechanism,
including pseudocode for the various functions.

If aWindows messageis received for a process for which ablocking operation isin progress, thereisa
risk that the application will attempt to issue another Windows Sockets call. Because of the difficulty of
managing this condition safely, the Windows Sockets specification does not support such application
behavior. Two functions are provided to assist the programmer in this situation. W SAIsBlocking() may
be called to determine whether or not a blocking Windows Sockets call isin progress.

W SACancelBlockingCall() may be called to cancel an in-progress blocking call, if any. Any other
Windows Sockets function which is called in this situation will fail with the error WSAEINPROGRESS.
It should be emphasized that this restriction applies to both blocking and non-blocking operations.

Although this mechanism is sufficient for simple applications, it cannot support the complex message-
dispatching requirements of more advanced applications (for example, those using the MDI model). For
such applications, the Windows Sockets API includes the function W SA SetBlockingH ook (), which
allows the programmer to define a special routine which will be called instead of the default message
dispatch routine described above.

The Windows Sockets DLL callsthe blocking hook only if al of the following are true: the routine is one
which is defined as being able to block, the specified socket is a blocking socket, and the request cannot
be completed immediately. (A socket is set to blocking by default, but the IOCTL FIONBIO and

W SAAsyncSelect() both set a socket to nonblocking mode.) If an application uses only non-blocking
sockets and uses the WSAAsyncSelect() and/or the WSAAsyncGetXByY () routines instead of select()
and the getXbyY () routines, then the blocking hook will never be called and the application does not
need to be concerned with the reentrancy issues the blocking hook can introduce.

If an application invokes an asynchronous or non-blocking operation which takes a pointer to a memory
object (e.g. abuffer, or aglobal variable) as an argument, it is the responsibility of the application to
ensure that the object is available to the Windows Sockets implementation throughout the operation. The
application must not invoke any Windows function which might affect the mapping or addressability of
the memory involved. In amultithreaded system, the application is also responsible for coordinating
access to the object using appropriate synchronization mechanisms. A Windows Sockets implementation
cannot, and will not, address these issues. The possible consequences of failing to observe these rules are
beyond the scope of this specification.

3.2 Database Functions
The Windows Sockets specification defines the following "database" routines. Asnoted earlier, a
Windows Sockets supplier may choose to implement these in a manner which does not depend on local

13

Socket Library Overview 14

database files. The pointer returned by certain database routines such as gethostbyname() pointsto a
structure which is allocated by the Windows Sockets library. The data which is pointed to is volatile and
isgood only until the next Windows Sockets API call from that thread. Additionally, the application
must never attempt to modify this structure or to free any of its components. Only one copy of this
structure is allocated for athread, and so the application should copy any information which it needs
before issuing any other Windows Sockets API calls.

gethostbyaddr () * Retrieve the name(s) and address corresponding to a
network address.

gethostbyname() * Retrieve the name(s) and address corresponding to a host
name.

gethostname() Retrieve the name of the local host.

getprotobyname() * Retrieve the protocol name and number corresponding to a
protocol name.

getprotobynumber () * Retrieve the protocol name and number corresponding to a
protocol number.

getser vbyname() * Retrieve the service name and port corresponding to a
Service name.

getservbyport() * Retrieve the service name and port corresponding to a
port.

* = The routine can block under some circumstances.

3.3 Microsoft Windows-specific Extension Functions

The Windows Sockets specification provides a number of extensionsto the standard set of Berkeley
Sockets routines. Principaly, these extended APIs allow message-based, asynchronous access to network
events. While use of this extended API set is not mandatory for socket-based programming (with the
exception of WSAStartup() and WSACleanup()), it is recommended for conformance with the
Microsoft Windows programming paradigm.

14

Socket Library Overview 15

W SAAsyncGetHostByAddr () A set of functions which provide asynchronous

W SAAsyncGetHostByName() versions of the standard Berkeley

W SAAsyncGetProtoByName() getXbyY () functions. For example, the
WSAAsyncGetProtoByNumber() | WSAAsyncGetHostByName() function provides an
W SAAsyncGetServByName() asynchronous message based implementation of

W SAAsyncGetServByPort() the standard Berkeley gethostbyname() function.

W SAAsyncSelect() Perform asynchronous version of select()

W SACancel AsyncRequest() Cancel an outstanding instance of a

W SAAsyncGetXByY () function.

W SACancelBlockingCall()

Cancel an outstanding "blocking" API call

W SACleanup()

Sign off from the underlying Windows Sockets DLL.

WSAGetL astError|()

Obtain details of last Windows Sockets API error

W SAIsBlocking()

Determine if the underlying Windows Sockets DLL is
already blocking an existing call for this thread

W SA SetBlockingHook()

"Hook" the blocking method used by the underlying
Windows Sockets implementation

WSASetL astError() Set the error to be returned by a subsequent
WSAGetL astError|()
W SAStartup() Initialize the underlying Windows Sockets DLL .

W SAUnhookBlockingHook()

Restore the original blocking function

3.3.1 Asynchronous select() Mechanism

The WSAAsyncSelect() API allows an application to register an interest in one or many network events.
This API is provided to supersede the need to do polled network 1/0. Any situation in which select() or
non-blocking 1/0 routines (such as send() and recv()) are either already used or are being considered is
usually a candidate for the WSAAsyncSelect() API. When declaring interest in such condition(s), you
supply awindow handle to be used for notification. The corresponding window then receives message-
based notification of the conditionsin which you declared an interest.

WSAAsyncSelect() alows interest to be declared in the following conditions for a particular socket:
Socket readiness for reading
Socket readiness for writing
Out-of-band data ready for reading
Socket readiness for accepting incoming connection
Completion of non-blocking connect()
Connection closure

3.3.2 Asynchronous Support Routines

The asynchronous "database” functions allow applications to request information in an asynchronous
manner. Some network implementations and/or configurations perform network based operations to
resolve such requests. The WSAAsyncGetXByY () functions allow application devel opers to request
services which would otherwise block the operation of the whole Windows environment if the standard
Berkeley function were used. The W SACancel AsyncRequest() function allows an application to cancel
any outstanding asynchronous request.

3.3.3 Hooking Blocking Methods

Asnoted in section 3.1.1 above, Windows Sockets implements blocking operations in such away that
Windows message processing can continue, which may result in the application which issued the call
receiving a Windows message. In certain situations an application may want to influence or change the
way in which this pseudo-blocking process is implemented. The W SASetBlockingHook() provides the

15

Socket Library Overview 16

ability to substitute a named routine which the Windows Sockets implementation is to use when
relinquishing the processor during a"blocking” operation.

3.3.4 Error Handling

For compatibility with thread-based environments, details of API errors are obtained through the
WSAGetL astError() API. Although the accepted "Berkeley-Style" mechanism for obtaining socket-
based network errorsisvia"errno", this mechanism cannot guarantee the integrity of an error ID ina
multi-threaded environment. WSAGetL astError() allows you to retrieve an error code on a per thread
basis.

WSAGetL astError () returns error codes which avoid conflict with standard Microsoft C error codes.
Certain error codes returned by certain Windows Sockets routines fall into the standard range of error
codes as defined by Microsoft C. If you are NOT using an application development environment which
defines error codes consistent with Microsoft C, you are advised to use the Windows Sockets error codes
prefixed by "WSA" to ensure accurate error code detection.

Note that this specification defines arecommended set of error codes, and lists the possible errors which
may be returned as aresult of each function. It may be the case in some implementations that other
Windows Sockets error codes will be returned in addition to those listed, and applications should be
prepared to handle errors other than those enumerated under each API description. However a Windows
Sockets implementation must not return any value which is not enumerated in the table of legal Windows
Sockets errors given in Appendix A.1.

3.3.5 Accessing a Windows Sockets DLL from an Intermediate DLL

A Windows Sockets DLL may be accessed both directly from an application and through an
"intermediate” DLL. An example of such an intermediate DLL would be avirtual network APl layer that
supports generalized network functionality for applications and uses Windows Sockets. SuchaDLL
could be used by several applications simultaneously, and the DLL must take special precautions with
respect to the WSAStartup() and WSACleanup() calls to ensure that these routines are called in the
context of each task that will make Windows Sockets calls. Thisis because the Windows Sockets DLL
will need acall to WSAStartup() for each task in order to set up task-specific data structures, and a call
to WSACleanup() to free any resources allocated for the task.

There are (at least) two ways to accomplish this. The simplest method isfor the intermediate DLL to
have calls similar to WSAStartup() and W SACleanup() that applications call as appropriate. The DLL
would then call WSAStartup() or WSACleanup() from within these routines. Another mechanismis
for the intermediate DLL to build atable of task handles, which are obtained from the
GetCurrentTask() Windows API, and at each entry point into the intermediate DLL check whether

W SAStartup() has been called for the current task, then call WSAStartup() if necessary.

If aDLL makes a blocking call and does not install its own blocking hook, then the DLL author must be
aware that control may be returned to the application either by an application-installed blocking hook or
by the default blocking hook. Thus, it is possible that the application will cancel the DLL" sblocking
operation via W SACancelBlockingCall(). If thisoccurs, the DLL" s blocking operation will fail with the
error code WSAEINTR, and the DLL must return control to the calling task as quickly as possible, as the
used has likely pressed a cancel or close button and the task has requested control of the CPU. Itis
recommended that DLL s which make blocking calls install their own blocking hooks with

W SA SetBlockingHook() to prevent unforeseen interactions between the application and the DLL.

Note that thisis not necessary for DLLsin Windows NT because of its different process and DLL

structure. Under Windows NT, the intermediate DLL could simply call WSAStartup() inits DLL
initialization routine, which is called whenever a new process which usesthe DLL starts.

16

Socket Library Overview 17

3.3.6 Internal use of Messages by Windows Sockets Implementations

In order to implement Windows Sockets purely asaDLL, it may be necessary for the DLL to post
messages internally for communication and timing. Thisis perfectly legal; however, a Windows Sockets
DLL must not post messages to a window handle opened by a client application except for those
messages requested by the application. A Windows Sockets DLL that needs to use messages for its own
purposes must open a hidden window and post any necessary messages to the handle for that window.

3.3.7 Private API Interfaces

The winsock.def file in Appendix B.7 lists the ordinals defined for the Windows Sockets APIs. In
addition to the ordinal values listed, all ordinals 999 and below are reserved for future Windows Sockets
use. It may be convenient for a Windows Sockets implementation to export additional, private interfaces
from the Windows Sockets DLL. Thisis perfectly acceptable, aslong as the ordinals for these exports
are above 1000. Note that any application that uses a particular Windows Sockets DLL' s private APIs
will most likely not work on any other vendor' s Windows Sockets implementation. Only the APIs
defined in this document are guaranteed to be present in every Windows Sockets implementation.

If an application uses private interfaces of a particular vendor' sWindows SocketsDLL, itis
recommended that the DLL not be statically linked with the application but rather dynamically loaded
with the Windows routines L oadL ibrary() and GetProcAddress(). This allows the application to give
an informative error message if it isrun on a system with a Windows Sockets DL L that does not support
the same set of extended functionality.

17

Socket Library Reference 18

4. SOCKET LIBRARY REFERENCE

4.1 Socket Routines

This chapter presents the socket library routines in alphabetical order, and describes each routine in
detail.

In each routineit isindicated that the header file winsock.h must be included. Appendix A.2 liststhe
Berkeley-compatible header files which are supported. These are provided for compatibility purposes
only, and each of them will simply include winsock.h. The Windows header file windows.h is also
needed, but winsock.h will include it if necessary.

accept 19

4.1.1 accept()

Description

Remarks

Return Value

Error Codes

Accept a connection on a socket.
#include <winsock.h>

SOCKET PASCAL FAR accept (SOCKET s, struct sockaddr FAR * addr,
int FAR * addrlen);

S A descriptor identifying a socket which islistening for connections
after alisten().
addr An optional pointer to a buffer which receives the address of the

connecting entity, as known to the communications layer. The exact
format of the addr argument is determined by the address family
established when the socket was created.

addrlen An optional pointer to an integer which contains the length of the
address addr.

This routine extracts the first connection on the queue of pending connectionson s,
creates a new socket with the same properties as s and returns a handle to the new
socket. If no pending connections are present on the queue, and the socket is not
marked as non-blocking, accept() blocks the caller until a connection is present. If the
socket is marked non-blocking and no pending connections are present on the queue,
accept() returns an error as described below. The accepted socket may not be used to
accept more connections. The original socket remains open.

The argument addr is aresult parameter that isfilled in with the address of the
connecting entity, as known to the communications layer. The exact format of the addr
parameter is determined by the address family in which the communication is
occurring. The addrlen is avalue-result parameter; it should initialy contain the
amount of space pointed to by addr; on return it will contain the actual length (in bytes)
of the address returned. This call is used with connection-based socket types such as
SOCK_STREAM. If addr and/or addrlen are equal to NULL, then no information
about the remote address of the accepted socket is returned.

If no error occurs, accept() returns a value of type SOCKET which is a descriptor for
the accepted packet. Otherwise, avalue of INVALID _SOCKET isreturned, and a
specific error code may be retrieved by calling WSAGetL astError ().

The integer referred to by addrlen initially contains the amount of space pointed to by
addr. Onreturn it will contain the actual length in bytes of the address returned.

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.
WSAENETDOWN The Windows Sockets implementation has detected

that the network subsystem has failed.

WSAEFAULT The addrlen argument istoo small (less than the
sizeof a struct sockaddr).

accept 20

See Also

WSAEINTR

WSAEINPROGRESS

WSAEINVAL

WSAEMFILE

WSAENOBUFS

WSAENOTSOCK

WSAEOPNOTSUPP

WSAEWOULDBLOCK

The (blocking) call was canceled via
W SACancelBlockingCall().

A blocking Windows Sockets call isin progress.
listen() was not invoked prior to accept().

The queue is empty upon entry to accept() and there
are no descriptors available.

No buffer spaceis available.
The descriptor is not a socket.

The referenced socket is not a type that supports
connection-oriented service.

The socket is marked as non-blocking and no
connections are present to be accepted.

bind(), connect(), listen(), select(), socket(), WSAAsyncSelect()

bind 21

4.1.2 bind()
Description

Remarks

Associate alocal address with a socket.
#include <winsock.h>

int PASCAL FAR bind (SOCKET s, const struct sockaddr FAR * name, int
namelen);

S A descriptor identifying an unbound socket.
name The address to assign to the socket. The sockaddr structure is defined
asfollows:

struct sockaddr {
u_short sa_famly;
char sa_data[14];

b

namelen The length of the name.

This routine is used on an unconnected datagram or stream socket, before subsequent
connect()s or listen()s. When a socket is created with socket(), it existsin a name
space (address family), but it has no name assigned. bind() establishes the local
association (host address/port number) of the socket by assigning alocal name to an
unnamed socket.

In the Internet address family, a name consists of several components. For
SOCK_DGRAM and SOCK_STREAM, the name consists of three parts: a host address,
the protocol number (set implicitly to UDP or TCP, respectively), and a port number
which identifies the application. If an application does not care what address is
assigned to it, it may specify an Internet address equal to INADDR_ANY, a port equal
to 0, or both. If the Internet addressis equal to INADDR_ANY, any appropriate
network interface will be used; this simplifies application programming in the presence
of multi-homed hosts. If the port is specified as 0, the Windows Sockets
implementation will assign a unique port to the application with a value between 1024
and 5000. The application may use getsockname() after bind() to learn the address that
has been assigned to it, but note that getsockname() will not necessarily fill in the
Internet address until the socket is connected, since several Internet addresses may be
valid if the host is multi-homed.

If an application desires to bind to an arbitrary port outside of the range 1024 to 5000,
such as the case of rsh which must bind to any reserved port, code similar to the
following may be used:

SOCKADDR I N si n;
SOCKET s;
u_short al port

| PPORT_RESERVED,

sin.sin_famly = AF_| NET;
sin.sin_addr.s_addr = 0;
for (5:) {
sin.sin_port = htons(al port);
i f (bind(s, (LPSOCKADDR)&sin, sizeof (sin)) == 0) {
[* it worked */

bind 22

Return Value

Error Codes

See Also

}
if (GetLastError() != WSAEADDRI NUSE) {

[* fail */
al port--;
if (alport == | PPORT_RESERVED 2) {
[* fail--all unassigned reserved ports are */

/* in use. */

If no error occurs, bind() returns 0. Otherwise, it returns SOCKET_ERROR, and a
specific error code may be retrieved by calling WSAGetL astError ().

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.
WSAENETDOWN The Windows Sockets implementation has detected

that the network subsystem has failed.

WSAEADDRINUSE The specified addressis already in use. (Seethe
SO_REUSEADDR socket option under
setsockopt().)

WSAEFAULT The namelen argument is too small (less than the
size of astruct sockaddr).

WSAEINPROGRESS A blocking Windows Sockets call isin progress.

WSAEAFNOSUPPORT The specified address family is not supported by this
protocol.

WSAEINVAL The socket is already bound to an address.

WSAENOBUFS Not enough buffers available, too many connections.

WSAENOTSOCK The descriptor is not a socket.

connect(), listen(), getsockname(), setsockopt(), socket(),
W SACancelBlockingCall().

closesocket 23

4.1.3 closesocket()

Description

Remarks

Return Value

Error Codes

Close a socket.
#include <winsock.h>

int PASCAL FAR closesocket (SOCKET s);

S A descriptor identifying a socket.

This function closes a socket. More precisely, it releases the socket descriptor s, so that
further references to swill fail with the error WSAENOTSOCK. If thisisthe last
reference to the underlying socket, the associated naming information and queued data
are discarded.

The semantics of closesocket() are affected by the socket options SO_LINGER and
SO_DONTLINGER asfollows:

Option Interval Typeof close Wait for close?
SO DONTLINGER Don' tcare Graceful No

SO LINGER Zero Hard No

SO LINGER Non-zero Graceful Yes

If SO LINGER isset (i.e. thel_onoff field of the linger structure is non-zero; see
sections 2.4, 4.1.7 and 4.1.21) with a zero timeout interval (I_linger is zero),
closesocket() is not blocked even if queued data has not yet been sent or acknowledged.
Thisiscalled a"hard" or "abortive" close, because the socket' svirtual circuit is reset
immediately, and any unsent dataislost. Any recv() call on the remote side of the
circuit will fail with WSAECONNRESET.

If SO_LINGER is set with a non-zero timeout interval, the closesocket() call blocks
until the remaining data has been sent or until the timeout expires. Thisiscalled a
graceful disconnect. Note that if the socket is set to non-blocking and SO_LINGER is
set to anon-zero timeout, the call to closesocket() will fail with an error of
WSAEWOULDBLOCK.

If SO_ DONTLINGER is set on a stream socket (i.e. the|_onoff field of the linger
structure is zero; see sections 2.4, 4.1.7 and 4.1.21), the closesocket() call will return
immediately. However, any data queued for transmission will be sent if possible before
the underlying socket is closed. Thisisalso called agraceful disconnect. Note that in
this case the Windows Sockets implementation may not rel ease the socket and other
resources for an arbitrary period, which may affect applications which expect to use all
available sockets.

If no error occurs, closesocket() returns 0. Otherwise, avalue of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling WSAGetL astError ().

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.
WSAENETDOWN The Windows Sockets implementation has detected

that the network subsystem has failed.

closesocket 24

See Also

WSAENOTSOCK The descriptor is not a socket.
WSAEINPROGRESS A blocking Windows Sockets call isin progress.
WSAEINTR The (blocking) call was canceled via

W SACancelBlockingCall().

WSAEWOULDBLOCK The socket is marked as nonblocking and
SO _LINGER isset to anonzero timeout value.

accept(), socket(), ioctlsocket(), setsockopt(), WSAAsyncSelect().

connect 25

4.1.4 connect()

Description

Remarks

Return Value

Error Codes

Establish a connection to a peer.
#include <winsock.h>

int PASCAL FAR connect (SOCKET s, const struct sockaddr FAR * name,
int namelen);

S A descriptor identifying an unconnected socket.
name The name of the peer to which the socket is to be connected.
namelen The length of the name.

This function is used to create a connection to the specified foreign association. The
parameter s specifies an unconnected datagram or stream socket If the socket is
unbound, unique values are assigned to the local association by the system, and the
socket is marked as bound. Note that if the address field of the name structureis all
zeroes, connect() will return the error WSAEADDRNOTAVAIL.

For stream sockets (type SOCK_STREAM), an active connection isinitiated to the
foreign host using name (an address in the name space of the socket). When the socket
call completes successfully, the socket is ready to send/receive data.

For a datagram socket (type SOCK_DGRAM), adefault destination is set, which will
be used on subsequent send() and recv() calls.

If no error occurs, connect() returns 0. Otherwise, it returns SOCKET_ERROR, and a
specific error code may be retrieved by calling WSAGetLastError ().

On a blocking socket, the return value indicates success or failure of the connection
attempt.

On a non-blocking socket, if the return value is SOCKET_ERROR an application
should call WSAGetL astError(). If thisindicates an error code of
WSAEWOULDBLOCK, then your application can either:

1. Use select() to determine the completion of the connection request by checking if the
socket iswriteable, or

2. If your application is using the message-based W SAAsyncSelect() to indicate
interest in connection events, then your application will receive an FD_CONNECT
message when the connect operation is complete.

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.
WSAENETDOWN The Windows Sockets implementation has detected

that the network subsystem has failed.

WSAEADDRINUSE The specified addressis already in use.

connect 26

| See Also

WSAEINTR

WSAEINPROGRESS

WSAEADDRNOTAVAIL

WSAEAFNOSUPPORT

WSAECONNREFUSED
WSAEDESTADDREQ
WSAEFAULT
WSAEINVAL
WSAEISCONN
WSAEMFILE

WSAENETUNREACH

WSAENOBUFS

WSAENOTSOCK

WSAETIMEDOUT

WSAEWOULDBLOCK

The (blocking) call was canceled via
W SACancelBlockingCall().

A blocking Windows Sockets call isin progress.

The specified address is not available from the local
machine.

Addresses in the specified family cannot be used
with this socket.

The attempt to connect was forcefully rejected.
A destination address is required.

The namelen argument is incorrect.

The socket is not already bound to an address.
The socket is already connected.

No more file descriptors are available.

The network can' t be reached from this host at this
time.

No buffer spaceisavailable. The socket cannot be
connected.

The descriptor is not a socket.

Attempt to connect timed out without establishing a
connection

The socket is marked as non-blocking and the
connection cannot be completed immediately. Itis
possible to select() the socket whileit is connecting
by select()ing it for writing.

accept(), bind(), getsockname(), socket(), select() and WSAAsyncSelect().-

getpeername 27

4.1.5 getpeername()

Description

Remarks

Return Value

Error Codes

See Also

Get the address of the peer to which a socket is connected.
#include <winsock.h>

int PASCAL FAR getpeername (SOCKET s, struct sockaddr FAR * name, int
FAR * namelen);

S A descriptor identifying a connected socket.
name The structure which isto receive the name of the peer.
namelen A pointer to the size of the name structure.

getpeer name() retrieves the name of the peer connected to the socket s and storesit in
the struct sockaddr identified by name. It isused on a connected datagram or stream
socket.

On return, the namelen argument contains the actual size of the name returned in bytes.

If no error occurs, getpeername() returns 0. Otherwise, avalue of SOCKET_ERROR
isreturned, and a specific error code may be retrieved by calling WSAGetL astError ().

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSAEFAULT The namelen argument is not large enough.

WSAEINPROGRESS A blocking Windows Sockets call isin progress.

