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Abstract: One of the main goals of any power grid is sustainability. The given study proposes a new method, which aims to
reduce users’ anxiety especially at slow charging stations and improve the smart charging model to increase the benefits for the
electric vehicles’ owners, which in turn will increase the grid stability. The issue under consideration is modelled as an
optimisation problem to minimise the cost of charging. This approach levels the load effectively throughout the day by providing
power to charge EVs’ batteries during the off-peak hours and drawing it from the EVs’ batteries during peak-demand hours of
the day. In order to minimise the costs associated with EVs’ charging in the given optimisation problem, an improved version of
an intelligent algorithm is developed. In order to evaluate the effectiveness of the proposed technique, it is implemented on
several standard models with various loads, as well as compared with other optimisation methods. The superiority and efficiency
of the proposed method are demonstrated, by analysing the obtained results and comparing them with the ones produced by

the competitor techniques.

1 Introduction

The utilisation of electric vehicles (EVs) has become one of the
most powerful tools to increase the eco-friendliness of the
transportation sector globally. Thus, one of the most important
research questions, related to their massive deployment, is how to
ensure efficient charging and discharging of EVs in the conditions
of the centralised power system. Previous studies on the topic
consider only one-way energy transfer, i.e. from the power grid to
the EVs’ batteries [1]. Such an energy transfer method increases
the operating costs of an EV negligibly. On the other hand, recent
research implemented a two-way transmission of energy between
EVs and the electrical grid. This technique is commonly referred to
as a vehicle-to-grid (V2G) methodology. It assumes that the energy
is exchanged between the grid and the EVs connected to it. During
the off-peak hours, EV's battery is charged and during the peak-
load hours, the energy stored in the EVs is released into the
network. In addition, other opportunities presented by the
bidirectional V2G technique made it very popular among scientific

and engineering communities. Fig. 1 [2] demonstrates a basic
structure of the V2G methodology. Based on the object interacting
with the EV, V2G methodology can be applied to vehicle-to-home,
vehicle-to-vehicle and vehicle-to-building scenarios. In all of these
cases, the EVs’ batteries are used to provide energy to the grid.
One of the important factors for dispersal loading, which needs to
be carefully considered, in order to minimise the negative effects in
the network at the peak time is the EV's planning.

In other words, charging of EVs should follow a certain strategy
to obtain such benefits as peak shaving and valley filling [3]. In
addition, one of the most important issues, which need to be
addressed in order to increase the supply-side energy efficiency of
the electric power grid and reduce consumers’ concerns, is how to
provide a quick way to charge EVs.

Thus, EVs’ owners need a suitable plan for monitoring and
management in order to contribute to and charge from the power
grid [4]. Moreover, plugged-in EVs can be utilised to supply
mutual power flow between the equipment and the EVs’ batteries.
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Fig. 1. Structure of EVs connection to the grid
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Fig. 2. Structure of V2G

Some of the auxiliary services, which can be provided by the
EVs include frequency regulation, peak shaving, improved voltage
profile and power quality [5]. The authors in [6] employed a
demand-response management in order to solve the problems
under consideration. The studies [7, 8] defined a synchronised
bidding strategy based on fuzzy logic for the ancillary services
supplied with V2G operation. The authors in [9, 10] described the
impact of the EVs’ deployment on the power systems in Northern
Europe and their role in the considerable boost of investment in
wind energy. The mathematical optimisation problem of the
optimal charging schedule is formulated in [4]. Such an approach is
considered to be one of the options to obtain a cost-effective
methodology for charging and discharging program. An
optimisation method aiming to minimise the total cost in
accordance with the global optimal programming and distributed
programming solutions is presented in [11].

The authors in [12] proposed a new optimal charging
scheduling model for various types of EVs, which is based on the
transport system information, i.e. road length, vehicle velocity and
waiting time, and grid system data, i.e. load deviation and node
voltage. The study presented in [13] demonstrates a novel practical
plug in hybrid EVs charging scheduling program based on
optimising customers charging cost through the generation capacity
constraints and dynamic electricity price in various time slots of a
day. The research conducted in [14] illustrates a distributed control
model for coordinated charging of PEVs. In addition, it introduces
an improved valley filling method for the smart charger, which is
able to generate optimal charging profiles for PEVs. An alternative
optimisation technique based on the drivers’ demands, the road
traffic speed, the number of vehicles at the charging station as well
as charging network load is presented in [15]. Moreover, a robust
optimisation method, which is based on the price uncertainty, is
proposed in [16] to examine the scheduling process for EVs’
aggregators. The studies presented in [17-20] review other aspects
of EVs charging and scheduling.

The given research, on the contrary, utilises basic optimisation
methodology, while charging and discharging scenarios are
implemented using appropriate programs and are based on
predicted values. In this model, regional power consumption as
well as distributed loads at the regional level are considered for all
types of users including industrial, residential and commercial.
Precisely, each aggregator optimises the load of the corresponding
area at the utility's distribution network based on the number of
EVs connected to the chargers in that particular area.

Considering a relatively rapid growth of the EV's share in the
global transportation sector, the topic of EVs’ charging and all the
aspects related to it become very critical for the international
scientific and engineering community. The given study aims to
achieve the following two objectives. First, develop a bidirectional
fast charging station and design an optimal program for
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aggregators to maximise the profit of the EVs’ owners as well as
the electricity network's operators. Second, minimisation of the
cost of charging for the aggregators and, in case, when fast
charging scenario is considered. Moreover, the basic optimisation
strategy is centralised in this paper, while the charging and
discharging schedules prediction is accessible by the aggregator.

Thus, the contributions of this paper can be summarised as
follows:

(1) A new multi-objective algorithm, utilised to solve the proposed
optimisation problem, is introduced. In this model, the cost of
charging for the aggregators is minimised and the profit of the
EVs’ owners is maximised.

(i) A fully functional bidirectional fast charging station is
developed.

(iii) To have better modelling of profit maximisation, an optimal
program to maximise the benefits for the EV's owners and
aggregators is designed.

(iv) An improved version of particle swarm optimisation (PSO)
algorithm is presented aiming to minimise the cost of charging
under the considered models.

The problem description is provided in Section 2. The
mathematical model of the proposed method is presented in
Section 3. Numerical results and analysis are described in Section
4, while Section 5 concludes the overall work.

2 Problem description

The proposed optimisation method is based on a smart charging
methodology, which aims to minimise the total cost of charging for
the EVs’ owners by assuming that they participate in V2G
Scenario. During the peak-load hours, the EVs’ batteries are used
to supply energy to other users and when the demand is low, they
draw energy from the grid for charging.

Apart from providing backup energy storage for the grid, the
advantages of this approach include decreasing the power drawn
from the grid during the day, peak load shaving and improving the
load profile [21]. The basic structure of the proposed V2G
approach is depicted in Fig. 2. It should be highlighted that under
the given scenario the power from the grid is transferred to the EVs
only at times when the network's power is minimal. The mentioned
model can mathematically be presented as follows:

min (Pgiq) )

P, arid = P loadprofile + P charging

In (1), network power and daily power demand profile of a region
are represented by Pgrig and Ploadprofiles Tespectively. The power
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required for EVs charging is defined by Pcpaging. In addition,
Pioadprofile and Peparging are the known variables in the optimisation
process, where Peharging Tepresents the total power of the grid.
Hence, peak power consumption and its variability during the day
are minimised. In order to evaluate the performance of the
proposed method, two models sharing a common goal of
minimising the cost of EVs charging are simulated in this study.
The first model comprises a series of industrial, commercial and
residential loads, which are considered to be a general regional
load. The developed optimisation program for EVs’ charging is
applied to it. In addition, in the second model, charging program of
each individual area is optimised based on the load profile of that
particular area. For example, when the residential power demand is
targeted, the smart charging program is applied for EVs in the
residential area. The optimisation technique adopted for this study
is based on an intelligent algorithm, which is introduced in the
following section. It minimises the total load of the network whilst
maintaining the state of charge (SOC) required for EVs’ owners.
The target functions and constraints can be formulated as follows.
Optimisation of the regional load is handled by considering the
power demand from a number of residential, industrial and
commercial areas through the Smart Sharing program.