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is not a socket.

bind(), socket(), getsockname().

getsockname 28

4.1.6 getsockname()

Description

Remarks

Return Value

Error Codes

| See Also

Get the local name for a socket.
#include <winsock.h>

int PASCAL FAR getsockname (SOCKET s, struct sockaddr FAR * name,
int FAR * namelen);

S A descriptor identifying a bound socket.
name Receives the address (name) of the socket.
namelen The size of the name buffer.

getsockname() retrieves the current name for the specified socket descriptor in name.
It isused on a bound and/or connected socket specified by the s parameter. The local
association isreturned. This call isespecially useful when a connect() call has been
made without doing a bind() first; this call provides the only means by which you can
determine the local association which has been set by the system.

On return, the namelen argument contains the actual size of the name returned in bytes.

If a socket was bound to INADDR_ANY, indicating that any of the host' s IP addresses
should be used for the socket, getsockname() will not necessarily return information
about the host IP address, unless the socket has been connected with connect() or
accept(). A Windows Sockets application must not assume that the IP address will be
changed from INADDR_ANY unless the socket is connected. Thisis because for a
multi-homed host the IP address that will be used for the socket is unknown unless the
socket is connected.

If no error occurs, getsockname() returns 0. Otherwise, avalue of SOCKET_ERROR
isreturned, and a specific error code may be retrieved by calling WSAGetL astError ().

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSAEFAULT The namelen argument is not large enough.

WSAEINPROGRESS A blocking Windows Sockets operation isin
progress.

WSAENOTSOCK The descriptor is not a socket.

WSAEINVAL The socket has not been bound to an address with
bind().

bind(), socket(), getpeer name().

getsockopt 29

4.1.7 getsockopt()

Description

Remarks

Retrieve a socket option.
#include <winsock.h>

int PASCAL FAR getsockopt (SOCKET s, int level, int optname,
char FAR * optval, int FAR * optlen);

S A descriptor identifying a socket.

level The level at which the option is defined; the only supported levels are
SOL_SOCKET and IPPROTO_TCP.

optname The socket option for which the value is to be retrieved.

optval A pointer to the buffer in which the value for the requested option is
to be returned.

optlen A pointer to the size of the optval buffer.

getsockopt() retrieves the current value for a socket option associated with a socket of
any type, in any state, and stores the result in optval. Options may exist at multiple
protocol levels, but they are always present at the uppermost "socket' ' level. Options
affect socket operations, such as whether an operation blocks or not, the routing of
packets, out-of-band data transfer, etc.

The value associated with the selected option is returned in the buffer optval. The
integer pointed to by optlen should originally contain the size of this buffer; on return,
it will be set to the size of the value returned. For SO_LINGER, thiswill be the size of
astruct linger; for all other optionsit will be the size of an integer.

If the option was never set with setsockopt(), then getsockopt() returns the default
value for the option.

The following options are supported for getsockopt(). The Type identifies the type of
data addressed by optval. The TCP_NODELAY option uses level IPPROTO_TCP;, all
other options use level SOL_SOCKET.

Value Type Meaning

SO_ACCEPTCONN BOOL Socket islisten()ing.

SO _BROADCAST BOOL Socket is configured for the transmission of
broadcast messages.

SO_DEBUG BOOL Debugging is enabled.

SO _DONTLINGER BOOL If true, the SO_LINGER option is disabled.

SO _DONTROUTE BOOL Routing is disabled.

SO _ERROR int Retrieve error status and clear.

SO _KEEPALIVE BOOL Keepalives are being sent.

SO_LINGER struct linger Returns the current linger options.

FAR*

SO_OOBINLINE BOOL Out-of-band data is being received in the normal

data stream.

SO RCVBUF int Buffer size for receives

getsockopt 30

SO _REUSEADDR BOOL The socket may be bound to an address which is
already in use.

SO _SNDBUF int Buffer size for sends

SO _TYPE int The type of the socket (e.g. SOCK_STREAM).

TCP_NODELAY BOOL Disables the Nagle algorithm for send coal escing.

BSD options not supported for getsockopt() are:

Value Type Meaning

SO RCVLOWAT int Receive low water mark

SO RCVTIMEO int Receive timeout

SO SNDLOWAT int Send low water mark
SO_SNDTIMEO int Send timeout

IP_OPTIONS Get optionsin |P header.
TCP_MAXSEG int Get TCP maximum segment size.

Calling getsockopt() with an unsupported option will result in an error code of
WSAENOPROTOOPT being returned from WSAGetL astError ().

Return Value If no error occurs, getsockopt() returns 0. Otherwise, avalue of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling WSAGetL astError ().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before

using this API.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSAEFAULT The optlen argument was invalid.

WSAEINPROGRESS A blocking Windows Sockets operation isin
progress.

WSAENOPROTOOPT The option is unknown or unsupported. In

particular, SO BROADCAST is not supported on
sockets of type SOCK_STREAM, while
SO_ACCEPTCONN, SO_DONTLINGER,
SO_KEEPALIVE, SO_LINGER and
SO_OOBINLINE are not supported on sockets of
type SOCK_DGRAM.

WSAENOTSOCK The descriptor is not a socket.

See Also setsockopt(), WSAAsyncSelect(), socket().

htonl 31

4.1.8 htonl()
Description Convert au_long from host to network byte order.

#include <winsock.h>

u_long PASCAL FAR htonl (u_long hostlong);

hostlong A 32-bit number in host byte order.

Remarks This routine takes a 32-bit number in host byte order and returns a 32-bit number in
network byte order.

Return Value htonl() returns the value in network byte order.

See Also htons(), ntohl(), ntohs().

htons 32

4.1.9 htons()
Description Convert au_short from host to network byte order.

#include <winsock.h>

u_short PASCAL FAR htons (u_short hostshort);

hostshort A 16-bit number in host byte order.

Remarks This routine takes a 16-bit number in host byte order and returns a 16-bit number in
network byte order.

Return Value htons() returns the value in network byte order.

See Also htonl(), ntohl(), ntohs().

inet_addr 33

4.1.10 inet_addr()

Description

Remarks

Return Value

See Also

Convert a string containing a dotted address into an in_addr.
#include <winsock.h>

unsigned long PASCAL FAR inet_addr (const char FAR * ¢cp);

cp A character string representing a number expressed in the Internet
standard "." ' notation.

This function interprets the character string specified by the cp parameter. This string
represents a numeric Internet address expressed in the Internet standard "." * notation.
The value returned is a number suitable for use as an Internet address. All Internet

addresses are returned in network order (bytes ordered from left to right).

Internet Addresses

Values specified using the ". notation take one of the following forms:
ab.cd abc ab a

When four parts are specified, each isinterpreted as a byte of data and assigned, from
left to right, to the four bytes of an Internet address. Note that when an Internet address
isviewed as a 32-bit integer quantity on the Intel architecture, the bytes referred to
above appear as"d.c.b.a ' . Thatis, the byteson an Intel processor are ordered from
right to left.

Note: The following notations are only used by Berkeley, and nowhere else on the
Internet. In the interests of compatibility with their software, they are supported as
specified.

When athree part address is specified, the last part is interpreted as a 16-bit quantity
and placed in the right most two bytes of the network address. This makes the three
part address format convenient for specifying Class B network addresses as
"128.net.host’ ' .

When atwo part address is specified, the last part is interpreted as a 24-bit quantity and
placed in the right most three bytes of the network address. This makes the two part
address format convenient for specifying Class A network addresses as "net.host" ' .

When only one part is given, the value is stored directly in the network address without
any byte rearrangement.

If no error occurs, inet_addr () returns an unsigned long containing a suitable binary
representation of the Internet address given. If the passed-in string does not contain a
legitimate Internet address, for example if a portion of an "a.b.c.d" address exceeds 255,
inet_addr () returns the value INADDR_NONE.

inet_ntoa()

inet_ntoa 34

4.1.11 inet_ntoa()

Description

Remarks

Return Value

See Also

Convert a network addressinto a string in dotted format.
#include <winsock.h>

char FAR * PASCAL FAR inet_ntoa (struct in_addr in);

in A structure which represents an Internet host address.

This function takes an Internet address structure specified by the in parameter. It

returns an ASCII string representing the addressin™.' ' notation as"ab.c.d' ' . Notethat
the string returned by inet_ntoa() residesin memory which is allocated by the

Windows Sockets implementation. The application should not make any assumptions
about the way in which the memory is allocated. The datais guaranteed to be valid

until the next Windows Sockets API call within the same thread, but no longer.

If no error occurs, inet_ntoa() returns a char pointer to a static buffer containing the
text addressin standard "." ' notation. Otherwise, it returns NULL. The data should be
copied before another Windows Sockets call is made.

inet_addr ().

ioctlsocket 35

4.1.12 ioctlsocket()

Description

Remarks

Control the mode of a socket.
#include <winsock.h>

int PASCAL FAR ioctlsocket (SOCKET s, long cmd, u_long FAR * argp);

S A descriptor identifying a socket.
cmd The command to perform on the socket s.
argp A pointer to a parameter for cmd.

This routine may be used on any socket in any state. It isused to get or retrieve
operating parameters associated with the socket, independent of the protocol and
communications subsystem. The following commands are supported:

Command Semantics

FIONBIO Enable or disable non-blocking mode on the socket s. argp points at
an unsigned long, which is non-zero if non-blocking mode isto be
enabled and zero if it isto be disabled. When a socket is created, it
operates in blocking mode (i.e. non-blocking mode is disabled). This
is consistent with BSD sockets.

The WSAAsyncSelect() routine automatically sets a socket to
nonblocking mode. 1f WSAAsyncSelect() has been issued on a
socket, then any attempt to use ioctlsocket() to set the socket back to
blocking mode will fail with WSAEINVAL. To set the socket back to
blocking mode, an application must first disable W SAAsyncSel ect()
by calling WSAAsyncSelect() with the |IEvent parameter equal to 0.

FIONREAD Determine the amount of data which can be read atomically from
socket s. argp points at an unsigned long in which ioctlsocket()
storestheresult. If sisof type SOCK_STREAM, FIONREAD returns
the total amount of data which may be read in asingle recv(); thisis
normally the same as the total amount of data queued on the socket.

If sisof type SOCK_DGRAM, FIONREAD returns the size of the
first datagram queued on the socket.

SIOCATMARK Determine whether or not all out-of-band data has been read. This
applies only to a socket of type SOCK_STREAM which has been
configured for in-line reception of any out-of-band data
(SO_OOBINLINE). If no out-of-band datais waiting to be read, the
operation returns TRUE. Otherwiseit returns FALSE, and the next
recv() or recvfrom() performed on the socket will retrieve some or all
of the data preceding the "mark"; the application should use the
SIOCATMARK operation to determine whether any remains. If there
isany normal data preceding the "urgent” (out of band) data, it will be
received in order. (Note that arecv() or recvfrom() will never mix
out-of-band and normal data in the same call.) argp pointsat a
BOOL in which ioctlsocket() stores the result.

ioctlsocket 36

Compatibility

Return Value

Error Codes

| See Also

Thisfunction is a subset of ioctl() as used in Berkeley sockets. In particular, thereisno
command which is equivalent to FIOASY NC, while SSIOCATMARK isthe only socket-
level command which is supported.

Upon successful completion, the ioctlsocket() returns 0. Otherwise, avalue of
SOCKET_ERROR is returned, and a specific error code may be retrieved by calling
WSAGetL astError ().

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.
WSAENETDOWN The Windows Sockets implementation has detected

that the network subsystem has failed.

WSAEINVAL cmd is not avalid command, or argp is not an
acceptable parameter for cmd, or the command is
not applicable to the type of socket supplied

WSAEINPROGRESS A blocking Windows Sockets operationisin
progress.
WSAENOTSOCK The descriptor sis not a socket.

socket(), setsockopt(), getsockopt(), WSAAsyncSelect().

listen 37

4.1.13 listen()
Description Establish a socket to listen for incoming connection.

#include <winsock.h>

int PASCAL FAR listen (SOCKET s, int backlog);

S A descriptor identifying a bound, unconnected socket.
backlog The maximum length to which the queue of pending connections may
grow.
Remarks To accept connections, a socket isfirst created with socket(), a backlog for incoming

connectionsis specified with listen(), and then the connections are accepted with

accept(). listen() applies only to sockets that support connections, i.e. those of type
SOCK_STREAM. The socket sis put into "passive’ ' mode where incoming connections
are acknowledged and queued pending acceptance by the process.

Thisfunction istypically used by servers that could have more than one connection
request at atime: if a connection request arrives with the queue full, the client will
receive an error with an indication of WSAECONNREFUSED.

listen() attempts to continue to function rationally when there are no available
descriptors. It will accept connections until the queue is emptied. If descriptors
become available, alater call to listen() or accept() will re-fill the queue to the current
or most recent "backlog' ' , if possible, and resume listening for incoming connections.

Compatibility backlogis currently limited (silently) to 5. Asin 4.3BSD, illegal values (lessthan 1 or
greater than 5) are replaced by the nearest legal value.

Return Value If no error occurs, listen() returns 0. Otherwise, avalue of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling WSAGetL astError ().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before

using this API.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSAEADDRINUSE An attempt has been made to listen() on an address
inuse.

WSAEINPROGRESS A blocking Windows Sockets operation isin
progress.

WSAEINVAL The socket has not been bound with bind() or is
already connected.

WSAEISCONN The socket is already connected.

WSAEMFILE No more file descriptors are available.

WSAENOBUFS No buffer spaceis available.

listen 38

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The referenced socket is not of atype that supports
the listen() operation.

See Also accept(), connect(), socket().

ntohl 39

4.1.14 ntohl()
Description Convert au_long from network to host byte order.

#include <winsock.h>

u_long PASCAL FAR ntohl (u_long netlong);

netlong A 32-bit number in network byte order.

Remarks This routine takes a 32-bit number in network byte order and returns a 32-bit number in
host byte order.

Return Value ntohl() returnsthe value in host byte order.

See Also htonl(), htons(), ntohs().

ntohs 40

4.1.15 ntohs()
Description Convert au_short from network to host byte order.

#include <winsock.h>

u_short PASCAL FAR ntohs (u_short netshort);

netshort A 16-bit number in network byte order.

Remarks This routine takes a 16-bit number in network byte order and returns a 16-bit number in
host byte order.

Return Value ntohs() returnsthe value in host byte order.

See Also htonl(), htons(), ntohl().

recv 41

4.1.16 recv()
Description

Remarks

Receive data from a socket.
#include <winsock.h>

int PASCAL FAR recv (SOCKET s, char FAR * buf, int len, int flags);

S A descriptor identifying a connected socket.
buf A buffer for the incoming data.

len The length of buf.

flags Specifies the way in which the call is made.

This function is used on connected datagram or stream sockets specified by the s
parameter and is used to read incoming data.

For sockets of type SOCK_STREAM, as much information asis currently available up
to the size of the buffer supplied isreturned. If the socket has been configured for in-
line reception of out-of-band data (socket option SO_OOBINLINE) and out-of-band
datais unread, only out-of-band data will be returned. The application may use the
ioctlsocket() SSIOCATMARK to determine whether any more out-of-band data remains
to be read.

For datagram sockets, data is extracted from the first enqueued datagram, up to the size
of the buffer supplied. If the datagram islarger than the buffer supplied, the buffer is
filled with the first part of the datagram, the excess dataislost, and recv() returns the
error WSAEMSGSIZE.

If no incoming data is available at the socket, the recv() call waits for datato arrive
unless the socket is non-blocking. In this case avalue of SOCKET_ERROR is returned
with the error code set to WSAEWOULDBLOCK. The select() or WSAAsyncSelect()
calls may be used to determine when more data arrives.

If the socket is of type SOCK_STREAM and the remote side has shut down the
connection gracefully, arecv() will complete immediately with O bytes received. If the
connection has been reset, arecv() will fail with the error WSAECONNRESET.

Flags may be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the flags parameter. The latter is constructed by
or-ing any of the following values:

Vaue Meaning
MSG_PEEK Peek at the incoming data. The datais copied into the buffer but is
not removed from the input queue.

MSG_0O0B Process out-of-band data (See section 2.2.3 for a discussion of this
topic.)

recv 42

Return Value

Error Codes

| See Also

If no error occurs, recv() returns the number of bytesreceived. If the connection has
been closed, it returns 0. Otherwise, avalue of SOCKET ERROR isreturned, and a
specific error code may be retrieved by calling WSAGetL astError ().

WSANOTINITIALISED

WSAENETDOWN

WSAENOTCONN

WSAEINTR

WSAEINPROGRESS

WSAENOTSOCK

WSAEOPNOTSUPP

WSAESHUTDOWN

WSAEWOULDBLOCK

WSAEMSGSIZE

WSAEINVAL

WSAECONNABORTED

WSAECONNRESET

A successful WSAStartup() must occur before
using this API.

The Windows Sockets implementation has detected
that the network subsystem has failed.

The socket is not connected.

The (blocking) call was canceled via
W SACancelBlockingCall().

A blocking Windows Sockets operationisin
progress.

The descriptor is not a socket.

MSG_OOB was specified, but the socket is not of
type SOCK_STREAM.

The socket has been shutdown; it is not possible to
recv() on a socket after shutdown() has been
invoked with how set to O or 2.

The socket is marked as non-blocking and the
receive operation would block.

The datagram was too large to fit into the specified
buffer and was truncated.

The socket has not been bound with bind().

The virtual circuit was aborted due to timeout or
other failure.

The virtual circuit was reset by the remote side.

recvfrom(), read{)-,recv(), send(), select(), WSAAsyncSelect(), socket()

recvfrom 43

4.1.17 recvfrom()

Description

Remarks

Recelve a datagram and store the source address.
#include <winsock.h>

int PASCAL FAR recvfrom (SOCKET s, char FAR * buf, int len, int flags,
struct sockaddr FAR * from, int FAR * fromlen);

S A descriptor identifying a bound socket.

buf A buffer for the incoming data.

len The length of buf.

flags Specifies the way in which the call is made.

from An optional pointer to a buffer which will hold the source address
upon return.

fromlen An optional pointer to the size of the from buffer.

This function is used to read incoming data on a (possibly connected) socket and
capture the address from which the data was sent.

For sockets of type SOCK_STREAM, as much information asis currently available up
to the size of the buffer supplied isreturned. If the socket has been configured for in-
line reception of out-of-band data (socket option SO_OOBINLINE) and out-of-band
datais unread, only out-of-band data will be returned. The application may use the
ioctlsocket() SSIOCATMARK to determine whether any more out-of-band data remains
to beread. Thefromand fromlen parameters are ignored for SOCK_STREAM sockets.

For datagram sockets, data is extracted from the first enqueued datagram, up to the size
of the buffer supplied. If the datagram islarger than the buffer supplied, the buffer is
filled with the first part of the message, the excess dataislost, and recvfrom() returns
the error code WSAEM SGSIZE.

If fromis non-zero, and the socket is of type SOCK_DGRAM, the network address of
the peer which sent the data is copied to the corresponding struct sockaddr. The value
pointed to by fromlen isinitialized to the size of this structure, and is modified on return
to indicate the actual size of the address stored there.

If no incoming datais available at the socket, the recvfrom() call waits for datato
arrive unless the socket is non-blocking. In this case avalue of SOCKET_ERROR is
returned with the error code set to WSAEWOULDBLOCK. The select() or

W SAAsyncSelect() calls may be used to determine when more data arrives.

If the socket is of type SOCK_STREAM and the remote side has shut down the
connection gracefully, arecvfrom() will complete immediately with O bytes received.
If the connection has been reset recv() will fail with the error WSAECONNRESET.

Flags may be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. That is, the semantics of this function are

recvfrom 44

Return Value

Error Codes

determined by the socket options and the flags parameter. The latter is constructed by
or-ing any of the following values:

Vaue Meaning
MSG_PEEK Peek at the incoming data. The datais copied into the buffer but is
not removed from the input queue.

MSG_0O0B Process out-of-band data (See section 2.2.3 for a discussion of this
topic.)

If no error occurs, recvfrom() returns the number of bytes received. If the connection
has been closed, it returns 0. Otherwise, avaue of SOCKET_ERROR isreturned, and
a specific error code may be retrieved by calling WSAGetL astError ().

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSAEFAULT The fromlen argument was invalid: the from buffer
was too small to accommodate the peer address.

WSAEINTR The (blocking) call was canceled via
W SACancelBlockingCall().

WSAEINPROGRESS A blocking Windows Sockets operationisin
progress.

WSAEINVAL The socket has not been bound with bind().

WSAENOTCONN The socket is not connected (SOCK_STREAM
only).

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not of

type SOCK_STREAM.

WSAESHUTDOWN The socket has been shutdown; it is not possible to
recvfrom() on a socket after shutdown() has been
invoked with how set to O or 2.

WSAEWOULDBLOCK The socket is marked as non-blocking and the
recvfrom() operation would block.

WSAEMSGSIZE The datagram was too large to fit into the specified
buffer and was truncated.

WSAECONNABORTED The virtual circuit was aborted due to timeout or
other failure.

recvfrom 45

WSAECONNRESET The virtual circuit was reset by the remote side.

See Also recv(), send(), socket(), WSAAsyncSelect().

select 46

4.1.18 select()

Description

Remarks

Determine the status of one or more sockets, waiting if necessary.
#include <winsock.h>

int PASCAL FAR select (int nfds, fd_set FAR * readfds, fd_set FAR * writefds,
fd_set FAR * exceptfds, const struct timeval FAR * timeout);

nfds This argument is ignored and included only for the sake of
compatibility.

readfds An optional pointer to a set of sockets to be checked for readability.

writefds An optional pointer to a set of sockets to be checked for writability

exceptfds An optional pointer to a set of sockets to be checked for errors.

timeout The maximum time for select() to wait, or NULL for blocking
operation.

This function is used to determine the status of one or more sockets. For each socket,
the caller may request information on read, write or error status. The set of sockets for
which agiven statusis requested isindicated by an fd_set structure. Upon return, the
structure is updated to reflect the subset of these sockets which meet the specified
condition, and select() returns the number of sockets meeting the conditions. A set of
macros is provided for manipulating an fd_set. These macros are compatible with those
used in the Berkeley software, but the underlying representation is completely different.

The parameter readfds identifies those sockets which are to be checked for readability.
If the socket is currently listen()ing, it will be marked as readable if an incoming
connection request has been received, so that an accept() is guaranteed to complete
without blocking. For other sockets, readability means that queued datais available for
reading or, for sockets of type SOCK_STREAM, that the virtual socket corresponding
to the socket has been closed, so that arecv() or recvfrom() is guaranteed to complete
without blocking. If the virtual circuit was closed gracefully, then arecv() will return
immediately with O bytes read; if the virtual circuit was reset, then arecv() will
complete immediately with the error code WSAECONNRESET. The presence of out-
of-band data will be checked if the socket option SO_OOBINLINE has been enabled
(see setsockopt()).

The parameter writefds identifies those sockets which are to be checked for writability.
If asocket is connect()ing (non-blocking), writability means that the connection
establishment successfully completed. If the socket is not in the process of
connect()ing, writability means that a send() or sendto() will complete without
blocking. [Itisnot specified how long this guarantee can be assumed to be valid,
particularly in a multithreaded environment.]

The parameter exceptfds identifies those sockets which are to be checked for the
presence of out-of-band data or any exceptional error conditions. Note that out-of-band
datawill only be reported in thisway if the option SO_OOBINLINE isFALSE. For a
SOCK_STREAM, the breaking of the connection by the peer or due to KEEPALIVE
failure will be indicated as an exception. This specification does not define which other

select 47

Return Value

Error Codes

| See Also

errors will beincluded. If asocket is connect()ing (non-blocking), failure of the
connect attempt is indicated in exceptfds.

Any of readfds, writefds, or exceptfds may be given as NULL if no descriptors are of
interest.

Four macros are defined in the header file winsock.h for manipulating the descriptor
sets. The variable FD_SETSIZE determines the maximum number of descriptorsin a
set. (The default value of FD_SETSIZE is 64, which may be modified by #defining
FD_SETSIZE to another value before #including winsock.h.) Internally, anfd_setis
represented as an array of SOCKETS; the last valid entry is followed by an element set
to INVALID_SOCKET. The macros are;

FD_CLR(s, *set) Removes the descriptor s from set.

FD_ISSET(s, *set) Nonzero if sisamember of the set, zero otherwise.
FD_SET(s, *set) Adds descriptor sto set.

FD_ZERO(*set) Initializes the set to the NULL set.

The parameter timeout controls how long the select() may take to complete. If timeout
isanull pointer, select() will block indefinitely until at least one descriptor meets the
specified criteria. Otherwise, timeout points to a struct timeval which specifies the
maximum time that select() should wait before returning. If the timeval isinitialized to
{0, 0}, select() will return immediately; thisis used to "poll" the state of the selected
sockets. If thisisthe case, then the select() call is considered nonblocking and the
standard assumptions for nonblocking calls apply. For example, the blocking hook
must not be called, and the Windows Sockets implementation must not yield.

select() returns the total number of descriptors which are ready and contained in the
fd_set structures, O if the time limit expired, or SOCKET_ERROR if an error occurred.
If the return value is SOCKET_ERROR, WSAGetL astError () may be used to retrieve
a specific error code.

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSAEINVAL The timeout value is not valid.

WSAEINTR The (blocking) call was canceled via
W SACancelBlockingCall().

WSAEINPROGRESS A blocking Windows Sockets operationisin
progress.

WSAENOTSOCK One of the descriptor sets contains an entry which is
not a socket.

WSAAsyncSelect(), accept(), connect(), recv(), recvfrom(), send().

send 48

4.1.19 send()

Description

Remarks

Return Value

Send data on a connected socket.
#include <winsock.h>

int PASCAL FAR send (SOCKET s, const char FAR * buf, int len, int flags);

S A descriptor identifying a connected socket.
buf A buffer containing the data to be transmitted.
len The length of the datain buf.

flags Specifies the way in which the call is made.

send() is used on connected datagram or stream sockets and is used to write outgoing
data on a socket. For datagram sockets, care must be taken not to exceed the maximum
I P packet size of the underlying subnets, which is given by the iMaxUdpDg element in
the WSA Data structure returned by WSAStartup(). If the dataistoo long to pass
atomically through the underlying protocol the error WSAEM SGSIZE is returned, and
no data is transmitted.

Note that the successful completion of a send() does not indicate that the data was
successfully delivered.

If no buffer space is available within the transport system to hold the data to be
transmitted, send() will block unless the socket has been placed in a non-blocking 1/0
mode. On non-blocking SOCK_STREAM sockets, the number of bytes written may be
between 1 and the requested length, depending on buffer availability on both the local
and foreign hosts. The select() call may be used to determine when it is possible to
send more data.

Flags may be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the flags parameter. The latter is constructed by
or-ing any of the following values:

Vaue Meaning

MSG_DONTROUTE
Specifies that the data should not be subject to routing. A Windows
Sockets supplier may choose to ignore this flag; see also the
discussion of the SO_DONTROUTE option in section 2.4.

MSG_0O0B Send out-of-band data (SOCK_STREAM only; see also section 2.2.3)

If no error occurs, send() returns the total number of characters sent. (Note that this
may be less than the number indicated by len.) Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved by calling
WSAGetL astError ().

send 49

Error Codes

See Also

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSAEACCES The requested address is a broadcast address, but the
appropriate flag was not set.

WSAEINTR The (blocking) call was canceled via
W SACancelBlockingCall().

WSAEINPROGRESS A blocking Windows Sockets operation isin
progress.

WSAEFAULT The buf argument is not in avalid part of the user
address space.

WSAENETRESET The connection must be reset because the Windows

Sockets implementation dropped it.

WSAENOBUFS The Windows Sockets implementation reports a
buffer deadlock.

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not of

type SOCK_STREAM.

WSAESHUTDOWN The socket has been shutdown; it is not possible to
send() on a socket after shutdown() has been
invoked with how setto 1 or 2.

WSAEWOULDBLOCK The socket is marked as non-blocking and the
reguested operation would block.

WSAEMSGSIZE The socket is of type SOCK_DGRAM, and the
datagram is larger than the maximum supported by
the Windows Sockets implementation.

WSAEINVAL The socket has not been bound with bind().
WSAECONNABORTED The virtual circuit was aborted due to timeout or
other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

recv(), recvfrom(), socket(), sendto(), WSAStartup().

sendto 50

4.1.20 sendto()

Description

Remarks

Send data to a specific destination.
#include <winsock.h>

int PASCAL FAR sendto (SOCKET s, const char FAR * buf, int len, int flags,
const struct sockaddr FAR * to, int tolen);

S A descriptor identifying a socket.

buf A buffer containing the data to be transmitted.

len The length of the datain buf.

flags Specifies the way in which the call is made.

to An optional pointer to the address of the target socket.
tolen The size of the addressin to.

sendto() is used on datagram or stream sockets and is used to write outgoing dataon a
socket. For datagram sockets, care must be taken not to exceed the maximum IP packet
size of the underlying subnets, which is given by the iMaxUdpDg element in the

WSA Data structure returned by WSAStartup(). If the dataistoo long to pass
atomically through the underlying protocol the error WSAEM SGSIZE is returned, and
no data is transmitted.

Note that the successful completion of a sendto() does not indicate that the data was
successfully delivered.

sendto() is normally used on a SOCK_DGRAM socket to send a datagram to a specific
peer socket identified by the to parameter. On a SOCK_STREAM socket, the to and
tolen parameters are ignored; in this case the sendto() is equivalent to send().

To send a broadcast (on a SOCK_DGRAM only), the address in the to parameter should
be constructed using the special 1P addressINADDR_BROADCAST (defined in
winsock.h) together with the intended port number. It is generally inadvisable for a
broadcast datagram to exceed the size at which fragmentation may occur, which implies
that the data portion of the datagram (excluding headers) should not exceed 512 bytes.

If no buffer space is available within the transport system to hold the data to be
transmitted, sendto() will block unless the socket has been placed in anon-blocking I/0
mode. On non-blocking SOCK_STREAM sockets, the number of bytes written may be
between 1 and the requested length, depending on buffer availability on both the local
and foreign hosts. The select() call may be used to determine when it is possible to
send more data.

Flags may be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the flags parameter. The latter is constructed by
or-ing any of the following values:

sendto 51

Return Value

Error Codes

Value Meaning
MSG DONTROUTE

Specifies that the data should not be subject to routing. A Windows
Sockets supplier may choose to ignore this flag; see also the
discussion of the SO DONTROUTE option in section .

MSG_0O0B Send out-of-band data (SOCK_STREAM only; see also section)

If no error occurs, sendto() returns the total number of characters sent. (Note that this
may be less than the number indicated by len.) Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved by calling

WSAGetL astError ().

WSANOTINITIALISED

WSAENETDOWN

WSAEACCES

WSAEINTR

WSAEINPROGRESS

WSAEFAULT

WSAENETRESET

WSAENOBUFS

WSAENOTCONN

WSAENOTSOCK

WSAEOPNOTSUPP

WSAESHUTDOWN

WSAEWOULDBLOCK

A successful WSAStartup() must occur before
using this API.

The Windows Sockets implementation has detected
that the network subsystem has failed.

The requested address is a broadcast address, but the
appropriate flag was not set.

The (blocking) call was canceled via
W SACancelBlockingCall().

A blocking Windows Sockets operationisin
progress.

The buf or to parameters are not part of the user
address space, or the to argument istoo small (less
than the sizeof a struct sockaddr).

The connection must be reset because the Windows
Sockets implementation dropped it.

The Windows Sockets implementation reports a
buffer deadlock.

The socket is not connected (SOCK_STREAM
only).

The descriptor is not a socket.

MSG_OOB was specified, but the socket is not of
type SOCK_STREAM.

The socket has been shutdown; it is not possible to
sendto() on a socket after shutdown() has been
invoked with how setto 1 or 2.

The socket is marked as non-blocking and the
reguested operation would block.

sendto 52

See Also

WSAEMSGSIZE The socket is of type SOCK_DGRAM, and the
datagram is larger than the maximum supported by
the Windows Sockets implementation.

WSAECONNABORTED The virtual circuit was aborted due to timeout or
other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

WSAEADDRNOTAVAIL The specified address is not available from the local
machine.

WSAEAFNOSUPPORT Addresses in the specified family cannot be used
with this socket.

WSAEDESTADDRREQ A destination address is required.

WSAENETUNREACH The network can' t be reached from this host at this
time.

recv(), recvfrom(), socket(), send(), WSAStartup().

setsockopt 53

4.1.21 setsockopt()

Description

Remarks

Set a socket option.

#include <winsock.h>

int PASCAL FAR setsockopt (SOCKET s, int level, int optname,
const char FAR * optval, int optlen);

S A descriptor identifying a socket.

level The level at which the option is defined; the only supported levels are
SOL_SOCKET and IPPROTO_TCP.

optname The socket option for which the value isto be set.

optval A pointer to the buffer in which the value for the requested option is
supplied.

optlen The size of the optval buffer.

setsockopt() sets the current value for a socket option associated with a socket of any
type, in any state. Although options may exist at multiple protocol levels, this
specification only defines options that exist at the uppermost "socket' * level. Options
affect socket operations, such as whether expedited datais received in the normal data
stream, whether broadcast messages may be sent on the socket, etc.

There are two types of socket options: Boolean options that enable or disable afeature
or behavior, and options which require an integer value or structure. To enablea
Boolean option, optval pointsto a nonzero integer. To disable the option optval points
to an integer equal to zero. optlen should be equal to sizeof(int) for Boolean options.
For other options, optval pointsto the an integer or structure that contains the desired
value for the option, and optlen is the length of the integer or structure.

SO_LINGER controls the action taken when unsent data is queued on a socket and a
closesocket() is performed. See closesocket() for a description of the way in which the
SO_LINGER settings affect the semantics of closesocket(). The application sets the
desired behavior by creating a struct linger (pointed to by the optval argument) with the
following elements:

struct linger {
i nt | _onoff;
i nt | _linger;

}

To enable SO_LINGER, the application should set |_onoff to a non-zero value, set
|_linger to O or the desired timeout (in seconds), and call setsockopt(). To enable
SO _DONTLINGER (i.e. disable SO_LINGER) |_onoff should be set to zero and
setsockopt() should be called.

By default, a socket may not be bound (see bind()) to alocal address which is already
inuse. On occasions, however, it may be desirable to "re-use" an address in this way.
Since every connection is uniquely identified by the combination of local and remote

setsockopt 54

addresses, there is no problem with having two sockets bound to the same local address
as long as the remote addresses are different. To inform the Windows Sockets
implementation that a bind() on a socket should not be disallowed because the desired
address is already in use by another socket, the application should set the
SO_REUSEADDR socket option for the socket before issuing the bind(). Note that the
option isinterpreted only at the time of the bind(): it is therefore unnecessary (but
harmless) to set the option on a socket which is not to be bound to an existing address,
and setting or resetting the option after the bind() has no effect on this or any other
socket.

An application may request that the Windows Sockets implementation enable the use of
"keep-alive" packets on TCP connections by turning on the SO_KEEPALIVE socket
option. A Windows Sockets implementation need not support the use of keep-alives: if
it does, the precise semantics are implementation-specific but should conform to section
4.2.3.6 of RFC 1122: Requirements for Internet Hosts -- Communication Layers. If a
connection is dropped as the result of "keep-alives' the error code WSAENETRESET is
returned to any calls in progress on the socket, and any subsequent calls will fail with
WSAENOTCONN.

The TCP_NODELAY option disables the Nagle algorithm. The Nagle algorithm is
used to reduce the number of small packets sent by a host by buffering unacknowledged
send data until afull-size packet can be sent. However, for some applications this
algorithm can impede performance, and TCP_NODELAY may be used to turn it off.
Application writers should not set TCP_NODELAY unless the impact of doing sois
well-understood and desired, since setting TCP_NODELAY can have a significant
negative impact of network performance. TCP_NODELAY isthe only supported
socket option which useslevel IPPROTO_TCP; al other options use level
SOL_SOCKET.

Windows Sockets suppliers are encouraged (but not required) to supply output debug
information if the SO_DEBUG option is set by an application. The mechanism for
generating the debug information and the form it takes are beyond the scope of this
specification.

The following options are supported for setsockopt(). The Type identifies the type of
data addressed by optval.

Value Type Meaning

SO _BROADCAST BOOL Allow transmission of broadcast messages on the
socket.

SO _DEBUG BOOL Record debugging information.

SO _DONTLINGER BOOL Don' t block close waiting for unsent data to be
sent. Setting this option is equivalent to setting
SO _LINGER with|_onoff set to zero.

SO DONTROUTE BOOL Don' troute: send directly to interface.

SO_KEEPALIVE BOOL Send keepalives

SO_LINGER struct linger Linger on closeif unsent datais present

FAR*

SO _OOBINLINE BOOL Receive out-of-band data in the normal data
stream.

SO_RCVBUF int Specify buffer size for receives

SO REUSEADDR BOOL Allow the socket to be bound to an address which

isalready in use. (Seebind().)

setsockopt 55

SO_SNDBUF int Specify buffer size for sends.
TCP_NODELAY BOOL Disables the Nagle algorithm for send coal escing.

BSD options not supported for setsockopt() are:

Value Type Meaning

SO _ACCEPTCONN BOOL Socket islistening

SO _ERROR int Get error status and clear

SO RCVLOWAT int Receive low water mark

SO RCVTIMEO int Receive timeout

SO SNDLOWAT int Send low water mark

SO _SNDTIMEO int Send timeout

SO _TYPE int Type of the socket
IP_OPTIONS Set optionsfield in 1P header.

Return Value If no error occurs, setsockopt() returns 0. Otherwise, avalue of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling WSAGetL astError ().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before

using this API.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSAEFAULT optval isnot in avalid part of the process address
space.

WSAEINPROGRESS A blocking Windows Sockets operation isin
progress.

WSAEINVAL level is not valid, or the information in optval is not
valid.

WSAENETRESET Connection has timed out when SO_KEEPALIVE is
Set.

WSAENOPROTOOPT The option is unknown or unsupported. In

particular, SO BROADCAST is not supported on
sockets of type SOCK_STREAM, while
SO_DONTLINGER, SO_KEEPALIVE,
SO_LINGER and SO_OOBINLINE are not
supported on sockets of type SOCK_DGRAM.

WSAENOTCONN Connection has been reset when SO_KEEPALIVE
iSset.
WSAENOTSOCK The descriptor is not a socket.

See Also bind(), getsockopt(), ioctlsocket(), socket(), WSAAsyncSelect().

shutdown 56

4.1.22 shutdown()

Description

Remarks

Comments

Return Value

Error Codes

Disable sends and/or receives on a socket.
#include <winsock.h>

int PASCAL FAR shutdown (SOCKET s, int how);

S A descriptor identifying a socket.
how A flag that describes what types of operation will no longer be
allowed.

shutdown() is used on all types of sockets to disable reception, transmission, or both.

If how is O, subsequent receives on the socket will be disallowed. This has no effect on
the lower protocol layers. For TCP, the TCP window is not changed and incoming data
will be accepted (but not acknowledged) until the window is exhausted. For UDP,
incoming datagrams are accepted and queued. In no case will an ICMP error packet be
generated.

If how is 1, subsequent sends are disallowed. For TCP sockets, a FIN will be sent.
Setting how to 2 disables both sends and receives as described above.

Note that shutdown() does not close the socket, and resources attached to the socket
will not be freed until closesocket() isinvoked.

shutdown() does not block regardless of the SO_LINGER setting on the socket.

An application should not rely on being able to re-use a socket after it has been shut
down. In particular, a Windows Sockets implementation is not required to support the

use of connect() on such a socket.

If no error occurs, shutdown() returns 0. Otherwise, avalue of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling WSAGetL astError ().

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSAEINVAL how is not valid.

WSAEINPROGRESS A blocking Windows Sockets operation isin
progress.

WSAENOTCONN The socket is not connected (SOCK_STREAM
only).

WSAENOTSOCK The descriptor is not a socket.

shutdown 57

See Also connect(), socket().

socket 58

4.1.23 socket()

Description

Remarks

Create a socket.
#include <winsock.h>

SOCKET PASCAL FAR socket (int af, int type, int protocol);

af An address format specification. The only format currently supported
is PF_INET, which isthe ARPA Internet address format.

type A type specification for the new socket.

protocol A particular protocol to be used with the socket, or O if the caller does
not wish to specify a protocol.

socket() allocates a socket descriptor of the specified address family, data type and
protocol, as well as related resources. If aprotocol is not specified (i.e. equal to 0), the
default for the specified connection mode is used.

Only asingle protocol exists to support a particular socket type using a given address
format. However, the address family may be given as AF_UNSPEC (unspecified), in
which case the protocol parameter must be specified. The protocol number to useis
particular to the "communication domain' ' in which communication is to take place.

The following type specifications are supported:

Type Explanation

SOCK_STREAM Provides sequenced, reliable, two-way, connection-
based byte streams with an out-of-band data
transmission mechanism. Uses TCP for the Internet
address family.

SOCK_DGRAM Supports datagrams, which are connectionless,
unreliable buffers of afixed (typically small)
maximum length. Uses UDP for the Internet address
family.

Sockets of type SOCK_STREAM are full-duplex byte streams. A stream socket must
be in a connected state before any data may be sent or received on it. A connection to
another socket is created with a connect() call. Once connected, data may be
transferred using send() and recv() calls. When a session has been completed, a
closesocket() must be performed. Out-of-band data may also be transmitted as
described in send() and received as described in recv().

The communications protocols used to implement a SOCK_STREAM ensure that data
isnot lost or duplicated. If data for which the peer protocol has buffer space cannot be
successfully transmitted within a reasonable length of time, the connection is
considered broken and subsequent calls will fail with the error code set to
WSAETIMEDOUT.

socket 59

Return Value

Error Codes

See Also

SOCK_DGRAM sockets allow sending and receiving of datagramsto and from
arbitrary peers using sendto() and recvfrom(). If such a socket is connect()ed to a
specific peer, datagrams may be send to that peer send() and may be received from

(only) this peer using recv().

If no error occurs, socket() returns a descriptor referencing the new socket. Otherwise,
avalue of INVALID_SOCKET isreturned, and a specific error code may be retrieved

by calling WSAGetL astError ().

WSANOTINITIALISED

WSAENETDOWN

WSAEAFNOSUPPORT

WSAEINPROGRESS

WSAEMFILE

WSAENOBUFS

WSAEPROTONOSUPPORT

WSAEPROTOTY PE

WSAESOCKTNOSUPPORT

A successful WSAStartup() must occur before
using this API.

The Windows Sockets implementation has detected
that the network subsystem has failed.

The specified address family is not supported.

A blocking Windows Sockets operation isin
progress.

No more file descriptors are available.

No buffer spaceisavailable. The socket cannot be
created.

The specified protocol is not supported.

The specified protocol is the wrong type for this
socket.

The specified socket type is not supported in this
address family.

accept(), bind(), connect(), getsockname(), getsockopt(), setsockopt(), listen(), recv(),
recvfrom(), select(), send(), sendto(), shutdown(), ioctlsocket().

gethostbyaddr 60

4.2 Database Routines
4.2.1 gethostbyaddr()

Description

Remarks

Return Value

Error Codes

Get host information corresponding to an address.
#include <winsock.h>

struct hostent FAR * PASCAL FAR gethostbyaddr (const char FAR * addr, int
len, int type);

addr A pointer to an address in network byte order.
len The length of the address, which must be 4 for PF_INET addresses.
type The type of the address, which must be PF_INET.

gethostbyaddr () returns a pointer to the following structure which contains the name(s)
and address which correspond to the given address.

struct hostent {
char FAR * h_nane;
char FAR * FAR * h_ali ases;
short h_addrtype;
short h_l ength;
char FAR * FAR * h_addr _|ist;

i

The members of this structure are:

Element Usage

h_name Official name of the host (PC).

h_aliases A NULL-terminated array of alternate names.

h_addrtype The type of address being returned; for Windows Sockets thisis
aways PF_INET.

h_length The length, in bytes, of each address; for PF_INET, thisis aways 4.

h addr list A NULL-terminated list of addresses for the host. Addresses are
returned in network byte order.

The macro h_addr is defined to be h_addr_list[0] for compatibility with older software.

The pointer which is returned points to a structure which is allocated by the Windows
Sockets implementation. The application must never attempt to modify this structure or
to free any of its components. Furthermore, only one copy of this structure is all ocated
per thread, and so the application should copy any information which it needs before
issuing any other Windows Sockets API calls.

If no error occurs, gethostbyaddr () returns a pointer to the hostent structure described
above. Otherwiseit returnsa NULL pointer and a specific error number may be
retrieved by calling WSAGetL astError ().

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

gethostbyaddr 61

See Also

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSAHOST _NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
SERVERFAIL.

WSANO RECOVERY Non recoverable errors, FORMERR, REFUSED,
NOTIMP.

WSANO_DATA Valid name, no data record of requested type.

WSAEINPROGRESS A blocking Windows Sockets operation isin
progress.

WSAEINTR The (blocking) call was canceled via

W SACancelBlockingCall().

WSAAsyncGetHostByAddr (), gethostbyname(),

gethostname 62

4.2.2 gethostbyname()
Description Get host information corresponding to a hosthame.

#include <winsock.h>

struct hostent FAR * PASCAL FAR gethostbyname (const char FAR * name);

name A pointer to the name of the host.

Remarks gethostbyname() returns a pointer to a hostent structure as described under
gethostbyaddr (). The contents of this structure correspond to the hosthame name.

The pointer which is returned points to a structure which is allocated by the Windows
Sockets implementation. The application must never attempt to modify this structure or
to free any of its components. Furthermore, only one copy of this structure is all ocated
per thread, and so the application should copy any information which it needs before
issuing any other Windows Sockets API calls.

A gethostbyname() implementation must not resolve I P address strings passed to it.
Such arequest should be treated exactly asif an unknown host name were passed. An
application with an I P address string to resolve should use inet_addr () to convert the
string to an IP address, then gethostbyaddr () to obtain the hostent structure.

Return Value If no error occurs, gethostbyname() returns a pointer to the hostent structure described
above. Otherwiseit returnsa NULL pointer and a specific error number may be
retrieved by calling WSAGetL astError ().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before

using this API.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSAHOST _NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
SERVERFAIL.

WSANO RECOVERY Non recoverable errors, FORMERR, REFUSED,
NOTIMP.

WSANO_DATA Valid name, no data record of requested type.

WSAEINPROGRESS A blocking Windows Sockets operationisin
progress.

WSAEINTR The (blocking) call was canceled via

W SACancelBlockingCall().

See Also W SAAsyncGetHostByName(), gethostbyaddr ()

gethostname 63

4.2.3 gethostname()

Description

Remarks

Return Value

Error Codes

See Also

Return the standard host name for the local machine.

#include <winsock.h>

int PASCAL FAR gethostname (char FAR * name, int namelen);

name A pointer to a buffer that will receive the host name.

namelen The length of the buffer.

This routine returns the name of the local host into the buffer specified by the name
parameter. The host name is returned as a null-terminated string. The form of the host
name is dependent on the Windows Sockets implementation--it may be a simple host
name, or it may be afully qualified domain name. However, it is guaranteed that the
name returned will be successfully parsed by gethostbyname() and
WSAAsyncGetHostByName().