In the given model, the daily load profile's curve is considered.
It aggregates the total power demand's magnitudes for residential,
industrial and commercial areas during a 24-h period.

If the time intervals are considerably small, the problem will
become more complicated. Therefore, the load profile is recorded
for every hour and the time interval ¢ is then considered to be 1 h.
The total amount of power requested by the number of residential,
industrial as well as commercial units is denoted as P, and

expressed as
__ presidential industrial commercial 2
P =P + P + P @)

Considering (2), the amount of power demand by the residential,
industrial and commercial areas at an interval of ¢ are represented

by P;'esidential} Ptindust_rial and P;:ommercial’ respectively. The target
function can be defined as per (3) and transformed into (4)

T U
min Z Z (P, + C,-T,)2 (3)

t=1li=1
T U
min Z z ((Ptresidential + P}ndustrial + P;:ommercial) + Ci.t)z (4)
t=1i=1

2.1 Limitations

The proposed algorithm assumes that lower I7"™ and upper I;"™
restrictions of the charging current i in the interval ¢ for each EV
are defined by (5). Moreover, the number of charging and
discharging procedures for the ith EV in the time interval ¢ is
defined as C;,. It should be also highlighted that the lower charging

current's boundary is represented as a negative value, while the
upper charging current's boundary is given as a positive value:

Iic,min SII'C_;SII'C’"W vt i (5)

SOC of every ith EV should be updated for every time increment z.
SOC of every EV battery for the current time interval and for the
preceding time interval are represented as S;; and Sj;q,
respectively. The battery capacity of the ith EV is denoted as b;.
Moreover, the charging and discharging current of each EV's
battery at the previous interval (¢—1) is denoted as I;_, and
defined as

{Sii=Sii+ bl Vi ©6)

SOC (S;,) of the ith EV's battery at every interval ¢ is limited
within certain bounds to extend the battery life. Lower and upper

916

SOC restrictions for each EV i in the interval ¢ are defined by (7).
The lower level of SOC is represented by S™ and the upper level
of SOC is represented by S™?X. In other words, it means that none
of the EVs’ battery is allowed to be discharged below S™it state
and charged above the S™#X state:

S < S, < S Vit 7

In addition, the EVs’ owners can request the system to maintain a
certain SOC at a certain time. In this case, the SOC range is
determined during the times when the EV is discharging. This is
done in order to meet the energy demand of the grid. For example,
if the owner wants to keep SOC of the EV at a lower level of 45%
by 16:00, then it is listed in the proposed optimisation model. The
desired SOC at a desired time intermission 9¢si¢d s represented by

sdesied and defined according to
S;nin < S,f'?smd Vi, t = gdesired (8)

Using the equality limitation shown in (8), the number of charging
and discharging procedures for the ith EV in the time interval 7 is
defined as C;,. If C;; is greater than zero, the term denotes a
charging state, otherwise it indicates a discharging state for the ith
EV's battery. The voltage at the DC-DC converter is represented
by VDC:

{Cii=1Vpc Vit ©)

In addition, the lower and the upper charging and discharging
power restrictions for the ith vehicle in the interval ¢ are defined by
(10). It should be clarified that the lower boundary of the

discharging power for EV's battery, represented by C™n, is a
negative number, while the upper charging power's boundary,

represented by C™#%, is a positive number [22-24]:
CM"<C <C™ Vi, t (10)

The utility power (P), in turn, is limited within the bounds
formulated in (11) to prevent battery from degradation. The lower
boundary of the utility power is set at zero and the upper boundary
is determined as a positive number, which is equal to the sum of
the power demand and the maximum discharging or charging
power of EVs’ batteries connected to the grid in the given region:

OSP;SP;'FZC?M (11)
1

Thus, considering the boundaries and the conditions presented
above, one can establish a mathematical representation of a general
optimisation problem as:

T U
denti : - : 2
min 2: 2 ((P;'emdemlal+P;ndusmal+P;:0mmerc1al) + C“) (12)

t=1i=1
Iic,t > If’""",l,?, < I;;.max
Sii=Siro+bdii
Si.t > S}ﬂin’ Si.r < S}nux
Smin < S(jesired Vit = tdesired
i =Pt v
13
Cii=1I;,Vpc (13)
C.>2C" G, <™

residential industrial commercial
P, =P, +P +P

P20, P <P+P+ ) C"
i

The given problem can also be represented as a case of area load
control for the residential load scheduling as follows:
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T U
min Z 2 (Ptrestdemlal + Ci,t)2 (14)
t=1i=1

L2 ™ I < I
Si,t =1+ bilic.l‘—l
Sii 2 S8 < S
S;nin < S??sired Vit = tdesired
Civ= IV 1
Ci 2 C" G, <C™
Pt — P;'esidemial

P20, P <P+ yC™
i

Analogously, for the industrial load scheduling the optimisation
problem is presented as
IE[ 2 I;I.mm’ I::t S I;:,max
Si,t = Si.t—l + bilic.l‘—l
Siﬁ[ Z Slrl'nin’ S[’; S S;nax
S;nin < Sﬁlﬁsired Vit = tdesired
Cii=1I Ve (16)
Ci 2 C" G <C™
P = Pindustrial
rt— 4t
P, >0
P <P+ Y C"
7

In addition, commercial load scheduling optimisation problem is
formulated as

T U
. o i 2
min 2 Z (Ptuommercml_'_ Ci,t) (17)
t=1i=1
Lo "I < I
Sie=Sito1+bilii,
Sie= S8, <SP
S;.nin < Sg?imd Vit = [desired
Cii= IiL:tVDC (18)
C,2C", C <™
P = Pcommercial
t= Iy
P, >0
PSP+ Y C"
i

3 Optimisation algorithm
3.1 Review

One of the optimisation algorithms mostly applicable for the
scenario under consideration is PSO technique, which is inspired
by the behaviour of the birds flocking or fish schooling and
proposed by Dr Eberhart and Dr Kennedy in 1995 [25]. PSO is
directly utilised for standard optimisation problems and is also
employed to modify optimisation-based applications. Comparing
with the stochastic approaches, the given optimisation algorithm
allows discontinuities to be controlled. Moreover, the swarm of
seeking agents is able to explore the entire field of solutions instead
of concentrating on one potential solution at once, which in turn
increases the speed of optimisation. Due to the high

IET Smart Grid, 2020, Vol. 3 Iss. 6, pp. 914-923

parallelisability characteristics of PSO, its accuracy and efficiency
are high, while on the other hand, the calculation process is
relatively simple [26]. Considering (19) the ith particle position's
vector x at the (k£ + 1)th iteration stage can be found as follows:

x/l;'+l =xll;+vlic+lAt (19)
The updated speed vector of the ith particle for the kth step is

defined as v;’;+ 1» while At represents the time increment. In addition,
the speed vector for every particle can be formulated as

) 4 i g _ i
Vi1 = WV + airy (pkmxk) + czrz(pkm k) (20)
Here, the speed vector for the kth iteration is defined by v}, r; and
r, show random vectors whose sizes are selected from the interval
[0, 1]. Moreover, p} and pf up to the kth iteration define the best
position and the global best position, respectively. In addition, ¢;
and ¢, are called ‘trust’ variables, while w is defined as inertia
weight.

In the given work, an improved version of PSO is employed to
obtain an optimal solution for the posed problem. The proposed
algorithm improves the computational efficiency by utilising the
particle classification model, which removes the redundant
constraint violation assessments by optimisation development. The
rules for feasible particle initialisation as well as choosing the
related parameters are presented in the following sections.