If no error occurs, gethostname() returns 0, otherwise it returns SOCKET_ERROR and
a specific error code may be retrieved by calling WSAGetL astError ().

WSAEFAULT The namelen parameter is too small

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets operation isin
progress.

gethostbyname(), WSAAsyncGetHostByName().

getprotobyname 64

4.2.4 getprotobyname()

Description

Remarks

Return Value

Error Codes

Get protocol information corresponding to a protocol name.
#include <winsock.h>

struct protoent FAR * PASCAL FAR getprotobyname (const char FAR * name);

name A pointer to a protocol name.

getprotobyname() returns a pointer to the following structure which contains the
name(s) and protocol number which correspond to the given protocol name.

struct protoent {
char FAR * p_nane;
char FAR * FAR * p_ali ases;
short p_proto;

i

The members of this structure are:

Element Usage

p_name Official name of the protocol.

p_aliases A NULL-terminated array of alternate names.
p_proto The protocol number, in host byte order.

The pointer which is returned points to a structure which is allocated by the Windows
Sockets library. The application must never attempt to modify this structure or to free
any of its components. Furthermore only one copy of this structure is allocated per
thread, and so the application should copy any information which it needs before
issuing any other Windows Sockets API calls.

If no error occurs, getprotobyname() returns a pointer to the protoent structure
described above. Otherwiseit returnsa NULL pointer and a specific error number may
be retrieved by calling WSAGetL astError ().

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSANO RECOVERY Non recoverable errors, FORMERR, REFUSED,
NOTIMP.

WSANO_DATA Valid name, no data record of requested type.

WSAEINPROGRESS A blocking Windows Sockets operation isin
progress.

WSAEINTR The (blocking) call was canceled via

W SACancelBlockingCall().

getprotobyname 65

See Also W SAAsyncGetProtoByName(), getprotobynumber ()

getprotobynumber 66

4.2.5 getprotobynumber()

Description

Remarks

Return Value

Error Codes

See Also

Get protocol information corresponding to a protocol number.
#include <winsock.h>

struct protoent FAR * PASCAL FAR getprotobynumber (int number);

number A protocol number, in host byte order.

This function returns a pointer to a protoent structure as described abovein
getprotobyname(). The contents of the structure correspond to the given protocol
number.

The pointer which is returned points to a structure which is allocated by the Windows
Sockets implementation. The application must never attempt to modify this structure or
to free any of its components. Furthermore, only one copy of this structure is allocated
per thread, and so the application should copy any information which it needs before
issuing any other Windows Sockets API calls.

If no error occurs, getprotobynumber () returns a pointer to the protoent structure
described above. Otherwiseit returnsa NULL pointer and a specific error number may
be retrieved by calling WSAGetL astError ().

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSANO RECOVERY Non recoverable errors, FORMERR, REFUSED,
NOTIMP.

WSANO_DATA Valid name, no data record of requested type.

WSAEINPROGRESS A blocking Windows Sockets operationisin
progress.

WSAEINTR The (blocking) call was canceled via

W SACancelBlockingCall().

W SAAsyncGetProtoByNumber (), getprotobyname()

getservbyname 67

4.2.6 getservbyname()

Description

Remarks

Return Value

Error Codes

Get service information corresponding to a service name and protocol.
#include <winsock.h>

struct servent FAR * PASCAL FAR getservbyname (const char FAR * name,
const char FAR * proto);

name A pointer to a service name.

proto An optional pointer to a protocol name. If thisisNULL,
getser vbyname() returns the first service entry for which the name
matches the s name or one of the s _aliases. Otherwise
getser vbyname() matches both the name and the proto.

getser vbyname() returns a pointer to the following structure which contains the
name(s) and service number which correspond to the given service name.

struct servent {
char FAR * s _nane;
char FAR * FAR * s_ali ases;
short s_port;
char FAR * s _proto;

i

The members of this structure are:

Element Usage

S hame Official name of the service.

s aliases A NULL-terminated array of alternate names.

S _port The port number at which the service may be contacted. Port
numbers are returned in network byte order.

S _proto The name of the protocol to use when contacting the service.

The pointer which is returned points to a structure which is allocated by the Windows
Sockets library. The application must never attempt to modify this structure or to free
any of its components. Furthermore only one copy of this structure is allocated per
thread, and so the application should copy any information which it needs before
issuing any other Windows Sockets API calls.

If no error occurs, getser vbyname() returns a pointer to the servent structure described
above. Otherwiseit returnsa NULL pointer and a specific error number may be
retrieved by calling WSAGetL astError ().

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.
WSAENETDOWN The Windows Sockets implementation has detected

that the network subsystem has failed.

WSANO RECOVERY Non recoverable errors, FORMERR, REFUSED,
NOTIMP.

getservbyname 68

See Also

WSANO_DATA Valid name, no data record of requested type.

WSAEINPROGRESS A blocking Windows Sockets operation isin
progress.

WSAEINTR The (blocking) call was canceled via

W SACancelBlockingCall().

W SAAsyncGetServByName(), getservbyport()

getservbyport 69

4.2.7 getservbyport()

Description

Remarks

Return Value

Error Codes

See Also

Get service information corresponding to a port and protocol.
#include <winsock.h>

struct servent FAR * PASCAL FAR getservbyport (int port, const char FAR *
proto);

port The port for a service, in network byte order.

proto An optional pointer to a protocol name. If thisisNULL,
getservbyport() returns the first service entry for which the port
matches the s port. Otherwise getservbyport() matches both the port
and the proto.

getservbyport() returns a pointer a servent structure as described above for
getser vbyname().

The pointer which is returned points to a structure which is allocated by the Windows
Sockets implementation. The application must never attempt to modify this structure or
to free any of its components. Furthermore, only one copy of this structure is all ocated
per thread, and so the application should copy any information which it needs before
issuing any other Windows Sockets API calls.

If no error occurs, getservbyport() returns a pointer to the servent structure described
above. Otherwiseit returnsa NULL pointer and a specific error number may be
retrieved by calling WSAGetL astError ().

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSANO RECOVERY Non recoverable errors, FORMERR, REFUSED,
NOTIMP.

WSANO_DATA Valid name, no data record of requested type.

WSAEINPROGRESS A blocking Windows Sockets operation isin
progress.

WSAEINTR The (blocking) call was canceled via

W SACancelBlockingCall().

W SAAsyncGetServByPort(), getser vbyname()

WSAAsyncGetHostByAddr 70

4.3 Microsoft Windows-specific Extensions
4.3.1 WSAAsyncGetHostByAddr()

Description

Remarks

Get host information corresponding to an address - asynchronous version.
#include <winsock.h>

HANDLE PASCAL FAR WSAAsyncGetHostByAddr (HWND hwnd,
unsigned int wMsg, const char FAR * addr, int len, int type, char FAR * buf, int
buflen));

hwnd The handle of the window which should receive a message when the
asynchronous request completes.

wMsg The message to be received when the asynchronous request
completes.
addr A pointer to the network address for the host. Host addresses are

stored in network byte order.

len The length of the address, which must be 4 for PF_INET.
type The type of the address, which must be PF_INET.
buf A pointer to the data area to receive the hostent data. Note that this

must be larger than the size of a hostent structure. Thisis because the
data area supplied is used by the Windows Sockets implementation to
contain not only a hostent structure but any and all of the data which
is referenced by members of the hostent structure. It is recommended
that you supply a buffer of MAXGETHOSTSTRUCT bytes.

buflen The size of data area buf above.

This function is an asynchronous version of gethostbyaddr (), and is used to retrieve
host name and address information corresponding to a network address. The Windows
Sockets implementation initiates the operation and returns to the caller immediately,
passing back an asynchronous task handle which the application may use to identify the
operation. When the operation is completed, the results (if any) are copied into the
buffer provided by the caller and a message is sent to the application’ swindow.

When the asynchronous operation is complete the application’ swindovwn\Wnd receives
message wMsg. The wParam argument contains the asynchronous task handle as
returned by the original function call. The high 16 bits of IParam contain any error
code. The error code may be any error as defined in winsock.h. An error code of zero
indicates successful completion of the asynchronous operation. On successful
completion, the buffer supplied to the original function call contains a hostent structure.
To access the elements of this structure, the original buffer address should be cast to a
hostent structure pointer and accessed as appropriate.

Note that if the error code is WSAENOBUFS, it indicates that the size of the buffer
specified by buflen in the original call was too small to contain all the resultant
information. In this case, the low 16 bits of IParam contain the size of buffer required

WSAAsyncGetHostByAddr 71

Return Value

Comments

Notes For

to supply ALL the requisite information. If the application decides that the partial data
isinadequate, it may reissue the W SAAsyncGetHostByAddr () function call with a
buffer large enough to receive al the desired information (i.e. no smaller than the low
16 bits of |Param).

The error code and buffer length should be extracted from the IParam using the macros
WSAGETASYNCERROR and WSAGETASY NCBUFLEN, defined in winsock.h as:

#def i ne WBAGETASYNCERROR(| Par am H WORD(| Par am
#def i ne WBAGETASYNCBUFLEN(| Par am LONORD(| Par am

The use of these macros will maximize the portability of the source code for the
application.

The return value specifies whether or not the asynchronous operation was successfully
initiated. Note that it does not imply success or failure of the operation itself.

If the operation was successfully initiated, WSAAsyncGetHostByAddr () returns a
nonzero value of type HANDLE which is the asynchronous task handle for the request.
This value can be used in two ways. It can be used to cancel the operation using
WSACancelAsyncRequest(). It can also be used to match up asynchronous operations
and compl etion messages, by examining the wParam message argument.

If the asynchronous operation could not be initiated, W SAAsyncGetHostByAddr ()
returns a zero value, and a specific error number may be retrieved by calling
WSAGetL astError ().

The buffer supplied to this function is used by the Windows Sockets implementation to
construct a hostent structure together with the contents of data areas referenced by
members of the same hostent structure. To avoid the WSAENOBUFS error noted
above, the application should provide a buffer of at least MAXGETHOSTSTRUCT
bytes (as defined in winsock.h).

Windows Sockets

Suppliers

Error Codes

It isthe responsibility of the Windows Sockets implementation to ensure that messages
are successfully posted to the application. If a PostM essage() operation fails, the
Windows Sockets implementation must re-post that message as long as the window
exists.

Windows Sockets suppliers should use the WSAMAKEASYNCREPLY macro when
constructing the IParam in the message.

The following error codes may be set when an application window receives a message.
As described above, they may be extracted from the IParamin the reply message using
the WSAGETASY NCERROR macro.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSAENOBUFS No/insufficient buffer space is available

WSAHOST _NOT_FOUND Authoritative Answer Host not found.

WSAAsyncGetHostByAddr 72

See Also

WSATRY_AGAIN

WSANO_RECOVERY

WSANO_DATA

Non-Authoritative Host not found, or
SERVERFAIL.

Non recoverable errors, FORMERR, REFUSED,
NOTIMP.

Valid name, no data record of requested type.

The following errors may occur at the time of the function call, and indicate that the
asynchronous operation could not be initiated.

WSANOTINITIALISED

WSAENETDOWN

WSAEINPROGRESS

WSAEWOULDBLOCK

A successful WSAStartup() must occur before
using this API.

The Windows Sockets implementation has detected
that the network subsystem has failed.

A blocking Windows Sockets operation isin
progress.

The asynchronous operation cannot be scheduled at
this time due to resource or other constraints within
the Windows Sockets implementation.

gethostbyaddr (), W SACancel AsyncRequest()

WSAAsyncGetHostByName 73

4.3.2 WSAAsyncGetHostByName()

Description

Remarks

Get host information corresponding to a hostname - asynchronous version.
#include <winsock.h>
HANDLE PASCAL FAR WSAAsyncGetHostByName (HWND hwnd,

unsigned int wMsg, const char FAR * name, char FAR * buf, int buflen);

hwnd The handle of the window which should receive a message when the
asynchronous request completes.

wMsg The message to be received when the asynchronous request
completes.

name A pointer to the name of the host.

buf A pointer to the data area to receive the hostent data. Note that this

must be larger than the size of a hostent structure. Thisis because the
data area supplied is used by the Windows Sockets implementation to
contain not only a hostent structure but any and all of the data which
is referenced by members of the hostent structure. It is recommended
that you supply a buffer of MAXGETHOSTSTRUCT bytes.

buflen The size of data area buf above.

This function is an asynchronous version of gethostbyname(), and is used to retrieve
host name and address information corresponding to a hostname. The Windows
Sockets implementation initiates the operation and returns to the caller immediately,
passing back an asynchronous task handle which the application may use to identify the
operation. When the operation is completed, the results (if any) are copied into the
buffer provided by the caller and a message is sent to the application’ swindow.

When the asynchronous operation is complete the application’ swindovwn\Wnd receives
message wMsg. The wParam argument contains the asynchronous task handle as
returned by the original function call. The high 16 bits of IParam contain any error
code. The error code may be any error as defined in winsock.h. An error code of zero
indicates successful completion of the asynchronous operation. On successful
completion, the buffer supplied to the original function call contains a hostent structure.
To access the elements of this structure, the original buffer address should be cast to a
hostent structure pointer and accessed as appropriate.

Note that if the error code is WSAENOBUFS, it indicates that the size of the buffer
specified by buflen in the original call was too small to contain all the resultant
information. In this case, the low 16 bits of IParam contain the size of buffer required
to supply ALL the requisite information. If the application decides that the partial data
isinadequate, it may reissue the W SAAsyncGetHostByName() function call with a
buffer large enough to receive all the desired information (i.e. no smaller than the low
16 bits of |Param).

The error code and buffer length should be extracted from the IParam using the macros
WSAGETASYNCERROR and WSAGETASY NCBUFLEN, defined in winsock.h as:

WSAAsyncGetHostByName 74

Return Value

Comments

Notes For

#def i ne WBAGETASYNCERROR(| Par am H WORD(| Par am
#def i ne WBAGETASYNCBUFLEN(| Par am LONDRD(| Par am

The use of these macros will maximize the portability of the source code for the
application.

The return value specifies whether or not the asynchronous operation was successfully
initiated. Note that it does not imply success or failure of the operation itself.

If the operation was successfully initiated, W SAAsyncGetHostByName() returns a
nonzero value of type HANDLE which is the asynchronous task handle for the request.
This value can be used in two ways. It can be used to cancel the operation using
WSACancelAsyncRequest(). It can also be used to match up asynchronous operations
and compl etion messages, by examining the wParam message argument.

If the asynchronous operation could not be initiated, W SAAsyncGetHostByName()
returns a zero value, and a specific error number may be retrieved by calling
WSAGetL astError ().

The buffer supplied to this function is used by the Windows Sockets implementation to
construct a hostent structure together with the contents of data areas referenced by
members of the same hostent structure. To avoid the WSAENOBUFS error noted
above, the application should provide a buffer of at least MAXGETHOSTSTRUCT
bytes (as defined in winsock.h).

Windows Sockets

Suppliers

Error Codes

It isthe responsibility of the Windows Sockets implementation to ensure that messages
are successfully posted to the application. If a PostM essage() operation fails, the
Windows Sockets implementation must re-post that message as long as the window
exists.

Windows Sockets suppliers should use the WSAMAKEASYNCREPLY macro when
constructing the IParam in the message.

The following error codes may be set when an application window receives a message.
As described above, they may be extracted from the IParamin the reply message using
the WSAGETASY NCERROR macro.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSAENOBUFS No/insufficient buffer space is available

WSAHOST _NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
SERVERFAIL.

WSANO RECOVERY Non recoverable errors, FORMERR, REFUSED,

NOTIMP.

WSAAsyncGetHostByName 75

WSANO_DATA Valid name, no data record of requested type.

The following errors may occur at the time of the function call, and indicate that the
asynchronous operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets operation isin
progress.

WSAEWOULDBLOCK The asynchronous operation cannot be scheduled at

this time due to resource or other constraints within
the Windows Sockets implementation.

See Also gethostbyname(), W SA Cancel AsyncRequest()

WSAAsyncGetProtoByName 76

4.3.3 WSAAsyncGetProtoByName()

Description

Remarks

Get protocol information corresponding to a protocol name - asynchronous version.
#include <winsock.h>
HANDLE PASCAL FAR WSAAsyncGetProtoByName (HWND hwnd,

unsigned int wMsg, const char FAR * name, char FAR * buf, int buflen);

hwnd The handle of the window which should receive a message when the
asynchronous request completes.

wMsg The message to be received when the asynchronous request
completes.

name A pointer to the protocol name to be resolved.

buf A pointer to the data area to receive the protoent data. Note that this

must be larger than the size of a protoent structure. Thisis because
the data area supplied is used by the Windows Sockets
implementation to contain not only a protoent structure but any and
all of the datawhich is referenced by members of the protoent
structure. It isrecommended that you supply a buffer of
MAXGETHOSTSTRUCT bytes.

buflen The size of data area buf above.

This function is an asynchronous version of getprotobyname(), and is used to retrieve
the protocol name and number corresponding to a protocol name. The Windows
Sockets implementation initiates the operation and returns to the caller immediately,
passing back an asynchronous task handle which the application may use to identify the
operation. When the operation is completed, the results (if any) are copied into the
buffer provided by the caller and a message is sent to the application’ swindow.

When the asynchronous operation is complete the application’ swindovwn\Wnd receives
message wMsg. The wParam argument contains the asynchronous task handle as
returned by the original function call. The high 16 bits of IParam contain any error
code. The error code may be any error as defined in winsock.h. An error code of zero
indicates successful completion of the asynchronous operation. On successful
completion, the buffer supplied to the original function call contains a protoent
structure. To access the elements of this structure, the original buffer address should be
cast to a protoent structure pointer and accessed as appropriate.

Note that if the error code is WSAENOBUFS, it indicates that the size of the buffer
specified by buflen in the original call was too small to contain all the resultant
information. In this case, the low 16 bits of IParam contain the size of buffer required
to supply ALL the requisite information. If the application decides that the partial data
isinadequate, it may reissue the W SAAsyncGetProtoByName() function call with a
buffer large enough to receive al the desired information (i.e. no smaller than the low
16 bits of |Param).

The error code and buffer length should be extracted from the IParam using the macros
WSAGETASYNCERROR and WSAGETASY NCBUFLEN, defined in winsock.h as:

WSAAsyncGetProtoByName 77

Return Value

Comments

Notes For

#def i ne WBAGETASYNCERROR(| Par am H WORD(| Par am
#def i ne WBAGETASYNCBUFLEN(| Par am LONDRD(| Par am

The use of these macros will maximize the portability of the source code for the
application.

The return value specifies whether or not the asynchronous operation was successfully
initiated. Note that it does not imply success or failure of the operation itself.

If the operation was successfully initiated, WSAAsyncGetProtoByName() returns a
nonzero value of type HANDLE which is the asynchronous task handle for the request.
This value can be used in two ways. It can be used to cancel the operation using
WSACancelAsyncRequest(). It can also be used to match up asynchronous operations
and compl etion messages, by examining the wParam message argument.

If the asynchronous operation could not be initiated, W SAAsyncGetProtoByName()
returns a zero value, and a specific error number may be retrieved by calling
WSAGetL astError ().

The buffer supplied to this function is used by the Windows Sockets implementation to
construct a protoent structure together with the contents of data areas referenced by
members of the same protoent structure. To avoid the WSAENOBUFS error noted
above, the application should provide a buffer of at least MAXGETHOSTSTRUCT
bytes (as defined in winsock.h).

Windows Sockets

Suppliers

Error Codes

It isthe responsibility of the Windows Sockets implementation to ensure that messages
are successfully posted to the application. If a PostM essage() operation fails, the
Windows Sockets implementation must re-post that message as long as the window
exists.

Windows Sockets suppliers should use the WSAMAKEASYNCREPLY macro when
constructing the IParam in the message.

The following error codes may be set when an application window receives a message.
As described above, they may be extracted from the IParamin the reply message using
the WSAGETASY NCERROR macro.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSAENOBUFS No/insufficient buffer space is available

WSAHOST _NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
SERVERFAIL.

WSANO RECOVERY Non recoverable errors, FORMERR, REFUSED,

NOTIMP.

WSAAsyncGetProtoByName 78

WSANO_DATA Valid name, no data record of requested type.

The following errors may occur at the time of the function call, and indicate that the
asynchronous operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets operationisin
progress.

WSAEWOULDBLOCK The asynchronous operation cannot be scheduled at

this time due to resource or other constraints within
the Windows Sockets implementation.

See Also getprotobyname(), WSACancel AsyncRequest()

WSAAsyncGetProtoByNumber 79

4.3.4 WSAAsyncGetProtoByNumber()

Description

Remarks

Get protocol information corresponding to a protocol number - asynchronous version.
#include <winsock.h>

HANDLE PASCAL FAR WSAAsyncGetProtoByNumber (HWND hwhnd,
unsigned int wMsg, int number, char FAR * buf, int buflen);

hwnd The handle of the window which should receive a message when the
asynchronous request completes.

wMsg The message to be received when the asynchronous request
completes.

number The protocol number to be resolved, in host byte order.

buf A pointer to the data area to receive the protoent data. Note that this

must be larger than the size of a protoent structure. Thisis because
the data area supplied is used by the Windows Sockets
implementation to contain not only a protoent structure but any and
all of the datawhich is referenced by members of the protoent
structure. It isrecommended that you supply a buffer of
MAXGETHOSTSTRUCT bytes.

buflen The size of data area buf above.

This function is an asynchronous version of getpr otobynumber (), and is used to
retrieve the protocol nhame and number corresponding to a protocol number. The
Windows Sockets implementation initiates the operation and returns to the caller
immediately, passing back an asynchronous task handle which the application may use
to identify the operation. When the operation is completed, the results (if any) are
copied into the buffer provided by the caller and a message is sent to the application’ s
window.

When the asynchronous operation is complete the application’ swindovwn\Wnd receives
message wMsg. The wParam argument contains the asynchronous task handle as
returned by the original function call. The high 16 bits of IParam contain any error
code. The error code may be any error as defined in winsock.h. An error code of zero
indicates successful completion of the asynchronous operation. On successful
completion, the buffer supplied to the original function call contains a protoent
structure. To access the elements of this structure, the original buffer address should be
cast to a protoent structure pointer and accessed as appropriate.

Note that if the error code is WSAENOBUFS, it indicates that the size of the buffer
specified by buflen in the original call was too small to contain all the resultant
information. In this case, the low 16 bits of IParam contain the size of buffer required
to supply ALL the requisite information. If the application decides that the partial data
isinadequate, it may reissue the W SAAsyncGetProtoByNumber () function call with a
buffer large enough to receive all the desired information (i.e. no smaller than the low
16 bits of |Param).

WSAAsyncGetProtoByNumber 80

Return Value

Comments

Notes For

The error code and buffer length should be extracted from the IParam using the macros
WSAGETASYNCERROR and WSAGETASY NCBUFLEN, defined in winsock.h as:

#def i ne WBAGETASYNCERROR(| Par am H WORD(| Par am
#def i ne WBAGETASYNCBUFLEN(| Par am LONORD(| Par am

The use of these macros will maximize the portability of the source code for the
application.

The return value specifies whether or not the asynchronous operation was successfully
initiated. Note that it does not imply success or failure of the operation itself.

If the operation was successfully initiated, W SAAsyncGetProtoByNumber () returns a
nonzero value of type HANDLE which is the asynchronous task handle for the request.
This value can be used in two ways. It can be used to cancel the operation using
WSACancelAsyncRequest(). It can also be used to match up asynchronous operations
and compl etion messages, by examining the wParam message argument.

If the asynchronous operation could not be initiated, W SAAsyncGetProtoByNumber ()
returns a zero value, and a specific error number may be retrieved by calling
WSAGetL astError ().

The buffer supplied to this function is used by the Windows Sockets implementation to
construct a protoent structure together with the contents of data areas referenced by
members of the same protoent structure. To avoid the WSAENOBUFS error noted
above, the application should provide a buffer of at least MAXGETHOSTSTRUCT
bytes (as defined in winsock.h).

Windows Sockets

Suppliers

Error Codes

It isthe responsibility of the Windows Sockets implementation to ensure that messages
are successfully posted to the application. If a PostM essage() operation fails, the
Windows Sockets implementation must re-post that message as long as the window
exists.

Windows Sockets suppliers should use the WSAMAKEASYNCREPLY macro when
constructing the IParam in the message.

The following error codes may be set when an application window receives a message.
As described above, they may be extracted from the IParamin the reply message using
the WSAGETASY NCERROR macro.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.
WSAENOBUFS No/insufficient buffer space is available
WSAHOST _NOT_FOUND Authoritative Answer Host not found.
WSATRY_AGAIN Non-Authoritative Host not found, or

SERVERFAIL.

WSAAsyncGetProtoByNumber 81

WSANO RECOVERY Non recoverable errors, FORMERR, REFUSED,
NOTIMP.
WSANO_DATA Valid name, no data record of requested type.

The following errors may occur at the time of the function call, and indicate that the
asynchronous operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets operationisin
progress.

WSAEWOULDBLOCK The asynchronous operation cannot be scheduled at

this time due to resource or other constraints within
the Windows Sockets implementation.
See Also getprotobynumber (), WSACance AsyncRequest()

WSAAsyncGetServByName 82

4.3.5 WSAAsyncGetServByName()

Description

Remarks

Get service information corresponding to a service name and port - asynchronous
version.

#include <winsock.h>

HANDLE PASCAL FAR WSAAsyncGetServByName (HWND hwnd,
unsigned int wMsg, const char FAR * name, const char FAR * proto, char FAR *
buf, int buflen);

hwnd The handle of the window which should receive a message when the
asynchronous request completes.

wMsg The message to be received when the asynchronous request
completes.

name A pointer to a service name.

proto A pointer to aprotocol name. Thismay be NULL, in which case

W SAAsyncGetServByName() will search for the first service entry
for which s name or one of the s_aliases matches the given name.
Otherwise WSAAsyncGet Ser vByName() matches both name and
proto.

buf A pointer to the data area to receive the servent data. Note that this
must be larger than the size of a servent structure. Thisis because the
data area supplied is used by the Windows Sockets implementation to
contain not only a servent structure but any and all of the data which
is referenced by members of the servent structure. It is recommended
that you supply a buffer of MAXGETHOSTSTRUCT bytes.

buflen The size of data area buf above.

This function is an asynchronous version of getservbyname(), and is used to retrieve
service information corresponding to a service name. The Windows Sockets
implementation initiates the operation and returns to the caller immediately, passing
back an asynchronous task handle which the application may use to identify the
operation. When the operation is completed, the results (if any) are copied into the
buffer provided by the caller and a message is sent to the application’ swindow.

When the asynchronous operation is complete the application’ swindovwh\Wnd receives
message wMsg. The wParam argument contains the asynchronous task handle as
returned by the original function call. The high 16 bits of IParam contain any error
code. The error code may be any error as defined in winsock.h. An error code of zero
indicates successful completion of the asynchronous operation. On successful
completion, the buffer supplied to the original function call contains a hostent structure.
To access the elements of this structure, the original buffer address should be cast to a
hostent structure pointer and accessed as appropriate.

Note that if the error code is WSAENOBUFS, it indicates that the size of the buffer
specified by buflen in the original call was too small to contain all the resultant
information. In this case, the low 16 bits of IParam contain the size of buffer required

WSAAsyncGetServByName 83

Return Value

Comments

Notes For

to supply ALL the requisite information. If the application decides that the partial data
isinadequate, it may reissue the W SAAsyncGet Ser vByName() function call with a
buffer large enough to receive all the desired information (i.e. no smaller than the low
16 bits of |Param).

The error code and buffer length should be extracted from the IParam using the macros
WSAGETASYNCERROR and WSAGETASY NCBUFLEN, defined in winsock.h as:

#def i ne WBAGETASYNCERROR(| Par am H WORD(| Par am
#def i ne WBAGETASYNCBUFLEN(| Par am LONDRD(| Par am

The use of these macros will maximize the portability of the source code for the
application.

The return value specifies whether or not the asynchronous operation was successfully
initiated. Note that it does not imply success or failure of the operation itself.

If the operation was successfully initiated, W SAAsyncGet Ser vByName() returns a
nonzero value of type HANDLE which is the asynchronous task handle for the request.
This value can be used in two ways. It can be used to cancel the operation using
WSACancelAsyncRequest(). It can also be used to match up asynchronous operations
and compl etion messages, by examining the wParam message argument.

If the asynchronous operation could not be initiated, W SAAsyncSer vByName() returns
azero value, and a specific error number may be retrieved by calling
WSAGetL astError ().

The buffer supplied to this function is used by the Windows Sockets implementation to
construct a hostent structure together with the contents of data areas referenced by
members of the same hostent structure. To avoid the WSAENOBUFS error noted
above, the application should provide a buffer of at least MAXGETHOSTSTRUCT
bytes (as defined in winsock.h).

Windows Sockets

Suppliers

Error Codes

It isthe responsibility of the Windows Sockets implementation to ensure that messages
are successfully posted to the application. If a PostM essage() operation fails, the
Windows Sockets implementation must re-post that message as long as the window
exists.

Windows Sockets suppliers should use the WSAMAKEASYNCREPLY macro when
constructing the IParam in the message.

The following error codes may be set when an application window receives a message.
As described above, they may be extracted from the IParamin the reply message using
the WSAGETASY NCERROR macro.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSAENOBUFS No/insufficient buffer space is available

WSAAsyncGetServByName 84

See Also

WSAHOST _NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
SERVERFAIL.

WSANO RECOVERY Non recoverable errors, FORMERR, REFUSED,
NOTIMP.

WSANO_DATA Valid name, no data record of requested type.

The following errors may occur at the time of the function call, and indicate that the
asynchronous operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets operation isin
progress.

WSAEWOULDBLOCK The asynchronous operation cannot be scheduled at

this time due to resource or other constraints within
the Windows Sockets implementation.

getser vbyname(), WSACancel AsyncRequest()

WSAAsyncGetServByPort 85

4.3.6 WSAAsyncGetServByPort()

Description

Remarks

Get service information corresponding to a port and protocol - asynchronous version.
#include <winsock.h>
HANDLE PASCAL FAR WSAAsyncGetServByPort (HWND hwnd,

unsigned int wMsg, int port, const char FAR * proto, char FAR * buf, int buflen);

hwnd The handle of the window which should receive a message when the
asynchronous request completes.

wMsg The message to be received when the asynchronous request
completes.

port The port for the service, in network byte order.

proto A pointer to aprotocol name. Thismay be NULL, in which case

W SAAsyncGetServByPort() will search for the first service entry for
which s_port match the given port. Otherwise
W SAAsyncGetServByPort() matches both port and proto.

buf A pointer to the data area to receive the servent data. Note that this
must be larger than the size of a servent structure. Thisis because the
data area supplied is used by the Windows Sockets implementation to
contain not only a servent structure but any and all of the data which
is referenced by members of the servent structure. It is recommended
that you supply a buffer of MAXGETHOSTSTRUCT bytes.

buflen The size of data area buf above.

This function is an asynchronous version of getservbyport(), and is used to retrieve
service information corresponding to a port number. The Windows Sockets
implementation initiates the operation and returns to the caller immediately, passing
back an asynchronous task handle which the application may use to identify the
operation. When the operation is completed, the results (if any) are copied into the
buffer provided by the caller and a message is sent to the application’ swindow.

When the asynchronous operation is complete the application’ swindovwh\Wnd receives
message wMsg. The wParam argument contains the asynchronous task handle as
returned by the original function call. The high 16 bits of IParam contain any error
code. The error code may be any error as defined in winsock.h. An error code of zero
indicates successful completion of the asynchronous operation. On successful
completion, the buffer supplied to the original function call contains a servent structure.
To access the elements of this structure, the original buffer address should be cast to a
servent structure pointer and accessed as appropriate.

Note that if the error code is WSAENOBUFS, it indicates that the size of the buffer
specified by buflen in the original call was too small to contain all the resultant
information. In this case, the low 16 bits of IParam contain the size of buffer required
to supply ALL the requisite information. If the application decides that the partial data
isinadequate, it may reissue the W SAAsyncGetServByPort() function call with a

WSAAsyncGetServByPort 86

Return Value

Comments

Notes For

buffer large enough to receive all the desired information (i.e. no smaller than the low
16 bits of |Param).

The error code and buffer length should be extracted from the IParam using the macros
WSAGETASYNCERROR and WSAGETASY NCBUFLEN, defined in winsock.h as:

#def i ne WBAGETASYNCERROR(| Par am H WORD(| Par am
#def i ne WBAGETASYNCBUFLEN(| Par am LONDRD(| Par am

The use of these macros will maximize the portability of the source code for the
application.

The return value specifies whether or not the asynchronous operation was successfully
initiated. Note that it does not imply success or failure of the operation itself.

If the operation was successfully initiated, W SAAsyncGetSer vByPort() returnsa
nonzero value of type HANDLE which is the asynchronous task handle for the request.
This value can be used in two ways. It can be used to cancel the operation using
WSACancelAsyncRequest(). It can also be used to match up asynchronous operations
and compl etion messages, by examining the wParam message argument.

If the asynchronous operation could not be initiated, W SAAsyncGetSer vByPort()
returns a zero value, and a specific error number may be retrieved by calling
WSAGetL astError ().

The buffer supplied to this function is used by the Windows Sockets implementation to
construct a servent structure together with the contents of data areas referenced by
members of the same servent structure. To avoid the WSAENOBUFS error noted
above, the application should provide a buffer of at least MAXGETHOSTSTRUCT
bytes (as defined in winsock.h).

Windows Sockets

Suppliers

Error Codes

It isthe responsibility of the Windows Sockets implementation to ensure that messages
are successfully posted to the application. If a PostM essage() operation fails, the
Windows Sockets implementation must re-post that message as long as the window
exists.

Windows Sockets suppliers should use the WSAMAKEASYNCREPLY macro when
constructing the IParam in the message.

The following error codes may be set when an application window receives a message.
As described above, they may be extracted from the IParamin the reply message using
the WSAGETASY NCERROR macro.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSAENOBUFS No/insufficient buffer space is available

WSAHOST _NOT_FOUND Authoritative Answer Host not found.

WSAAsyncGetServByPort 87

See Also

WSATRY_AGAIN

WSANO_RECOVERY

WSANO_DATA

Non-Authoritative Host not found, or
SERVERFAIL.

Non recoverable errors, FORMERR, REFUSED,
NOTIMP.

Valid name, no data record of requested type.

The following errors may occur at the time of the function call, and indicate that the
asynchronous operation could not be initiated.

WSANOTINITIALISED

WSAENETDOWN

WSAEINPROGRESS

WSAEWOULDBLOCK

A successful WSAStartup() must occur before
using this API.

The Windows Sockets implementation has detected
that the network subsystem has failed.

A blocking Windows Sockets operation isin
progress.

The asynchronous operation cannot be scheduled at
this time due to resource or other constraints within
the Windows Sockets implementation.

getservbyport(), WSACancel AsyncRequest()

WSAAsyncSelect 88

4.3.7 WSAAsyncSelect()

Description

Remarks

Request event notification for a socket.
#include <winsock.h>

int PASCAL FAR WSAAsyncSelect (SOCKET s, HWND hwhnd,
unsigned int wMsg, long IEvent);

S A descriptor identifying the socket for which event notification is
required.

hwnd A handle identifying the window which should receive a message
when a network event occurs.

wMsg The message to be received when a network event occurs.

[Event A bitmask which specifies a combination of network eventsin which

the application is interested.

This function is used to request that the Windows Sockets DLL should send a message
to the window hwhd whenever it detects any of the network events specified by the
[Event parameter. The message which should be sent is specified by the wMsg
parameter. The socket for which notification isrequired isidentified by s.

This function automatically sets socket sto non-blocking mode.

The |Event parameter is constructed by or' ing any of the values specified in the
following list.

Vaue Meaning

FD_READ Want to receive notification of readiness for reading
FD_WRITE Want to receive notification of readiness for writing
FD_0OOB Want to receive notification of the arrival of out-of-band data

FD_ACCEPT Want to receive notification of incoming connections
FD_CONNECT Want to receive notification of completed connection
FD_CLOSE Want to receive notification of socket closure

Issuing a W SAAsyncSelect() for a socket cancels any previous W SAAsyncSelect() for
the same socket. For example, to receive notification for both reading and writing, the
application must call WSAAsyncSelect() with both FD_READ and FD_WRITE, as
follows:

rc = WBAAsyncSel ect (s, hwid, wwvsg, FD READ| FD WRI TE);

It is not possible to specify different messages for different events. The following code
will not work; the second call will cancel the effects of thefirst, and only FD_WRITE
events will be reported with message wM sg2:

rc
rc

WBAAsyncSel ect (s, hwid, wwvsgl, FD READ);
WBAAsyncSel ect (s, hwd, wwvsg2, FD WRI TE);

WSAAsyncSelect 89

To cancel al notification - i.e., to indicate that the Windows Sockets implementation
should send no further messages related to network events on the socket — |Event should
be set to zero.

rc = WeAAsyncSel ect (s, hwd, 0, 0);

Although in thisinstance WSAAsyncSelect() immediately disables event message
posting for the socket, it is possible that messages may be waiting in the application’ s
message queue. The application must therefore be prepared to receive network event
messages even after cancellation. Closing a socket with closesocket() also cancels
WSAAsyncSelect() message sending, but the same caveat about messages in the queue
prior to the closesocket() still applies.

Since an accept()'ed socket has the same properties as the listening socket used to
accept it, any WSAAsyncSelect() events set for the listening socket apply to the
accepted socket. For example, if alistening socket has WSAAsyncSelect() events
FD_ACCEPT, FD_READ, and FD_WRITE, then any socket accepted on that listening
socket will also have FD_ACCEPT, FD_READ, and FD_WRITE events with the same
wMsg value used for messages. If adifferent wMsg or events are desired, the
application should call WSAAsyncSelect(), passing the accepted socket and the desired
new information.”

When one of the nominated network events occurs on the specified socket s, the
application’ swindowh\Wnd receives message wMsg. The wParam argument identifies
the socket on which a network event has occurred. The low word of |Param specifies
the network event that has occurred. The high word of |Param contains any error code.
The error code be any error as defined in winsock.h.

The error and event codes may be extracted from the |Param using the macros
WSAGETSELECTERROR and WSAGETSELECTEVENT, defined in winsock.h as:

#def i ne WBAGETSELECTERROR(| Par am H WORD(| Par am
#def i ne WBAGETSELECTEVENT(| Par am LONORD(| Par am

The use of these macros will maximize the portability of the source code for the
application.

The possible network event codes which may be returned are as follows:

Vaue Meaning

FD_READ Socket sready for reading

FD_WRITE Socket s ready for writing

FD_OOB Out-of-band data ready for reading on socket s.
FD_ACCEPT Socket sready for accepting a new incoming connection
FD_CONNECT Connection on socket s completed

FD_CLOSE Connection identified by socket s has been closed

"Note that there is atiming window between the accept() call and the call to WSAAsyncSelect() to
change the events or wMsg. An application which desires a different wMsg for the listening and

accept()' ed sockets should ask for only FD_ACCEPT events on the listening socket, then set appropriate
events after the accept(). Since FD_ACCEPT is never sent for a connected socket and FD_READ,
FD_WRITE, FD_OOB, and FD_CL OSE are never sent for listening sockets, thiswill not impose
difficulties.

WSAAsyncSelect 90

Return Value ThereturnvalueisO if the application' s declaration of interest in the network event set

Comments

was successful. Otherwise the value SOCKET_ERROR isreturned, and a specific error
number may be retrieved by calling WSAGetL astError ().

Although WSAAsyncSelect() can be called with interest in multiple events, the
application window will receive a single message for each network event.

Asin the case of the select() function, WSAAsyncSelect() will frequently be used to
determine when a data transfer operation (send() or recv()) can be issued with the
expectation of immediate success. Nevertheless, a robust application must be prepared
for the possibility that it may receive a message and issue a Windows Sockets API call
which returns WSAEWOULDBLOCK immediately. For example, the following
sequence of eventsis possible:

(i) data arrives on socket s; Windows Sockets posts W SAAsyncSel ect
message

(i) application processes some other message

(iii) while processing, application issues an ioctlsocket(s, FIONREAD...)
and notices that there is data ready to be read

(iv) application issues arecv(s,...) to read the data

(v) application loops to process next message, eventually reaching the
W SAAsyncSelect message indicating that datais ready to read

(vi) application issuesrecv(s,...), which fails with the error
WSAEWOULDBLOCK.

Other sequences are possible.

The Windows Sockets DLL will not continually flood an application with messages for
aparticular network event. Having successfully posted notification of a particular event
to an application window, no further message(s) for that network event will be posted to
the application window until the application makes the function call which implicitly
reenables notification of that network event.

Event Re-enabling function
FD_READ recv() or recvfrom()
FD_WRITE send() or sendto()
FD_OOB recv()

FD_ACCEPT accept()
FD_CONNECT NONE

FD_CLOSE NONE

Any call to the reenabling routine, even one which fails, results in reenabling of
message posting for the relevant event.

For FD_READ, FD_OOB, and FD_ACCEPT events, message posting is "level-
triggered.” This meansthat if the reenabling routine is called and the relevant event is
till valid after the call, a W SAAsyncSelect() message is posted to the application.
This allows an application to be event-driven and not concern itself with the amount of
datathat arrives at any one time. Consider the following sequence:

WSAAsyncSelect 91

(i) Windows Sockets DLL receives 100 bytes of data on socket s and
posts an FD_READ message.

(i) The application issues recv(s, buffptr, 50, 0) to read 50 bytes.

(iii) The Windows Sockets DLL posts another FD_READ message since

thereis still datato be read.

With these semantics, an application need not read all available datain response to an
FD_READ message--asinglerecv() in response to each FD_READ messageis
appropriate. If an application issues multiple recv() callsin response to asingle
FD_READ, it may receive multiple FD_READ messages. Such an application may
wish to disable FD_READ messages before starting the recv() calls by calling

W SAAsyncSelect() with the FD_READ event not set.

If an event is true when the application initially calls WSAAsyncSelect() or when the
reenabling function is called, then a message is posted as appropriate. For example, if
an application callslisten(), a connect attempt is made, then the application calls

W SAAsyncSelect() specifying that it wants to receive FD_ACCEPT messages for the
socket, the Windows Sockets implementation posts an FD_ACCEPT message
immediately.

The FD_WRITE event is handled slightly differently. An FD_WRITE messageis
posted when a socket is first connected with connect() or accepted with accept(), and
then after a send() or sendto() fails with WSAEWOULDBLOCK and buffer space
becomes available. Therefore, an application can assume that sends are possible
starting from the first FD_WRITE message and lasting until a send returns
WSAEWOULDBLOCK. After such afailure the application will be notified that sends
are again possible with an FD_WRITE message.

The FD_OOB event is used only when a socket is configured to receive out-of-band
data separately. If the socket is configured to receive out-of-band datain-line, the out-
of-band (expedited) datais treated as normal data and the application should register an
interest in, and will receive, FD_READ events, not FD_OOB events. An application
may set or inspect the way in which out-of-band data isto be handled by using
setsockopt() or getsockopt() for the SO_OOBINLINE option.

The error code in an FD_CL OSE message indicates whether the socket close was
graceful or abortive. If the error code is 0, then the close was graceful; if the error code
is WSAECONNRESET, then the socket' svirtual socket wasreset. Thisonly appliesto
sockets of type SOCK_STREAM.

The FD_CL OSE message is posted when a close indication is received for the virtual
circuit corresponding to the socket. In TCP terms, this meansthat the FD_CLOSE is
posted when the connection goes into the FIN WAIT or CLOSE WAIT states. This
results from the remote end performing a shutdown() on the send side or a
closesocket().

Please note your application will receive ONLY an FD_CL OSE message to indicate
closure of avirtual circuit. It will NOT receive an FD_READ message to indicate this
condition.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAAsyncSelect 92

WSAENETDOWN

WSAEINVAL

WSAEINPROGRESS

The Windows Sockets implementation has detected
that the network subsystem has failed.

Indicates that one of the specified parameters was
invalid

A blocking Windows Sockets operation isin
progress.

Additional error codes may be set when an application window receives a message.
This error code is extracted from the [Param in the reply message using the
WSAGETSELECTERROR macro. Possible error codes for each network event are:

Event: FD_CONNECT
Error Code

Meaning

WSAEADDRINUSE

WSAEADDRNOTAVAIL

WSAEAFNOSUPPORT

WSAECONNREFUSED
WSAEDESTADDRREQ
WSAEFAULT
WSAEINVAL
WSAEISCONN
WSAEMFILE

WSAENETUNREACH

WSAENOBUFS

WSAENOTCONN

WSAENOTSOCK

WSAETIMEDOUT

Event: FD_CLOSE
Error Code

The specified addressis already in use.

The specified address is not available from the local
machine.

Addresses in the specified family cannot be used
with this socket.

The attempt to connect was forcefully rejected.
A destination address is required.

The namelen argument is incorrect.

The socket is already bound to an address.

The socket is already connected.

No more file descriptors are available.

The network can' t be reached from this host at this
time.

No buffer spaceisavailable. The socket cannot be
connected.

The socket is not connected.
The descriptor is afile, not a socket.
Attempt to connect timed out without establishing a

connection

Meaning

WSAENETDOWN

WSAECONNRESET

The Windows Sockets implementation has detected
that the network subsystem has failed.

The connection was reset by the remote side.

WSAAsyncSelect 93

Notes For

WSAECONNABORTED

Event: FD_READ
Event: FD WRITE
Event: FD_OOB
Event: FD_ACCEPT
Error Code

The connection was aborted due to timeout or other
failure.

Meaning

WSAENETDOWN

Windows Sockets
It isthe responsibility of the Windows Sockets Supplier to ensure that messages are
successfully posted to the application. If aPostM essage() operation fails, the Windows
Sockets implementation MUST re-post that message as long as the window exists.

Suppliers

See Also

The Windows Sockets implementation has detected
that the network subsystem has failed.

Windows Sockets suppliers should use the WSAMAKESELECTREPLY macro when
constructing the IParam in the message.

When a socket is closed, the Windows Sockets Supplier should purge any messages
remaining for posting to the application window. However the application must be
prepared to receive, and discard, any messages which may have been posted prior to the

closesocket().

select()

WSACancelAsyncRequest 94

4.3.8 WSACancelAsyncRequest()

Description

Remarks

Return Value

Comments

Notes For

Cancel an incomplete asynchronous operation.
#include <winsock.h>

int PASCAL FAR WSACancelAsyncRequest (HANDL E hAsyncTaskHandle);

hAsyncTaskHandle Specifies the asynchronous operation to be cancel ed.

The WSACancelAsyncRequest() function is used to cancel an asynchronous operation
which was initiated by one of the WSAAsyncGetXByY () functions such as
WSAAsyncGetHostByName(). The operation to be canceled is identified by the
hAsyncTaskHandl e parameter, which should be set to the asynchronous task handle as
returned by the initiating function.