3.2 Improved PSO

Fig. 3 depicts a model of the PSO optimisation algorithm for the
three successive iterations. One can notice that particles start from
the point P; and subsequently reach the point P4. The speed
vectors for every iteration and their orientation in space are
represented by the solid and dashed lines, respectively.
Performance of the PSO algorithm is, generally, dependent on the
three factors, namely Ppeg, Gpest and primary velocity. The second
point of the second iteration (i.e. P,) in Fig. 3 represents the
location with deteriorating objective function's value. It is then
compared with the Py by locating the feasible space depicted in
Fig. 3a as well as infeasible space indicated in Fig. 3b. Considering
Fig. 3, it can be observed that the direction of the particles’ motion
at the second and the third iterations is similar to each other. Thus,
the algorithm functions as follows. Since at the second iteration the
objective value degrades, Py is deactivated, and after moving to
the third point Pj it is substituted with a new value and the
objective function's value is checked again. The given study
proposes a new mechanism, which implies dividing particles into
two parts p**! and pf+' at each iteration. As shown in Fig. 4, the
proposed algorithm can be divided into four main stages. For the
steps from k to &+ 1, all possible objective function's values are
represented. In addition, p**', p**' and p¥*' demonstrate the novel
positions in the feasible, infeasible as well as the possible spaces,
respectively. The new position in the impossible searching space
based on the target value, which is better than the present Pyegy, is
k+1

defined by p}
operation, the optimisation process should be done using p**' and

. Based on the PSO algorithm's principles of

K+ ! before updating Pyeg. The particle of an objective function is
the main criterion.

Therefore, since the best particles are selected according to the
objective function's values, the computational intensity of the
optimisation process can be reduced. In order to investigate the
proposed algorithm's efficiency in comparison with the
conventional PSO, a new parameter R is defined:

TmaX
— 1 i
R=7-2 N, @D
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The total number of iterations is presented by Tin.x, While #»;
denotes the number of particles. In addition, N, represents the total
population of particles. Using the classic PSO, this equation is
updated. The possible particles are created in accordance with to
the following steps:

» The particle in the total space is randomly generated.
* The conflicting point of P, which is called by OP is assessed
according to the equation below
XOoP = Xupper T Xlower — Xp (22)
Here, the maximum and minimum range of the design variables is
defined by xypper and Xjower, respectively. In addition, xp denotes
the generated design in the first stage.

If the point belongs to the possible space, then the conflicting
point will have a higher probability of residing in the possible
space comparing to the particles, which are produced randomly.
Opposite violation of the points is calculated initially, including the
initial opposition points, as well as their targets. Given the target
value of particles, the best particle is selected in the possible space.
If one of the particles is in the feasible space, the feasible particles
would be retained and returned to step 1. The loop will be repeated
until the number of the selected particles becomes equal to the
population of the predefined particles in PSO.

In addition, the free values of parameters (c¢j, ¢, and w) are
selected based on the literature works in [27-29]. The term w for a

Initial velocity vector

large

Feasible space

small

<

—— Term1inEq.33 — Term2inEq.33 —» Tem

large

small

&

linear time-dependent estimation and the quadratic time-dependent
rule is calculated as follows:

Wi = Wi — wt (23)
t 2
Wi = Wiax + (Wmax Wmm)[ - (T_) ] (24)

In these equations, the number of present iterations is shown by ¢,
Wmax 18 chosen to be equal to 0.9 and wy,;, is equal to 0.4.

4 Numerical results and analysis

In order to minimise the cost of charging for both EV owners and
utilities, smart programming is implemented on EVs that
participated in V2G program. Various scenarios are considered to
prove the superiority of the proposed method.

Scenario 1: Control of the regional load.
Scenario 2: Programming of the residential load.
Scenario 3: Programming of the industrial load.
Scenario 4: Control of the commercial load.

Scenario 1. Control of the regional load: In this scenario, the first
target is to supply peak load shaving and load levelling to control
the regional load. Hence, by the proposed approach, the total utility
load profile is improved.