The value returned by W SACancel AsyncRequest() is O if the operation was
successfully canceled. Otherwise the value SOCKET_ERROR isreturned, and a
specific error number may be retrieved by calling WSAGetL astError ().

An attempt to cancel an existing asynchronous WSAAsyncGetXByY () operation can
fail with an error code of WSAEALREADY for two reasons. First, the original
operation has already completed and the application has dealt with the resultant
message. Second, the original operation has already completed but the resultant
message is still waiting in the application window queue.

Windows Sockets

Suppliers

Error Codes

It is unclear whether the application can usefully distinguish between WSAEINVAL
and WSAEALREADY, since in both cases the error indicates that thereis no
asynchronous operation in progress with the indicated handle. [Trivial exception: 0is
always an invalid asynchronous task handle.] The Windows Sockets specification does
not prescribe how a conformant Windows Sockets implementation should distinguish
between the two cases. For maximum portability, a Windows Sockets application
should treat the two errors as equivalent.

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSAEINVAL Indicates that the specified asynchronous task handle
wasinvalid

WSAEINPROGRESS A blocking Windows Sockets operationisin
progress.

WSAEALREADY The asynchronous routine being canceled has

already completed.

WSACancelAsyncRequest 95

See Also WSAAsyncGetHostByAddr (), WSAAsyncGetHostByName(),
W SAAsyncGetProtoByNumber (), WSAAsyncGetProtoByName(),
W SAAsyncGetHostByName(), WSAAsyncGet ServByPort(),
W SAAsyncGetServByName().

WSACancelBlockingCall 96

4.3.9 WSACancelBlockingCall()

Description

Remarks

Return Value

Comments

Cancel ablocking call which is currently in progress.
#include <winsock.h>
int PASCAL FAR WSACancelBlockingCall (void);

This function cancels any outstanding blocking operation for thistask. It isnormally
used in two situations:

(1) An application is processing a message which has been received while a blocking
call isin progress. In this case, WSAIsBlocking() will be true.

(2) A blocking call isin progress, and Windows Sockets has called back to the
application’ s"blocking hook™ function (as established byV SA SetBlockingH ook ()).

In each case, the original blocking call will terminate as soon as possible with the error
WSAEINTR. (In (1), the termination will not take place until Windows message
scheduling has caused control to revert to the blocking routine in Windows Sockets. In
(2), the blocking call will be terminated as soon as the blocking hook function
completes.)

In the case of a blocking connect() operation, the Windows Sockets implementation
will terminate the blocking call as soon as possible, but it may not be possible for the
socket resources to be released until the connection has completed (and then been reset)
or timed out. Thisislikely to be noticeable only if the application immediately triesto
open anew socket (if no sockets are available), or to connect() to the same peer.

Cancelling an accept() or aselect() call does not adversely impact the sockets passed to
these calls. Only the particular call fails; any operation that was legal before the cancel
islegal after the cancel, and the state of the socket is not affected in any way.

Cancelling any operation other than accept() and select() can leave the socket in an
indeterminate state. If an application cancels a blocking operation on a socket, the only
operation that the application can depend on being able to perform on the socket isa
call to closesocket(), although other operations may work on some Windows Sockets
implementations. If an application desires maximum portability, it must be careful not
to depend on performing operations after a cancel. An application may reset the
connection by setting the timeout on SO_LINGER to 0.

If acancel operation compromised the integrity of a SOCK_STREAM' sdata streamin
any way, the Windows Sockets implementation must reset the connection and fail all
future operations other than closesocket() with WSAECONNABORTED.

The value returned by W SACancelBlockingCall() is O if the operation was
successfully canceled. Otherwise the value SOCKET_ERROR isreturned, and a
specific error number may be retrieved by calling WSAGetL astError ().

Note that it is possible that the network operation completes before the

W SACancelBlockingCall() is processed, for example if datais received into the user
buffer at interrupt time while the application isin ablocking hook. In this case, the
blocking operation will return successfully asif W SACancelBlockingCall() had never
been called. Note that the WSACancelBlockingCall() still succeedsin this case; the

WSACancelBlockingCall 97

Error Codes

only way to know with certainty that an operation was actually canceled is to check for
areturn code of WSAEINTR from the blocking call.

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.
WSAENETDOWN The Windows Sockets implementation has detected

that the network subsystem has failed.

WSAEINVAL Indicates that there is no outstanding blocking call.

WSACleanup 98

4.3.10 WSACleanup()

Description

Remarks

Return Value

Comments

Notes For

Terminate use of the Windows Sockets DLL.
#include <winsock.h>
int PASCAL FAR WSACleanup (void);

An application or DLL isrequired to perform a (successful) WSAStartup() call before
it can use Windows Sockets services. When it has completed the use of Windows
Sockets, the application or DLL must call WSACleanup() to deregister itself from a
Windows Sockets implementation and allow the implementation to free any resources
allocated on behalf of the application or DLL. Any open SOCK_STREAM sockets that
are connected when WSACleanup() is called are reset; sockets which have been closed
with closesocket () but which still have pending data to be sent are not affected--the
pending datais still sent.

There must be a call to WSACleanup() for every call to WSAStartup() made by a
task. Only the final WSACleanup() for that task does the actual cleanup; the preceding
calls ssmply decrement an internal reference count in the Windows Sockets DLL. A
naive application may ensure that W SACleanup() was called enough times by calling
WSACleanup() in aloop until it returns WSANOTINITIALISED.

Thereturn valueis O if the operation was successful. Otherwise the value
SOCKET_ERROR is returned, and a specific error number may be retrieved by calling
WSAGetL astError ().

Attempting to call WSACleanup() from within a blocking hook and then failing to
check the return code is a common Windows Sockets programming error. If an
application needs to quit while a blocking call is outstanding, the application must first
cancel the blocking call with W SACancelBlockingCall() then issue the

W SACleanup() call once control has been returned to the application.

Windows Sockets

Suppliers

Error Codes

Well-behaved Windows Sockets applications will make a W SACleanup() call to
indicate deregistration from a Windows Sockets implementation. This function can
thus, for example, be utilized to free up resources allocated to the specific application.

A Windows Sockets implementation must be prepared to deal with an application
which terminates without invoking WSACleanup() - for example, as aresult of an
error.

In amultithreaded environment, W SACleanup() terminates Windows Sockets
operations for all threads.

A Windows Sockets implementation must ensure that W SACleanup() leavesthingsin
a state in which the application can invoke WSA Startup() to re-establish Windows
Sockets usage.

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSACleanup 99

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets operationisin
progress.

See Also WSAStartup()

WSAGetLastError 100

4.3.11 WSAGetLastError()

Description

Remarks

Return Value

Notes For

Get the error status for the last operation which failed.
#include <winsock.h>
int PASCAL FAR WSAGetL astError (void);

This function returns the last network error that occurred. When a particular Windows
Sockets API function indicates that an error has occurred, this function should be called
to retrieve the appropriate error code.

The return value indicates the error code for the last Windows Sockets API routine
performed by this thread.

Windows Sockets

Suppliers

See Also

The use of the WSAGetL astError() function to retrieve the last error code, rather than
relying on aglobal error variable (cf. errno), is required in order to provide
compatibility with future multi-threaded environments.

Note that in a nonpreemptive Windows environment WSAGetL astError () isused to
retrieve only Windows Sockets API errors. In apreemptive environment,

WSAGetL astError() will invoke GetLastError (), which is used to retrieve the error
status for all Win32 API functions on a per-thread basis. For portability, an application
should use WSAGetL astError () immediately after the Windows Sockets API function
which failed.

WSASetL astError()

WSAIsBlocking 101

4.3.12 WSAIsBlocking()

Description

Remarks

Return Value

Comments

Notes For

Determine if ablocking call isin progress.
#include <winsock.h>
BOOL PASCAL FAR WSAIsBlocking (void);

This function allows atask to determine if it is executing while waiting for a previous
blocking call to complete.

Thereturn value is TRUE if thereis an outstanding blocking function awaiting
completion. Otherwise, itis FALSE.

Although a call issued on a blocking socket appears to an application program as
though it "blocks", the Windows Sockets DLL has to relinquish the processor to allow
other applicationsto run. Thismeansthat it is possible for the application which issued
the blocking call to be re-entered, depending on the message(s) it receives. In this
instance, the W SAI sBlocking() function can be used to ascertain whether the task has
been re-entered while waiting for an outstanding blocking call to complete. Note that
Windows Sockets prohibits more than one outstanding call per thread.

Windows Sockets

Suppliers

A Windows Sockets implementation must prohibit more than one outstanding blocking
call per thread.

WSASetBlockingHook 102

4.3.13 WSASetBlockingHook()

Description

Remarks

Establish an application-specific blocking hook function.
#include <winsock.h>

FARPROC PASCAL FAR WSASetBlockingHook (FARPROC IpBlockFunc);

[pBlockFunc A pointer to the procedure instance address of the blocking function to
beinstalled.

This function installs a new function which a Windows Sockets implementation should
use to implement blocking socket function calls.

A Windows Sockets implementation includes a default mechanism by which blocking
socket functions are implemented. The function W SA SetBlockingHook() gives the
application the ability to execute its own function at "blocking" timein place of the
default function.

When an application invokes a blocking Windows Sockets APl operation, the Windows
Sockets implementation initiates the operation and then enters aloop which is similar to
the following pseudocode:

for(i:) {
/* flush messages for good user response */
whi | e(Bl ocki ngHook())

/* check for WSACancel Bl ocki ngCall () */
i f(operation_cancelled())
br eak;
/* check to see if operation conpleted */
i f(operation_conplete())
br eak; /* normal conpletion */

}

Note that Windows Sockets implementations may perform the above stepsin a different
order; for example, the check for operation complete may occur before calling the
blocking hook. The default BlockingHook() function is equivalent to:

BOOL Def aul t Bl ocki ngHook(voi d) {
MSG nsg;
BOOL ret;
/* get the next nessage if any */
ret = (BOOL) PeekMessage(&rsg, NULL, 0, 0, PM_REMOVE) ;
/[* if we got one, process it */
if (ret) {
Tr ansl at eMessage(&18Q) ;
Di spat chMessage(&r8Q) ;

}
/* TRUE if we got a nmessage */
return ret;

}

The WSA SetBlockingHook() function is provided to support those applications which
reguire more complex message processing - for example, those employing the MDI
(multiple document interface) model. It isnot intended as a mechanism for performing

WSASetBlockingHook 103

Return Value

Error Codes

See Also

general applications functions. In particular, the only Windows Sockets API function
which may be issued from a custom blocking hook function is
W SACancelBlockingCall(), which will cause the blocking loop to terminate.

This function must be implemented on a per-task basis for non-multithreaded versions
of Windows and on a per-thread basis for multithreaded versions of Windows such as
Windows NT. It thus provides for a particular task or thread to replace the blocking
mechanism without affecting other tasks or threads.

In multithreaded versions of Windows, there is no default blocking hook--blocking calls
block the thread that makes the call. However, an application may install a specific
blocking hook by calling W SA SetBlockingH ook ().

This allows easy portability of applications that depend on the blocking hook behavior.

The return value is a pointer to the procedure-instance of the previously installed
blocking function. The application or library that calls the W SA SetBlockingH ook ()
function should save this return value so that it can be restored if necessary. (If
"nesting" is not important, the application may simply discard the value returned by

W SA SetBlockingHook() and eventually use W SAUnhookBlockingHook() to restore
the default mechanism.) If the operation fails, aNULL pointer is returned, and a
specific error number may be retrieved by calling WSAGetL astError ().

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has detected
that the network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets operationisin
progress.

W SAUnhookBlockingHook()

WSASetLastError 104

4.3.14 WSASetLastError()
Description Set the error code which can be retrieved by WSAGetL astError ().

#include <winsock.h>
void PASCAL FAR WSASetLastError (intiError);
Remarks This function allows an application to set the error code to be returned by a subsequent

WSAGetL astError() cal for the current thread. Note that any subsequent Windows
Sockets routine called by the application will override the error code as set by this

routine.
iError Specifies the error code to be returned by a subsequent
WSAGetL astError () call.
Notes For
Windows Sockets
Suppliers In aWin32 environment, this function will invoke SetL astError ().

Return Value None.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

See Also WSAGetL astError()

WSAStartup 105

4.3.15 WSAStartup()

Description

| Remarks

#include <winsock.h>

int PASCAL FAR WSAStartup (WORD wVersionReguested,
LPWSADATA IpWSAData);

wVersionRequested The highest version of Windows Sockets APl support that the
caller can use. The high order byte specifies the minor
version (revision) number; the low-order byte specifies the
major version number.

I[pWSAData A pointer to the WSADATA data structure that isto receive
details of the Windows Sockets implementation.

Thisfunction MUST be the first Windows Sockets function called by an application or
DLL. It allowsan application or DLL to specify the version of Windows Sockets AP
required and to retrieve details of the specific Windows Sockets implementation. The
application or DLL may only issue further Windows Sockets API functions after a
successful WSAStartup() invocation.

In order to support future Windows Sockets implementations and applications which
may have functionality differences from Windows Sockets 1.1, a negotiation takes
placein WSAStartup(). The caller of WSAStartup() and the Windows Sockets DL L
indicate to each other the highest version that they can support, and each confirms that
the other' s highest version is acceptable. Upon entry t&V SAStartup(), the Windows
Sockets DLL examines the version requested by the application. If thisversionis
higher than the lowest version supported by the DLL, the call succeeds and the DLL
returnsin wHighVersion the highest version it supports and in wVersion the minimum
of its high version and wVersionRequested. The Windows Sockets DLL then assumes
that the application will use wVersion. If thew\Version field of the WSADATA
structure is unacceptable to the caller, it should call WSACleanup() and either search
for another Windows Sockets DLL or fail to initialize.

This negotiation allows both a Windows Sockets DLL and a Windows Sockets
application to support arange of Windows Sockets versions. An application can
successfully utilize a Windows Sockets DLL if there is any overlap in the version
ranges. The following chart gives examples of how WSAStartup() worksin
conjunction with different application and Windows Sockets DLL versions:

App versions | DLL Versions | wVersionRequested | wVersion | wHighVersion | End Result

11 11 11 11 11 usel.1l

1.011 1.0 11 1.0 1.0 use 1.0

1.0 1011 1.0 1.0 11 use 1.0

11 1011 11 11 11 usel.1l

1.1 1.0 11 1.0 1.0 Application fails

1.0 11 1.0 WSAVERNOTSUPPORTED
1.011 1011 11 11 11 usel.1l

1120 11 2.0 11 11 usel.1l

2.0 1.1 2.0 1.1 1.1 Application fails

WSAStartup 106

The following code fragment demonstrates how an application which supports only
version 1.1 of Windows Sockets makes a W SAStartup() call:

WORD wVersionRequested;
WSADATA wsaData;
int err;

wVersionRequested = MAKEWORD(1, 1);

err = WSAStartup(wVersionRequested, &wsaData);

if Cerr 1=0) {
/* Tell the user that we couldn®t find a useable */
/* winsock.dll. */
return;

}

/* Confirm that the Windows Sockets DLL supports 1.1.*/
/* Note that if the DLL supports versions greater */
/* than 1.1 in addition to 1.1, it will still return */
/* 1.1 in wVersion since that is the version we */
/* requested. */

if (LOBYTE(wsaData.wVersion) =1 |]
HIBYTE(wsaData.wVersion) I=

=1) {
/* Tell the user that we couldn"t find a

useable */

/* winsock.dll. */
WSACleanup();
return;

}

/* The Windows Sockets DLL is acceptable. Proceed. */

And this code fragment demonstrates how a Windows Sockets DLL which supports
only version 1.1 performs the W SA Star tup() negotiation:

/* Make sure that the version requested is >= 1.1. */
/* The low byte is the major version and the high */
/* byte is the minor version. */

if (LOBYTE(wVersionRequested) < 1 |]
(LOBYTE(wVersionRequested =1 &&
HIBYTE(wVersionRequested) <1) {
return WSAVERNOTSUPPORTED;

}
/* Since we only support 1.1, set both wVersion and */
/* wHighVersion to 1.1. */

IpWsaData->wVersion = MAKEWORD(1, 1);
IpWsaData->wHighVersion = MAKEWORD(1, 1);

Once an application or DLL has made a successful WSAStartup() call, it may proceed
to make other Windows Sockets API calls as needed. When it has finished using the
services of the Windows Sockets DLL, the application or DLL must call
WSACleanup() in order to allow the Windows Sockets DLL to free any resources for
the application.

WSAStartup 107

Details of the actual Windows Sockets implementation are described in the WSAData
structure defined as follows:

struct WSADat a {

WORD w\Ver si on;
WORD wHi ghVer si on;
char szDescri pti on[WBADESCRI PTI ON_LEN+1] ;
char szSyst entt at us[WSASYSSTATUS _LEN+1] ;
unsi gned short i MaxSocket s;
unsi gned short i MaxUdpDg;
char FAR * | pVendor I nf o;
i
The members of this structure are:
Element Usage
wVersion The version of the Windows Sockets specification that the Windows

wHighVersion

szDescription

szSystemStatus

iMaxSockets

iMaxUdpDg

Sockets DLL expectsthe caller to use.

The highest version of the Windows Sockets specification that this
DLL can support (also encoded as above). Normally thiswill be the
same as wversion.

A null-terminated ASCII string into which the Windows Sockets DL L
copies a description of the Windows Sockets implementation,
including vendor identification. The text (up to 256 charactersin
length) may contain any characters, but vendors are cautioned against
including control and formatting characters: the most likely use that
an application will put thisto isto display it (possibly truncated) in a
status message.

A null-terminated ASCII string into which the Windows Sockets DL L
copies relevant status or configuration information. The Windows
Sockets DLL should use thisfield only if the information might be
useful to the user or support staff: it should not be considered as an
extension of the szDescription field.

The maximum number of sockets which a single process can
potentially open. A Windows Sockets implementation may provide a
global pool of sockets for allocation to any process; alternatively it
may allocate per-process resources for sockets. The number may well
reflect the way in which the Windows Sockets DLL or the networking
software was configured. Application writers may use this number as
acrude indication of whether the Windows Sockets implementation is
usable by the application. For example, an X Windows server might
check iMaxSockets when first started: if it isless than 8, the
application would display an error message instructing the user to
reconfigure the networking software. (Thisisasituation in which the
szSystemSatus text might be used.) Obviously there is no guarantee
that a particular application can actually allocate iMaxSockets sockets,
since there may be other Windows Sockets applicationsin use.

The sizein bytes of the largest UDP datagram that can be sent or
received by a Windows Sockets application. If the implementation
imposes no limit, iMaxUdpDg is zero. In many implementations of
Berkeley sockets, thereis an implicit limit of 8192 bytes on UDP
datagrams (which are fragmented if necessary). A Windows Sockets
implementation may impose a limit based, for instance, on the
allocation of fragment reassembly buffers. The minimum value of
iMaxUdpDg for a compliant Windows Sockets implementation is 512.

WSAStartup 108

Return Value

Notes For

Note that regardless of the value of iMaxUdpDg, it isinadvisable to
attempt to send a broadcast datagram which is larger than the
Maximum Transmission Unit (MTU) for the network. (The Windows
Sockets API does not provide a mechanism to discover the MTU, but
it must be no less than 512 bytes.)

IpVendorinfo A far pointer to a vendor-specific data structure. The definition of
this structure (if supplied) is beyond the scope of this specification.

An application or DLL may call WSAStartup() more than once if it needsto obtain the
WSA Data structure information more than once. However, the wVersionRequired
parameter is assumed to be the same on all callsto WSAStartup(); that is, an
application or DLL cannot change the version of Windows Sockets it expects after the
initial call to WSAStartup().

There must be one WSACleanup() call corresponding to every WSAStartup() call to
allow third-party DLLsto make use of a Windows Sockets DLL on behalf of an
application. This means, for example, that if an application calls WSAStartup() three
times, it must call WSACleanup() three times. The first two callsto WSACleanup()
do nothing except decrement an internal counter; the final WSACleanup() call for the
task does all necessary resource deallocation for the task.

W SAStartup() returns zero if successful. Otherwise it returns one of the error codes
listed below. Note that the normal mechanism whereby the application calls
WSAGetL astError () to determine the error code cannot be used, since the Windows
Sockets DLL may not have established the client data area where the "last error”
information is stored.

Windows Sockets

Suppliers

Error Codes

See Also

Each Windows Sockets application MUST make a W SA Startup() call before issuing
any other Windows Sockets API calls. Thisfunction can thus be utilized for
initialization purposes.

Further issues are discussed in the notes for W SACleanup().

WSASY SNOTREADY Indicates that the underlying network subsystemis
not ready for network communication.

WSAVERNOTSUPPORTED
The version of Windows Sockets APl support
reguested is not provided by this particular Windows
Sockets implementation.

WSAEINVAL The Windows Sockets version specified by the

application is not supported by thisDLL.

send(), sendto(), WSACleanup()

WSAUNnhookBlockingHook 109

4.3.16 WSAUnhookBlockingHook()

Description

Remarks

Return Value

Error Codes

See Also

Restore the default blocking hook function.
#include <winsock.h>
int PASCAL FAR WSAUnNhookBlockingHook (void);

This function removes any previous blocking hook that has been installed and reinstalls
the default blocking mechanism.

W SAUnNhookBlockingHook () will always install the default mechanism, not the
previous mechanism. If an application wish to nest blocking hooks - i.e. to establish a
temporary blocking hook function and then revert to the previous mechanism (whether
the default or one established by an earlier W SA SetBlockingHook()) - it must save and
restore the value returned by W SA SetBlockingHook(); it cannot use

W SAUnhookBlockingH ook().

In multithreaded versions of Windows such as Windows NT, there is no default
blocking hook. Calling WSAUnhookBIlockingHook() disables any blocking hook
installed by the application and any blocking calls made block the thread which made
the call.

Thereturn valueis 0 if the operation was successful. Otherwise the value
SOCKET_ERROR is returned, and a specific error number may be retrieved by calling
WSAGetL astError ().

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

W SA SetBlockingHook()

Appendix Al: Error Codes 110

Appendix A. Error Codes and Header Files

A.1 Error Codes

Thefollowing isalist of possible error codes returned by the WSAGetL astError () call, along with their
explanations. The error numbers are consistently set across all Windows Sockets-compliant

implementations.

W ndows Sockets code | Berkel ey equival ent Error | Interpretation

WSAEI NTR El NTR 10004 | As in standard C

WSAEBADF EBADF 10009 | As in standard C

WSAEACCES EACCES 10013 | As in standard C

WSAEFAULT EFAULT 10014 | As in standard C

WBAEI NVAL El NVAL 10022 | As in standard C

WSAEMFI LE EMFI LE 10024 | As in standard C

WSAEWOUL DBL OCK EWOUL DBLOCK 10035 | As in BSD

WSAEI NPROGRESS El NPROGRESS 10036 | This error is returned if any
W ndows Sockets APl function is
called while a blocking function is
in progress.

WSAEAL READY EALREADY 10037 | As in BSD

WSAENOT SOCK ENOTSOCK 10038 | As in BSD

WSAEDESTADDRREQ EDESTADDRREQ 10039 | As in BSD

WBAEMSGSI ZE EMSGS| ZE 10040 | As in BSD

WSAEPROTOTYPE EPROTOTYPE 10041 | As in BSD

WSAENOPROTCOPT ENOPROTOOPT 10042 | As in BSD

WSAEPROT ONOSUPPORT EPROTONOSUPPORT 10043 | As in BSD

WSAESOCKTNOSUPPORT ESOCKTNOSUPPORT 10044 | As in BSD

WSAEOPNCT SUPP EOPNOTSUPP 10045 | As in BSD

WSAEPFNOSUPPORT EPFNOSUPPORT 10046 | As in BSD

WBAEAFNCSUPPORT EAFNOSUPPORT 10047 | As in BSD

WSAEADDRI NUSE EADDRI NUSE 10048 | As in BSD

WSAEADDRNOTAVAI L EADDRNOTAVAI L 10049 | As in BSD

WSAENETDOWN ENETDOWN 10050 | As in BSD. This error may be
reported at any tine if the Wndows
Sockets inplementation detects an
underlying failure.

WSAENETUNREACH ENETUNREACH 10051 | As in BSD

WSAENETRESET ENETRESET 10052 | As in BSD

WSAECONNABORTED ECONNABORTED 10053 | As in BSD

WSAECONNRESET ECONNRESET 10054 | As in BSD

WSAENOBUFS ENOBUFS 10055 | As in BSD

WSAEI SCONN El SCONN 10056 | As in BSD

WSAENOTCONN ENOTCONN 10057 | As in BSD

WSAESHUT DOWN ESHUTDOWN 10058 | As in BSD

WSAETOOMANYREFS ETOOMANYREFS 10059 | As in BSD

WSAET! MEDOUT ETI MEDOUT 10060 | As in BSD

WSAECONNREFUSED ECONNREFUSED 10061 | As in BSD

WBAEL OOP ELOOP 10062 | As in BSD

WSAENAMETOOLONG ENAVETOOLONG 10063 | As in BSD

WSAEHOSTDOWN EHOSTDOWN 10064 | As in BSD

WSAEHOSTUNREACH EHOSTUNREACH 10065 | As in BSD

WBASYSNCTREADY 10091 | Returned by WSAStartup()
indicating that the network
subsystem i s unusabl e.

WSAVERNCT SUPPORTED 10092 | Returned by WSAStartup()
indicating that the Wndows Sockets
DLL cannot support this app.

WSANCTI NI TI ALI SED 10093 | Returned by any function except
WBASt artup() indicating that a
successful WBAStartup() has not yet
been perforned.

WSAHOST_NOT_FOUND HOST_NOT_FOUND 11001 | As in BSD.

WBATRY_AGAI N TRY_AGAI N 11002 | As in BSD

WSANO_RECOVERY NO_RECOVERY 11003 | As in BSD

WSANO_DATA NO_DATA 11004 | As in BSD

The first set of definitionsis present to resolve contentions between standard C error codes which may be
defined inconsistently between various C compilers.

Appendix Al: Error Codes 111

The second set of definitions provides Windows Sockets versions of regular Berkeley Sockets error
codes.

Thethird set of definitions consists of extended Windows Sockets-specific error codes.

The fourth set of errors are returned by Windows Sockets getXbyY () and WSAAsyncGetXByY ()
functions, and correspond to the errors which in Berkeley software would be returned in the h_errno
variable. They correspond to various failures which may be returned by the Domain Name Service. If
the Windows Sockets implementation does not use the DNS, it will use the most appropriate code. In
general, a Windows Sockets application should interpret WSAHOST_NOT_FOUND and
WSANO_DATA asindicating that the key (name, address, etc.) was not found,, while
WSATRY_AGAIN and WSANO_RECOVERY suggest that the name service itself is non-operational.

The error numbers are derived from the winsock.h header file listed in section A.2.2, and are based on
the fact that Windows Sockets error numbers are computed by adding 10000 to the "normal” Berkeley
error number.

Note that this table does not include all of the error codes defined in winsock.h. Thisis because it
includes only errors which might reasonably be returned by a Windows Sockets implementation:
winsock.h, on the other hand, includes afull set of BSD definitions to ensure compatibility with ported
software.

Appendix A2: Header Files 112

A.2 Header Files

A.2.1 Berkeley Header Files

A Windows Sockets supplier who provides a development kit to support the development of Windows
Sockets applications must supply a set of vestigial header files with names that match a number of the

header filesin the Berkeley software distribution. These files are provided for source code compatibility
only, and each consists of three lines:

#i f ndef _W NSOCKAPI _
#i ncl ude <w nsock. h>
#endi f

The header files provided for compatibility are:
netdb.h

arpa/inet.h

sysltimeh

sys/socket.h

netinet/in.h

The file winsock.h contains all of the type and structure definitions, constants, macros, and function
prototypes used by the Windows Sockets specification. An application writer may choose to ignore the
compatibility headers and include winsock.h in each sourcefile.

winsock.h 113

A.2.2 Windows Sockets Header File - winsock.h

The winsock.h header file includes a number of types and definitions from the standard Windows header
filewindows.h. The windows.h in the Windows 3.0 SDK (Software Developer' sKit) lacks &i ncl ude
guard, so if you need to include windows.h as well as winsock.h, you should define the symbol

_INC_WINDOWS before #including winsock.h, as follows:
#i ncl ude <wi ndows. h>
#defi ne _|I NC_ W NDONS
#i ncl ude <wi nsock. h>

Users of the SDK for Windows 3.1 and later need not do this.

A Windows Sockets DLL vendor MUST NOT make any modifications to this header file which could
impact binary compatibility of Windows Sockets applications. The constant values, function parameters
and return codes, and the like must remain consistent across all Windows Sockets DLL vendors.

W NSOCK. H--definitions to be used with the W NSOCK. DLL
This header file corresponds to version 1.1 of the Wndows Sockets specification.

This file includes parts which are Copyright (c) 1982-1986 Regents
of the University of California. Al rights reserved. The

Ber kel ey Software License Agreenent specifies the terns and

* conditions for redistribution.

*/

E

#i fndef _W NSOCKAPI _
#def i ne _W NSOCKAPI _

/*
* Pull in WNDOWS. H i f necessary
*/

#i f ndef _| NC_W NDOWS

#i ncl ude <w ndows. h>

#endi f /* _I NC_W NDOWS */

/*
* Basic systemtype definitions, taken fromthe BSD file sys/types.h.
*/

typedef unsigned char u_char;

typedef unsigned short u_short;

typedef unsigned int u_int;

typedef unsigned |ong u_l ong;

/*
* The new type to be used in all
* instances which refer to sockets.

*/

typedef u_int SOCKET;

/*

* Sel ect uses arrays of SOCKETs. These macros mani pul ate such

* arrays. FD_SETSIZE may be defined by the user before including
* this file, but the default here should be >= 64.

*

*

CAVEAT | MPLEMENTOR and USER: THESE MACROS AND TYPES MUST BE
* I NCLUDED I N W NSOCK. H EXACTLY AS SHOWN HERE.
*/

#i f ndef FD_SETSI ZE

#defi ne FD_SETSI ZE 64

#endi f /* FD_SETSI ZE */

typedef struct fd_set {
u_short fd_count; /* how many are SET? */
SOCKET fd_array[FD_SETSI ZE] ; /* an array of SOCKETs */
} fd_set;

extern int PASCAL FAR _ WSAFDI sSet (SOCKET, fd_set FAR *);

winsock.h 114

#define FD _CLR(fd, set) do { \

u_int i\
for (__i =0; __i < ((fd_set FAR *)(set))->fd_count ; __i++) { \
if (((fd_set FAR *)(set))->fd_array[__i] == fd) { \
while (__i < ((fd_set FAR *)(set))->fd_count-1) { \
((fd_set FAR *)(set))->fd_array[__i] =\
((fd_set FAR *)(set))->fd_array[__i+1]; \
B I = S
P\
((fd_set FAR *)(set))->fd_count--; \
break; \
P\
P\
} while(0)

#define FD_SET(fd, set) do { \
if (((fd_set FAR *)(set))->fd_count < FD_SETSI ZE) \

((

} whil e(0)

fd_set FAR *)(set))->fd_array[((fd_set FAR *)(set))->fd_count++] =fd;\

#define FD_ZERQ(set) (((fd_set FAR *)(set))->fd_count=0)

#define FD_| SSET(fd, set) __ WSAFDI sSet ((SOCKET) fd, (fd_set FAR *)set)

/*
* Structure used in select() call, taken fromthe BSD file sys/tinme.h.
*/
struct tineval {
| ong tv_sec; /* seconds */
| ong tv_usec; /* and m croseconds */
s
/*

* (Operations on tinevals.

*

* NB:

*/

#define tinerisset(tvp)

timercnp does not work for >= or <=

((tvp)->tv_sec || (tvp)->tv_usec)

#define timercnp(tvp, uvp, cnp) \

#define tinerclear(tvp)

/

E N

*

((
(

tvp)->tv_sec cnp (uvp)->tv_sec || \
tvp)->tv_sec == (uvp)->tv_sec && (tvp)->tv_usec cnp (uvp)->tv_usec)
(tvp)->tv_sec = (tvp)->tv_usec = 0

Commands for ioctlsocket(), taken fromthe BSD file fcntl. h.

loctl's have the command encoded in the | ower word,
and the size of any in or out paraneters in the upper
wor d.
to encode the in/out status of the paraneter; for now
we restrict paraneters to at nost 128 bytes.

The high 2 bits of the upper word are used

*/
#defi ne | OCPARM_MASK ox7f /* paraneters nust be < 128 bytes */
#define 10C_VA D 0x20000000 /* no paraneters */
#define |1 OC_QUT 0x40000000 /* copy out paraneters */
#define 10C_IN 0x80000000 /* copy in paraneters */
#def i ne | OC_| NOUT (1OC_I NJ 1 ©C_QuUT)
/* 0x20000000 di stingui shes new &
old ioctl's */
#define _1Q(x,y) (10C_VA D] (x<<8)|y)
#define _I OR(x,y,t) (10C_aUT| (((1 ong)si zeof (t) & OCPARM MASK) <<16) | (x<<8)|y)
#define _I| ONX,y,t) (1OC_IN (((l ong)si zeof (t)& OCPARM MASK) <<16) | (x<<8)|y)
#defi ne Fl ONREAD _IOR("f', 127, u_long) /* get # bytes to read */
#define FlI ONBI O _low'f', 126, u_long) /* set/clear non-blocking i/o */
#define Fl OASYNC _low'f', 125, u_long) /* set/clear async i/o */

#def i ne SI OCSHI WAT _| OW(
OR

/* Socket 1/0O Controls */
|
#define SI OCGHI WAT |
|

's', 0, u_long) /* set high watermark */
_ ('s', 1, u_long) [/* get high watermark */
's', 2, u_long) [/* set low watermark */

#def i ne SI OCSLOMT _| ON(

winsock.h 115

#define SIOCGLOMT _IOR('s', 3, u_long) /* get |low watermark */
#define SIOCATMARK _IOR('s', 7, u_long) /* at oob mark? */
/*
* Structures returned by network data base library, taken fromthe
* BSD file netdb.h. Al addresses are supplied in host order, and
* returned in network order (suitable for use in systemcalls).
*/
struct hostent {
char FAR * h_narme; /* official nane of host */
char FAR * FAR * h_aliases; [/* alias list */
short h_addrtype; /* host address type */
short h_l engt h; /* length of address */
char FAR * FAR * h_addr_list; /* list of addresses */
#define h_addr h_addr_list[0] /* address, for backward conpat */

s
/*
* |t is assumed here that a network nunber
* fits in 32 bits.
*/
struct netent {
char FAR * n_narne; /* official nane of net */
char FAR * FAR * n_aliases; /* alias list */
short n_addrtype; * net address type */
u_long n_net; network # */
s
struct servent {
char FAR * s_nanme; /* official service name */
char FAR * FAR * s_aliases; [/* alias list */
short s_port; * port # */
char FAR * s_proto; protocol to use */
s
struct protoent {
char FAR * p_narne; /* official protocol name */
char FAR * FAR * p_aliases; /* alias list */
short p_pr ot o; /* protocol # */
s
/*

* Constants and structures defined by the internet system

Per RFC 790, Septenber 1981, taken fromthe BSD file netinet/in.h

*/

/*

* Protocols

*/

#define | PPROTO | P 0 /* dumy for IP */

#define | PPROTO_| CWP 1 /* control message protocol */
#define | PPROTO_GGP 2 * gateway”2 (deprecated) */
#define | PPROTO_TCP 6 /* tcp */

#def i ne | PPROTO_PUP 12 * pup */

#define | PPROTO_UDP 17 user dat agram protocol */
#define | PPROTO_| DP 22 /* xns idp */

#define | PPROTO_ND 77 * UNOFFI Cl AL net disk proto */
#define | PPROTO_RAW 255 /* raw | P packet */
#def i ne | PPROTO_MAX 256
/*

* Port/socket numbers: network standard functions

*/
#def i ne | PPORT_ECHO 7
#def i ne | PPORT_DI SCARD 9
#def i ne | PPORT_SYSTAT 11
#def i ne | PPORT_DAYTI ME 13
#def i ne | PPORT_NETSTAT 15
#defi ne | PPORT_FTP 21
#def i ne | PPORT_TELNET 23
#def i ne | PPORT_SMIP 25
#def i ne | PPORT_TI MESERVER 37
#def i ne | PPORT_NAMESERVER 42

winsock.h 116

#define | PPORT_WHO S
#defi ne | PPORT_MIP

/*

* Port/socket nunbers

*/
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

/*

| PPORT_TFTP
| PPORT_RJE

| PPORT_FI NGER
| PPORT_TTYLI NK
| PPORT_SUPDUP

* UNI X TCP sockets

*/
#def i ne
#def i ne
#def i ne
#def i ne

/*

| PPORT_EXECSERVER
| PPORT_LOG NSERVER
| PPORT_CMDSERVER

| PPORT_EFSSERVER

* UNI X UDP sockets

*/
#def i ne
#def i ne
#def i ne

/*

| PPORT_BI FFUDP
| PPORT_WHOSERVER
| PPORT_ROUTESERVER

* Ports < | PPORT_RESERVED are r
* privileged processes (e.g. ro

*/

#def i ne | PPORT_RESERVED

/*

* Link numbers

*/

#define | MPLI NK_I P

#def i ne | MPLI NK_LOWEXPER
#def i ne | MPLI NK_HI GHEXPER
/*

* Internet address (old style..

*/

struct in_addr {

uni on {
struct { u_short
u_l ong S_addr
} S un;

#define s_addr S_un.S_addr
#define s_host S un.S un_b.s_b2
#define s_net S un.S un_b.s_bl
#define s_inmp S un. S un_w. s_w2
#define s_inmpno S un.S un_b.s_b4
#define s_lh S un.S un_b.s_b3
s
/*

43
57

host specific functions

512
520
/* 520+1 al so used
eserved for
ot).

1024

155
156
158

shoul d be updat ed)

*/

struct { u_char s_bl,s_b2,s_b3,s_b4; } S un_b

s_wl,s_wW2; } S un_w,

/* can be used for nobst tcp & ip code */

/* host on inmp */
/* network */

/* imp */

/* i # */

/* 1ogical host */

* Definitions of bits in internet address integers

* On subnets,

the deconposition of addresses to host and net

* is done according to subnet mask, not the masks here

*/
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

| N_CLASSA(i)

N_

N_
N_
N_

CLASSA_NET
CLASSA_NSHI FT
CLASSA_HOST
CLASSA MAX

(((long) (i) & 0x80000000)
0xf f 000000

24

0X00f Fffff

128

== O)

parts

winsock.h 117

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

#def i ne
#def i ne
#def i ne
#def i ne

#def i ne
#def i ne
#def i ne
#def i ne

/*

* Socket address,

*/
struct s

}s

| N_CLASSB(i)

| N_CLASSB_NET

| N_CLASSB_NSHI FT
| N_CLASSB_HOST
I'N

| N_CLASSC(i)

| N_CLASSC_NET

| N_CLASSC_NSHI FT
| N_CLASSC_HOST
NADDR_ANY
NADDR_L COPBACK
NADDR_BROADCAST

|
|
|
| NADDR_NONE

ockaddr _in {
short sin_fam
u_short sin_port

ly;

(((long) (i) & 0xc0000000) == 0x80000000)

oxf f ff 0000
16
0x0000f f f f
65536

(((long) (i) & 0xc0000000) == 0xc0000000)

oxffffffoo
8
0x000000f f

(u_I ong) 0x00000000

0x7f 000001

(u_long) OxfFffffff

Oxffffffff

internet style.

struct in_addr sin_addr

char sin_zero

[8];

#def i ne WSADESCRI PTI ON_LEN
#def i ne WBASYS_STATUS_LEN

t ypedef

struct WSAData {
WORD

WORD

char

char

unsi gned short
unsi gned short
char FAR *

} WBADATA:

typedef WSADATA FAR * LPWSADATA;

/*

* Options for

*/
#def i ne

/*

I P_OPTI ONS

1

256
128

wVer si on

wHi ghVer si on;

szDescri pti on[WSADESCRI PTI ON_LEN+1] ;
szSyst enBt at us[WBASYS_STATUS_LEN+1] ;
i MaxSocket s

i MaxUdpDg;

| pVendor | nf o;

/*

* Definitions related to sockets: types
* taken fromthe BSD file sys/socket.h

*/

/*

* This is used instead of -1
* SOCKET type is unsigned

*/
#def i ne
#def i ne

/*

* Types

*/
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

/*

I NVALI D_SOCKET
SOCKET_ERROR

SOCK_STREAM

SOCK_SEQPACKET

since the

(SCCKET) (~0)

1
2
3
4
5

* Option flags per-socket

*/
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

SO _DEBUG
SO_ACCEPTCONN
SO_REUSEADDR
SO_KEEPALI VE
SO_DONTROUTE

0x0001
0x0002
0x0004
0x0008
0x0010

(-1

use with [gs]etsockopt at the IP |evel

set/get | P per-packet options */

address fanmilies, options

st ream socket */

* dat agram socket */

raw protocol interface */
reliably-delivered message */

* sequenced packet stream */

— -
*

turn on debugging info recording */

* socket has had listen() */

* allow | ocal address reuse */

keep connections alive */

* just use interface addresses */

winsock.h 118

#defi ne SO _BROADCAST 0x0020 /* permit sending of broadcast nsgs */
#define SO _USELOOPBACK 0x0040 /* bypass hardware when possible */

#define SO _LI NGER 0x0080 /* linger on close if data present */
#define SO _OOBI NLI NE 0x0100 /* leave received OOB data in line */

#define SO DONTLINGER (u_int)(~SO_LI NGER)

/*

* Additional options.

*/
#defi ne SO _SNDBUF 0x1001 /* send buffer size */
#defi ne SO_RCVBUF 0x1002 /* receive buffer size */
#defi ne SO_SNDLOMNT 0x1003 /* send | owwater mark */
#defi ne SO RCVLOMNT 0x1004 /* receive |l owwater mark */
#defi ne SO_SNDTI MEO 0x1005 /* send timeout */
#defi ne SO _RCVTI MEO 0x1006 /* receive tineout */
#defi ne SO _ERROR 0x1007 /* get error status and clear */
#define SO TYPE 0x1008 /* get socket type */
/*

* TCP options.

*/
#def i ne TCP_NODELAY 0x0001
/*

* Address famlies.

*/
#defi ne AF_UNSPEC 0 /* unspecified */
#define AF_UN X 1 /* local to host (pipes, portals) */
#define AF_I NET 2 * internetwork: UDP, TCP, etc. */
#define AF_I MPLI NK 3 * arpanet inp addresses */
#defi ne AF_PUP 4 pup protocols: e.g. BSP */
#defi ne AF_CHACS 5 mt CHAGCS protocols */
#define AF_NS 6 /* XEROX NS protocols */
#define AF_I SO 7 *]SO protocols */
#def i ne AF_OSI AF_| SO /* O8I is 1SO */
#defi ne AF_ECVA 8 * european conputer manufacturers */
#define AF_DATAKI T 9 /* datakit protocols */
#define AF_CCITT 10 /* CCITT protocols, X 25 etc */
#def i ne AF_SNA 11 /* | BM SNA */
#defi ne AF_DECnet 12 /* DECnet */
#define AF_DLI 13 /* Direct data link interface */
#def i ne AF_LAT 14 /* LAT */
#define AF_HYLI NK 15 /* NSC Hyperchannel */
#def i ne AF_APPLETALK 16 /* AppleTal k */
#define AF_NETBI CS 17 /* NetBi os-styl e addresses */
#defi ne AF_MAX 18

/*
* Structure used by kernel to store npst
* addresses.
*/
struct sockaddr {
u_short sa_famly; address fanmly */
char sa_dat a[14] ; /* up to 14 bytes of direct address */

-~
*

}s

/*
* Structure used by kernel to pass protocol
* information in raw sockets.

*/
struct sockproto {
u_short sp_famly; /* address famly */
u_short sp_protocol; /* protocol */
}s
/*
* Protocol families, sane as address fanilies for now.
*/
#def i ne PF_UNSPEC AF_UNSPEC
#def i ne PF_UNI X AF_UNI X
#defi ne PF_I NET AF_I NET
#defi ne PF_I MPLI NK AF_I MPLI NK

#def i ne PF_PUP AF_PUP

winsock.h 119

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#define PF_
#def i ne PF_APPLETALK

#defi ne PF_MAX
/*
* Structure used for
*/
struct linger {
u_short
u_short

| _onoff;
}

/*
* Level
*/
#def i ne SOL_SOCKET

nunber for

/*
* Maxi mum queue | ength
*/

#defi ne SOVAXCONN

#def i ne

#def i ne

#def i ne

MSG_OOB
MSG_PEEK

MSG_DONTROUTE
#def i ne MSG_MAXI OVLEN

/*

* Define constant based on rfc883

*/

#def i ne MAXGETHOSTSTRUCT

/*

I _linger;

AF_APPLETALK

AF_MAX

mani pul ating |inger option

/* option on/off */

(get/set)sockopt() to apply to socket

Oxffff

specifiable by listen
5

0x1
0x2
0ox4

16

1024

/* options for socket

/* linger time */

itsel f.

| evel */

/* process out-of-band data */
/* peek at
/* send without using routing tables */

i ncom ng message */

used by gethostbyxxxx() calls

* Define flags to be used with the WSAAsyncSel ect () call

*/
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

FD_READ
FD_WRI TE

/*
* Al
* the "normal"
*/
#defi ne WSABASEERR
/*

* W ndows Sockets definitions of

*/
#def i ne WSAEI NTR
#def i ne WSAEBADF
#def i ne WSAEACCES
#defi ne WSAEFAULT
#defi ne WSAEI NVAL
#defi ne WBAEMFI LE

/*

* W ndows Sockets definitions of

*/
#def i ne WBAEWOULDBLOCK
#def i ne WBAEI NPROGRESS

0x01
0x02
0x04
0x08
0x10
0x20

10000
regul ar

(WSABASEERR+4)
(WSABASEERR+9)
(WSABASEERR+13)
(WSABASEERR+14)
(WBABASEERR+22)
(WSABASEERR+24)

regul ar

(WBABASEERR+35)
(WSABASEERR+36)

W ndows Sockets error constants are biased by WSABASEERR from

M crosoft C error constants

Ber kel ey error constants

winsock.h 120

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

/*

* Ext ended W ndows Sockets error constant definitions

*/

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

WSAEAL READY
WSAENOT SOCK
WSAEDESTADDRREQ
WSAEMSGSI ZE
WSAEPROTOTYPE
WSAENOPROT OOPT
WSAEPROTONOSUPPORT
WSAESCOCKTNOSUPPORT
WSAEOPNOT SUPP
WSAEPFNOSUPPORT
WSAEAFNOSUPPORT
WSAEADDRI NUSE
WSAEADDRNOTAVAI L
WSAENETDOWN
WSAENETUNREACH
WSAENETRESET
WSAECONNABORTED
WSAECONNRESET
WSAENOBUFS

WSAETOOMANYREFS
WSAETI MEDOUT
WSAECONNREFUSED
WSAEL OOP
WSAENAMETOOLONG
WSAEHOSTDOVN
WSAEHOSTUNREACH
WSAENOTENPTY
WSAEPROCLI M
WSAEUSERS
WSAEDQUOT
WSAESTALE
WSAEREMOTE

#def i ne WBASYSNOTREADY

#def i ne WSAVERNOTSUPPORTED

#def i ne WSANOTI NI TI ALI SED

-~

EE R

/

#define h_errno

/* Authoritative Answer:

Error
(when using the resol ver).

return codes from gethostbynane() and get host byaddr ()
Note that these errors are
retrieved via WBAGet Last Error() and nust therefore follow
the rules for avoiding clashes with error nunbers from
specific inplenentations or
For this reason the codes are based at WSABASEERR+1001.
Note al so that [WSA] NO ADDRESS is defined only for
conpatibility purposes.