P New Goest

Feasible space

Fig. 3. Three iterations of PSO for the location and speed update according to two various limitation

(a) Feasible space, (b) Infeasible space

n
>
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Fig. 4. Feasible states of a particle after a position update
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In addition, numerous users will be considered as a load profile
over a period of 1 day. The achieved load profile of the region is
depicted in Fig. 5.

In this scenario, EVs participating in the V2G scheme are
considered as an available energy source in the area. Precisely, a
fleet of 26 EVs is used to optimise the cost. A total of 16 EVs is
connected to the grid in the residential and industrial areas, while
the remaining 10 EVs are connected in the commercial area. In
order to evaluate the performance of the proposed method in case
of the EVs’ charging a 24-h period in the 1-h steps is considered. In
addition, based on the latest protocols and standards in the field of
EV charging, the data required for EVs and charging utilities is
collected. Based on the number of available EVs in the area their
overall capacity can be defined as low, average and high.
Moreover, in order to apply the proposed optimisation algorithm,
much higher capacity is assumed as a collective number of all EVs’
batteries in one area. For example, consider the case when EVs’
batteries, which are available in the commercial, residential and
industrial areas, have the same capacity. At midnight time (24:00),
due to the low power demand, the initial value of EVs’ SOC is
equal to some 80%. This effectively means that in order to increase
the speed of charging when EVs arrive home, they are assumed to

IET Smart Grid, 2020, Vol. 3 Iss. 6, pp. 914-923

Table 1 Parameters and values used in the optimisation
Parameter Value
max. discharging current, A -125
max. charging current, A 125
minimum charge state 0.22
maximum charge state 0.92
Threshold charge state
residential EVs 0.58
industrial EVs 0.62
commercial EVs 0.82
desired charging time for
residential EVs 16:00
industrial EVs 17:00
commercial EVs 18:00
all EVs 00:00
maximum discharging power for
residential EVs, kW -160
commercial EVs, kW -51.9
industrial EVs, kW -610
maximum charging power for
residential EVs, kW 1600
commercial EVs, kW 51.9
industrial EVs, kW 610
interval of time steps 24
utility base power, MW 14

charge with the upper charging current. Considering the fastest
charging process in the lowest time interval, the SOC value is
expected to be in a range of 20-80%. Between 24:00 and 07:00,
the battery charging process from 80 to 100% is performed in a
slow mode.

The SOC is regulated for EVs in each area according to the type
of the region and the application as well as based on the different
time intervals. Precisely, the SOC of EVs located in the residential
area at 16:00 is set at a minimum value of 55%. In addition, the
SOC of EVs parked in the commercial area at 18:00 is set at a
minimum value of 60%, while the SOC of EVs plugged to the grid
in the industrial area at 17:00 is set at a minimum value of 60%.
Based on the time when EVs’ owners arrive home or go out to
perform routine tasks, the time of implementation process is
selected. In this scenario, the process of charging is assumed to be
fast. Hence, in order to enable quick charging for all EVs, 80%
SOC is scheduled to be achieved at midnight. Later, the charging
slows down to top the battery to the upper allowed SOC range
under the given scenario. It should be highlighted that the upper
level of the allowed SOC for all EVs in this scenario is equal to
90% or 0.90. It should be also noted that the battery health is
presumed for all of the cases considered in the given study.
Otherwise, the minimum allowed SOC for all EVs is selected to be
20% or 0.2 for achieving the same aims. According to CHAdeMO
standards, the maximum current rate for the EVs’ charging is equal
to 125A. On the other hand, the minimum charging and
discharging current rate for EVs is equal to —125 A. In order to
express the results in a comprehensive and concise manner, the
power and the current at the charging state are defined to be greater
than zero. On the contrary, the power and the current at the
discharging state are less than zero. Moreover, the aim of the
proposed method is to provide the fastest possible charging to the
EVs, while the charging voltage's value is presumed to be 500 V in
accordance with the fast charging protocols. Table 1 summarises
the assumed and selected parameters for the scenario under
optimisation.

The optimisation of the regional load control under this scenario
is conducted using the proposed algorithm. Figs. 6-9 depict the
results obtained from the regional load control optimisation.

From Fig. 6 one can observe that SOC for all of the regions is in
the optimal range and proportional to the values defined by the
users. In addition, it can be seen that EVs are charging to the upper
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Table 2 Parameters and values used in the second
scenario

Parameter Value
max. discharging current, A -125
max. charging current, A 125
SOC (min) 0.22
SOC (max) 0.92
threshold of charge state 0.58
0.82
desired time for charging 16:00
00:00
upper discharging power, kW =500
upper charging power, kW 500
time interval 24
residential base power, MW 7
number of EVs 9

SOC, when the utility power is available during the off-peak load
hours. According to Figs. 7 and 8, it can be concluded that EVs in
all regions are charging with the highest allowed charging current
and charging power when the power is available during the off-
peak time.

Finally, considering the results presented in Fig. 9 it can be
observed that this method satisfies the expectations of the regional
load control optimisation model expressed in Section 3. Precisely,
during the off-peak time, i.e. 19:00-07:00, EVs are charged in
order to supply the daily power demand. On the other hand, during
the high-demand hours, i.e. from 9:00 to 19:00, EVs are capable of
providing power services with improved power profiles. From the
obtained results, it can be also concluded that using the proposed
optimisation method, the power profile has been significantly
improved during the peak hours. Precisely, Fig. 9 demonstrates that
the power during the peak times decreased by 1.5 MW from 13 to
11.5 MW. The optimised average power value is equal to some
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Fig. 12. Collective charging power of EVs in the residential area

7.33 MW, while the standard deviation is equal to about 3.56 MW,
which is smaller compared to the standard deviation of 3.973 MW
before the optimisation.

Scenario 2. Programming residential load: The second scenario
implies that the main target is to find the fastest way to charge EVs
in the residential area. In order to maintain coherence and
comparability, the values of the parameters used in the previous
scenario are also used in this section and listed in Table 2. The
results of implementing the proposed method in the residential
areas taking into account the values presented in Table 2 are plotted
in Figs. 10-13.

The SOC of the EVs in the residential area is plotted in Fig. 10.
As it can be noted the desired aims are met. During the peak-
demand time, the energy stored in the EVs batteries is used to
improve the power profile of the grid. On the other hand, during
the low-demand time, EVs’ batteries are charged and help to
reduce the utility's load.

Charging current and power for EVs in the residential area are
plotted in Figs. 11 and 12, respectively. During the peak hours, the
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Fig. 13. Optimisation results of the residential load scheduling

Table 3 Parameters and values used in the third scenario

Parameter Value
max. discharging current, A -125
max. charging current, A 125
SOC (min) 0.22
SOC (max) 0.92
threshold of charge state 0.65
0.82
desired time for charging 16:00
00:00
upper discharging power, kW -800
upper charging power, kW 800
time interval 24
residential base power, MW 5
number of EVs 13
09f 1
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Fig. 14. Collective SOC of EVs in an industrial area

amount of discharged and injected power to the utility is
maximised. On the other hand, at the low-power-consumption
time, the power from the utilities is injected into the EVs located in
the residential area.

Finally, by analysing the results presented in Fig. 13, it can be
observed that the proposed method satisfied the aims of the
residential load control optimisation. Precisely, during the off-peak
hours, i.e. 19:00-01:00, the EVs are charged from the grid to
supply the power demand during the day. Based on the obtained
results, it can be concluded that using the proposed optimisation
method, the power profile has been significantly improved during
the peak hours.

Fig. 13 shows that the power during the peak times decreased
by 500 kW from 6 to 5.5 MW. The average power is equal to some
3.1 MW after the optimisation. The standard deviation, in turn,
amounts in 1.18 MW, which is less than the standard deviation
before the optimisation, i.e. 1.28 MW.

Scenario 3. Programming industrial load: The main goal of the
third scenario is to find the best way to charge EVs in the industrial
area. In order to maintain the coherence and comparability, the
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Fig. 17. Optimisation result of industrial load scheduling

values of the parameters used in the previous two scenarios are
used and complemented in the given section. The variables and
constants utilised for the third scenario are listed in Table 3.
However, some of the parameters vary as per the requirements of
the present scenario.