#def i ne WSAHOST_NOT_FOUND
#def i ne HOST_NOT_FOUND

/* Non-Authoritative:

#def i ne WBATRY_AGAI N
#defi ne TRY_AGAI N

/* Non recoverable errors,
#def i ne WSANO_RECOVERY
#def i ne NO_RECOVERY

/* Valid nane,

#def i ne WBANO_DATA
#defi ne NO_DATA

Host not found,

no data record of

(WBABASEERR+37)
(WSABASEERR+38)
(WSABASEERR+39)
(WSABASEERR+40)
(WSABASEERR+41)
(WSABASEERR+42)
(WSABASEERR+43)
(WSABASEERR+44)
(WBABASEERR+45)
(WSABASEERR+46)
(WBABASEERR+47)
(WSABASEERR+48)
(WSABASEERR+49)
(WBABASEERR+50)
(WBABASEERR+51)
(WBABASEERR+52)
(WBABASEERR+53)
(WSABASEERR+54)
(WBABASEERR+55)
(WSABASEERR+56)
(WBABASEERR+57)
(WSABASEERR+58)
(WBABASEERR+59)
(WSABASEERR+60)
(WSABASEERR+61)
(WSABASEERR+62)
(WSABASEERR+63)
(WSABASEERR+64)
(WSABASEERR+65)
(WSABASEERR+66)
(WSABASEERR+67)
(WSABASEERR+68)
(WSABASEERR+69)
(WSABASEERR+70)
(WSABASEERR+71)

(WBABASEERR+91)
(WSABASEERR+92)
(WSABASEERR+93)

| anguage run-time systens.

WBAGet Last Error ()

Host not found */
(WBABASEERR+1001)
WSAHOST_NOT_FOUND

WBATRY_AGAI N

FORMERR, REFUSED, NOTI MP */
(WSABASEERR+1003)

WSANO_RECOVERY

WSANO_DATA

/* no address, look for MX record */
#def i ne WSANO_ADDRESS
#def i ne NO_ADDRESS

WSANO_DATA
WSANO_ADDRESS

or SERVERFAIL */
(WBABASEERR+1002)

requested type */
(WBABASEERR+1004)

winsock.h 121

/*

* Wndows Sockets errors redefined as regul ar

*/

#defi ne EWOULDBLOCK WSAEWOUL DBL OCK
#define EI NPROGRESS WSAE! NPROGRESS
#defi ne EALREADY WSAEAL READY
#defi ne ENOTSOCK WSAENOTSOCK
#defi ne EDESTADDRREQ WSAEDESTADDRREQ
#defi ne EMSGSI ZE WSAENMSGS| ZE
#defi ne EPROTOTYPE WSAEPROTOTYPE
#defi ne ENOPROTCOPT WSAENOPROTOOPT
#defi ne EPROTONOSUPPORT WSAEPROTONOSUPPORT
#defi ne ESOCKTNOSUPPORT WSAESOCKTNOSUPPORT
#defi ne EOPNOTSUPP WSAECPNOTSUPP
#defi ne EPFNOSUPPORT WSAEPFNOSUPPORT
#defi ne EAFNOSUPPORT WSAEAFNOSUPPORT
#defi ne EADDRI NUSE WSAEADDRI NUSE
#defi ne EADDRNOTAVAI L WSAEADDRNOTAVAI L
#defi ne ENETDOAN WSAENETDOAK
#defi ne ENETUNREACH WSAENETUNREACH
#defi ne ENETRESET WSAENETRESET
#defi ne ECONNABORTED WSAECONNABORTED
#defi ne ECONNRESET WSAECONNRESET
#defi ne ENOBUFS WSAENOCBUFS
#define ElI SCONN WSAE! SCONN
#defi ne ENOTCONN WSAENOTCONN
#defi ne ESHUTDOWN WSAESHUTDOVWN
#define ETOOMANYREFS WSAETOOMANYREFS
#defi ne ETI MEDOUT WSAETI MEDOUT
#defi ne ECONNREFUSED WSAECONNREFUSED
#define ELOOP WSAEL OOP

#defi ne ENAMETOOLONG WSAENAMETOOLONG
#define EHOSTDOWN WSAEHOSTDOVN
#defi ne EHOSTUNREACH WSAEHOSTUNREACH
#define ENOTEMPTY WSAENOTEMPTY
#defi ne EPROCLI M WSAEPROCLI M
#define EUSERS WSAEUSERS

#defi ne EDQUOT WSAEDQUOT
#define ESTALE WSAESTALE
#define EREMOTE WSAEREMOTE

Ber kel ey error constants

/* Socket function prototypes */

#i fdef __cpluspl us
extern "C' {
#endi f

SOCKET PASCAL FAR accept (SOCKET s, struct sockaddr
int FAR *addrl en);

FAR *addr,

int PASCAL FAR bind (SOCKET s, const struct sockaddr FAR *addr, int nanel en);
int PASCAL FAR cl osesocket (SOCKET s);
int PASCAL FAR connect (SOCKET s, const struct sockaddr FAR *nane, int nanelen);
int PASCAL FAR ioctl socket (SOCKET s, long cnd, u_long FAR *argp);
int PASCAL FAR get peernane (SOCKET s, struct sockaddr FAR *nane,

int FAR * nanel en);
int PASCAL FAR getsocknane (SOCKET s, struct sockaddr FAR *nane,

int FAR * nanel en);
int PASCAL FAR get sockopt (SOCKET s, int level, int optnane,

char FAR * optval, int FAR *optlen);

u_l ong PASCAL FAR htonl (u_l ong hostlong);

u_short PASCAL FAR htons (u_short hostshort);
unsi gned | ong PASCAL FAR inet_addr (const char FAR * cp);

char FAR * PASCAL FAR inet_ntoa (struct in_addr in);

winsock.h 122

int PASCAL FAR |isten (SOCKET s, int backlog);

u_l ong PASCAL FAR ntohl (u_long netlong);

u_short PASCAL FAR ntohs (u_short netshort);

int PASCAL FAR recv (SOCKET s, char FAR * buf, int len, int flags);

int PASCAL FAR recvfrom (SOCKET s, char FAR * buf, int len, int flags,
struct sockaddr FAR *from int FAR * fronlen);

int PASCAL FAR select (int nfds, fd_set FAR *readfds, fd_set FAR *witefds,
fd_set FAR *exceptfds, const struct timeval FAR *tinmeout);

int PASCAL FAR send (SOCKET s, const char FAR * buf, int len, int flags);

int PASCAL FAR sendto (SOCKET s, const char FAR * buf, int len, int flags,
const struct sockaddr FAR *to, int tolen);

int PASCAL FAR setsockopt (SOCKET s, int level, int optnane,
const char FAR * optval, int optlen);

int PASCAL FAR shutdown (SOCKET s, int how);
SOCKET PASCAL FAR socket (int af, int type, int protocol);
/* Dat abase function prototypes */

struct hostent FAR * PASCAL FAR get host byaddr(const char FAR * addr,
int len, int type);

struct hostent FAR * PASCAL FAR get host bynane(const char FAR * nane);
int PASCAL FAR get hostnane (char FAR * nane, int nanelen);
struct servent FAR * PASCAL FAR getservbyport(int port, const char FAR * proto);

struct servent FAR * PASCAL FAR getservbyname(const char FAR * nane,
const char FAR * proto);

struct protoent FAR * PASCAL FAR get prot obynumber (i nt proto);
struct protoent FAR * PASCAL FAR get prot obynanme(const char FAR * nane);
/* Mcrosoft Wndows Extension function prototypes */
int PASCAL FAR WBASt art up(WORD wWMer si onRequi red, LPWSADATA | pWSADat a) ;
i nt PASCAL FAR WBAC eanup(voi d);
voi d PASCAL FAR WBASet LastError(int iError);
int PASCAL FAR WBAGet Last Error (void);
BOOL PASCAL FAR WSAI sBI ocki ng(voi d);
i nt PASCAL FAR WSAUnhookBI ocki ngHook(voi d) ;
FARPROC PASCAL FAR WSASet Bl ocki ngHook(FARPRCC | pBl ockFunc) ;
i nt PASCAL FAR WSACancel Bl ocki ngCal | (voi d);
HANDLE PASCAL FAR WSAAsyncGet Ser vByNanme(HWND hwad, u_int w\sg,
const char FAR * nane,

const char FAR * proto,
char FAR * buf, int buflen);

HANDLE PASCAL FAR WSAAsyncGet ServByPort (HWND hwad, u_int wwsg, int port,
const char FAR * proto, char FAR * buf,
int buflen);

HANDLE PASCAL FAR WSAAsyncGet Pr ot oByNanme(HWND hwhd, u_int wisg,
const char FAR * nanme, char FAR * buf,
int buflen);

winsock.h 123

HANDLE PASCAL FAR WSAAsyncGet Pr ot oByNunmber (HWND hwhd, u_int wwsg,
int nunber, char FAR * buf,
int buflen);

HANDLE PASCAL FAR WSAAsyncGet Host ByName(HAND hwhd, u_int wisg,
const char FAR * nanme, char FAR * buf,
int buflen);

HANDLE PASCAL FAR WBAAsyncGet Host ByAddr (HWND hWhd, u_int w\Vsg,
const char FAR * addr, int len, int type,
const char FAR * buf, int buflen);

i nt PASCAL FAR WSACancel AsyncRequest (HANDLE hAsyncTaskHandl e) ;

i nt PASCAL FAR WBAAsyncSel ect (SOCKET s, HWND hWd, u_int wh\sg,
long | Event);

#i fdef __cpluspl us
}
#endi f

/* Mcrosoft Wndows Extended data types */
typedef struct sockaddr SOCKADDR;

typedef struct sockaddr *PSOCKADDR,

typedef struct sockaddr FAR *LPSOCKADDR;

typedef struct sockaddr_in SOCKADDR | N;
typedef struct sockaddr_in * PSOCKADDR_I N;
typedef struct sockaddr_in FAR * LPSOCKADDR I N;

typedef struct |inger LINGER
typedef struct |inger *PLINGER;
typedef struct linger FAR *LPLI NGER,

typedef struct in_addr | N_ADDR;
typedef struct in_addr *PI N_ADDR;
typedef struct in_addr FAR *LPlI N_ADDR;

typedef struct fd_set FD_SET;
typedef struct fd_set *PFD_SET;
typedef struct fd_set FAR *LPFD_SET;

typedef struct hostent HOSTENT;
typedef struct hostent *PHOSTENT;
typedef struct hostent FAR * LPHOSTENT;

typedef struct servent SERVENT;
typedef struct servent *PSERVENT;
typedef struct servent FAR * LPSERVENT;

typedef struct protoent PROTOENT;
typedef struct protoent *PPROTCENT;
typedef struct protoent FAR *LPPROTOENT;

typedef struct timeval TIMEVAL;
typedef struct timeval *PTIMEVAL;
typedef struct timeval FAR *LPTI MEVAL;

/
W ndows nessage paraneter conposition and deconposition
Mecr os.

WSAMAKEASYNCREPLY is intended for use by the Wndows Sockets inplenentation
when constructing the response to a WBAAsyncGet XByY() routi ne.

* ok % ok X ok

*/
#def i ne WSAMAKEASYNCREPLY(buf | en, error) MAKELONG(buf | en, error)
/*
* WSAMAKESELECTREPLY is intended for use by the Wndows Sockets inplenmentation
* when constructing the response to WSAAsyncSel ect ().
*/
#defi ne WSAMAKESELECTREPLY(event, error) MAKELONG(event , error)
/*
* WSAGETASYNCBUFLEN i s intended for use by the Wndows Sockets application
* to extract the buffer length fromthe | Paramin the response

winsock.h 124

* to a WBAGet XByY().
*/
#defi ne WSAGETASYNCBUFLEN(| Par am) LOWORD(| Par am
/*
* WBAGETASYNCERROR is intended for use by the Wndows Sockets application
* to extract the error code fromthe I Paramin the response
* to a WBAGet XByY().
*/
#defi ne WSAGETASYNCERROR(| Par am) HI WORD(| Par am)
/*
* WSAGETSELECTEVENT is intended for use by the Wndows Sockets application
* to extract the event code fromthe | Paramin the response
* to a WBAAsyncSel ect ().
*/
#defi ne WSAGETSELECTEVENT(| Par am) LONORD(| Par am
/*
* WBAGETSELECTERROR i s intended for use by the Wndows Sockets application
* to extract the error code fromthe | Paramin the response
* to a WBAAsyncSel ect ().
*/
#defi ne WSAGETSELECTERROR(| Par am) HI WORD(| Par am)

#endif /* _W NSOCKAPI _ */

Appendix B: Notes for Windows Sockets Suppliers 125

Appendix B. Notes for Windows Sockets Suppliers

B.1 Introduction
A Windows Sockets implementation must implement ALL the functionality described in the Windows
Sockets documentation. Validation of compliance is discussed in section B.8.

Windows Sockets Version 1.1 implementations must support both TCP and UDP type sockets. An
implementation may support raw sockets (of type SOCK_RAW), but their use is deprecated.

Certain APIs documented above have special notes for Windows Sockets implementors. A Windows
Sockets implementation should pay specia attention to conforming to the API as documented. The
Special Notes are provided for assistance and clarification.

B.2 Windows Sockets Components

B.2.1 Development Components
The Windows Sockets development components for use by Windows Sockets application devel opers will
be provided by each Windows Sockets supplier. These Windows Sockets development components are:

Component Description

Windows Sockets Documentation This document

WINSOCK.LIB file Windows Sockets API Import Library
WINSOCK.H file Windows Sockets Header File
NETDB.H file Berkeley Compatible Header File
ARPA/INET .H file Berkeley Compatible Header File
SYS/TIME.H file Berkeley Compatible Header File
SYS/SOCKET.H file Berkeley Compatible Header File
NETINET/IN.H file Berkeley Compatible Header File

B.2.2 Run Time Components
The run time component provided by each Windows Sockets supplier is:

Component Description
WINSOCK.DLL The Windows Sockets APl implementation DLL

B.3 Multithreadedness and blocking routines.
Data areas returned by, for example, the getXbyY () routines MUST be on a per thread basis.

Note that an application MUST be prevented from making multiple nested Windows Sockets function
calls. Only one outstanding function call will be allowed for a particular task. Any Windows Sockets
call performed when an existing blocking call is already outstanding will fail with an error code of
WSAEINPROGRESS. There are two exceptions to this restriction: WSA Cancel BlockingCall() and
WSAIsBlocking() may be called at any time. Windows Sockets suppliers should note that although
preliminary drafts of this specification indicated that the restriction only applied to blocking function
calls, and that it would be permissible to make non-blocking calls while a blocking call wasin progress,
thisisno longer true.

Regarding the implementation of blocking routines, the solution in Windows Sockets is to simulate the
blocking mechanism by having each routine call PeekMessage() as it waits for the completion of its
operation. In anticipation of this, the function WSA SetBlockingHook() is provided to allow the
programmer to define a special routine to be called instead of the default PeekMessage() loop. The
blocking hook functions are discussed in more detail in 4.3.13, W SA SetBlockingH ook ().

Appendix B: Notes for Windows Sockets Suppliers 126

B.4 Database Files

The database routines in the getXbyY () family (gethostbyaddr (), etc.) were originally designed (in the
first Berkeley UNIX releases) as mechanisms for looking up information in text databases. A Windows
Sockets supplier may choose to employ local files OR a name service to provide some or all of this
information. If local files exist, the format of the files must be identical to that used in BSD UNIX,
allowing for the differencesin text file formats.

B.5 FD_ISSET

It is necessary to implement the FD_ISSET Berkeley macro using a supporting function:

__ WSAFDIsSet(). Itistheresponsibility of a Windows Sockets implementation to make this available
as part of the Windows Sockets API. Unlike the other functions exported by a Windows Sockets DLL,
however, this function is not intended to be invoked directly by Windows Sockets applications: it should
be used only to support the FD_ISSET macro. The source code for this function is listed below:

i nt FAR
___WBAFDI sSet (SOCCKET fd, fd_set FAR *set)
{

int i = set->fd _count;

while (i--)

if (set->fd _array[i] == fd)
return 1,

return O,

}

B.6 Error Codes

In order to avoid conflict between various compiler environments Windows Sockets implementations
MUST return the error codes listed in the API specification, using the manifest constants beginning with
"WSA". The Berkeley-compatible error code definitions are provided solely for compatibility purposes
for applications which are being ported from other platforms.

B.7 DLL Ordinal Numbers

The winsock.def file for use by every Windows Sockets implementation is as follows. Ordinal values
starting at 1000 are reserved for Windows Sockets implementors to use for exporting private interfaces to
their DLLs. A Windows Sockets implementation must not use any ordinals 999 and below except for
those APIs listed below. An application which wishes to work with any Windows Sockets DLL must use
only those routines listed below; using a private export makes an application dependent on a particular
Windows Sockets implementation.

Fil e: winsock. def
System MS-W ndows 3. x
Summrary: Modul e definition file for Wndows Sockets DLL.

LI BRARY W NSOCK ; Application's nodul e nane

DESCRI PTI ON ' BSD Socket APl for W ndows'

EXETYPE W NDOWS ; required for all wi ndows applications
STUB " W NSTUB. EXE' ; generates error nessage if application

; is run without W ndows

; CODE can be FIXED in menmory because of potential upcalls

Appendix B: Notes for Windows Sockets Suppliers 127

CODE PRELCQCAD FI XED
; DATA nust be SINGLE and at a FI XED | ocation since this is a DLL
DATA PRELQCAD FI XED S| NGLE
HEAPSI ZE 1024
STACKSI ZE 16384
Al'l functions that will be called by any Wndows routine

| ; nust be exported. Any additional exports beyond those defined
| ; here nust have ordinal numbers 1000 or above.

EXPORTS
accept @
bi nd @
cl osesocket @
connect @
get peer nane @
get socknane @
get sockopt a
ht onl @B
ht ons C:)]
i net _addr @o
i net _ntoa @il
i octl socket @z
listen @s3
nt ohl @4
nt ohs @s
recv @6
recvfrom @7
sel ect @s8
send @9
sendt o @0
set sockopt @1
shut down @2
socket @3
get host byaddr @1
get host bynane @2
get pr ot obynane @3
get pr ot obynunber @4
get servbynane @5
get servbyport @6
get host nane @®7
WSAAsyncSel ect @o1
WSAAsyncGet Host By Addr @o2
WSAAsyncGet Host By Nane @o3
WSAAsyncGet Pr ot oByNunber @o4
WSAAsyncGet Pr ot oByNane @os5
WSAAsyncGet Ser vByPor t @o6
WSAAsyncGet Ser vByNane @ao7
WSACancel AsyncRequest @os
WSASet Bl ocki ngHook @09
WSAUnhookBI ocki ngHook @10
WBAGet Last Err or @il
WBASet Last Err or @iz
WSACancel Bl ocki ngCal | @13
WGAI sBl ocki ng @ia
WBASt ar t up @15
WSAC eanup @16
__WBAFDI sSet @51
V\EP @00 RES| DENTNANE

; eof

B.8 Validation Suite

The Windows Sockets API Tester (WSAT) to ensure Windows Sockets compatibility between Windows
| Sockets DLL implementationsis currently in betatest. This beta version includes functionality testing of

Appendix B: Notes for Windows Sockets Suppliers 128

| the Windows Sockets interface and is supported by a comprehensive scripting language. The final version
| of WSAT will be availablein Spring 1993. If you wish to receive the tester or more information on the
| beta, send email to wsat@microsoft.com.

Appendix C: For Further Reference 129

Appendix C. For Further Reference

This specification isintended to cover the Windows Sockets interface to TCP/IP in detail. Many details
of TCP/IP and Windows, however, are intentionally omitted in the interest of brevity, and this
specification often assumes background knowledge of these topics. For more information, the following
references may be helpful:

Braden, R.[1989], RFC 1122, Requirements for Internet Hosts--Communication Layers, Internet
Engineering Task Force.

Comer, D. [1991], Internetworking with TCP/IP Volume I: Principles, Protocols, and Architecture,
Prentice Hall, Englewood Cliffs, New Jersey.

Comer, D. and Stevens, D. [1991], Internetworking with TCP/IP Volume I1: Design, Implementation, and
Internals, Prentice Hall, Englewood Cliffs, New Jersey.

Comer, D. and Stevens, D. [1991], Internetworking with TCP/IP Volume 111: Client-Server Programming
and Applications, Prentice Hall, Englewood Cliffs, New Jersey.

Leffler, S. et a., An Advanced 4.3BSD Interprocess Communication Tutorial.
Petzold, C. [1992], Programming Windows 3.1, Microsoft Press, Redmond, Washington.

Stevens, W.R. [1990], Unix Network Programming, Prentice Hall, Englewood Cliffs, New Jersey.

Appendix D: Background Information 130

Appendix D. Background Information

D.1 Legal Status of Windows Sockets

The copyright for the Windows Sockets specification is owned by the specification authors listed on the
title page. Permission is granted to redistribute this specification in any form, provided that the contents
of the specification are not modified. Windows Sockets implementors are encouraged to include this
specification with their product documentation.

The Windows Sockets logo on the title page of this document is meant for use on both Windows Sockets
implementations and for applications that use the Windows Sockets interface. Use of thelogois
encouraged on packaging, documentation, collateral, and advertising. Thelogo is

available on microdyne.com in pub/winsock as winsock.bmp. The suggested color for thelogo' stitle bar
is blue, the electrical socket grey, and the text and outline black.

D.2 The Story Behind the Windows Sockets Icon
(by Alistair Banks, Microsoft Corporation)

We thought we' d do a"Wind Sock™ at one stage--but you try to get that into 32x32 bits! It would have had
to look wavy and colorful, and... well, it just didn't work. Also, our graphics designers have "opinions’
about the icons truly representing what they are--people would have thought this was " The colorful wavy
tube specification 1.0!"

| tried to explain "API" "Programming Interface" to the artist--we ended up with toolbox icons with little
flying windows

Then we came to realise that we should be going after the shortened form of the name, rather the namein
full... Windows Sockets... And so we went for that - so she drew (now remember I' m English and you' re
probably American) "Windows Spanner”, a.k.a. asocket wrench. Inthe U.S. you' d have been talking
about the "Windows Socket spec” OK, but in England that would have been translated as "Windows
Spanner Spec 1.0" - so we went to Electrical sockets - well the first ones came out looking like "Windows
Pignose Spec 1.0"I!1!

So how do you use 32x32, get an international electrical socket! Y ou take the square type (American &
English OK, Europe & Australia are too rounded)--you choose the American one, because it's on the wall
in front of you (and it's more compact (but less safe, IMHO) and then you turn it upside down, thereby
compromising its nationality!

[IMHO ="In My Humble Opinion"--ed.]