The values of SOC for industrial load control using EVs are
plotted in Fig. 14. As can be seen, the desired aims and goals are
achieved. During the peak-demand time, the energy stored in the
EVs’ batteries is used to manage the power of the utilities. On the
other hand, during the low-demand time, EVs’ batteries are
charged and help to reduce utility's load.

Charging current and power of the EVs in the industrial area are
plotted in Figs. 15 and 16, respectively. One can observe that the
amount of discharged and injected power to the utility is the
highest during the peak hours, which in the given case correspond
to two periods, namely 08:00—12:00 and 13:00—16:00. On the other
hand, during the low-power-consumption time, the power from the
utilities is injected into the EVs parked in the industrial area.

Finally, by investigating the obtained results depicted in Fig. 17,
it can be observed that this method satisfied the expectations of the
industrial load control optimisation and the grid's power profile
was significantly improved during the peak hours. In addition,
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Fig. 20. Collective charging power of EVs in the commercial area

Fig. 17 shows that power at peak times decreased by 750 kW from
4t03.25 MW.

The average power is equal to some 1.4 MW after the
optimisation is performed, while the standard deviation is equal to
some 1.42 MW, as compared to the standard deviation of 1.25 MW
before the optimisation.

Scenario 4. Programming commercial load: According to this
scenario, the optimal charging program for EVs in the commercial
area is modelled using the parameters and values listed in Table 4.

The main target of the fourth scenario is to find the best way to
minimise utility's power demand throughout the peak-load hours
by injecting power from the EVs’ batteries and by keeping the
desired SOC at the defined intervals.

The results obtained from the implementation of the proposed
optimisation algorithm with the aim of optimal charging
programming are shown in Figs. 18 and 19.

The overall power profile retrieved from the optimised system
is plotted in Fig. 20. During the peak hours, i.e. set as 08:00—-12:00
and 09:00-19:00 for the given scenario, the amount of the
discharged power and the power injected into the utility is the
highest. On the other hand, during the low-power-demand time, the
power from the utilities is redirected to the EVs connected to the
chargers in the industrial area.
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Table 4 Values and parameters for commercial load
scheduling scenario

Parameter Value
max. discharging current, A -125
max. charging current, A 125
SOC (min) 0.22
SOC (max) 0.92
threshold of charge state 0.65
0.82
desired time for charging 16:00
00:00
upper discharging power, kW =700
upper charging power, kW 700
time interval 24
residential base power, MW 6
number of EVs 9

Fig. 20 shows that the power during peak times is decreased by
500 kW, from 4.9 to 4.4 MW. The average power and the standard
deviation after the optimisation are equal to 2.4 and 1.64 MW,
respectively, while the standard deviation before the optimisation is
some 1.89 MW.

4.1 Analysis of optimisation cost

The given study investigates the influence of the implementation of
the proposed optimisation technique on the power system under
various EV charging scenarios. In addition, it aims to examine the
amount of power supply using the proposed method and at the
same time evaluate the associated reduction of the costs for the
utilities and EVs’ owners. The foundation of the given section is
based on the power tariff, which is defined for commercial and
industrial areas. The numerical values for the paid costs are based
on the data obtained from Nordkraft and provided for the area of
Nordkraft Nett AS (Narvik Municipality and the Wall of the
Municipality of Evenes) [30]. The difference in the power profile
and the obtained data is negligible. In order to find the reduction in
costs, load profiles for commercial and industrial areas using the
optimisation method and without it are retrieved and compared. It
should be also highlighted that industrial and commercial users pay
a considerable amount per kW for power compensation in addition
to the regular energy costs [30]. One of the best solutions to solve
the set problem is to charge EVs’ batteries during the low-demand
time and supply power to the grid from the EVs’ batteries during
the peak-demand time. This, in turn, will minimise the power
profile and consequently the power tariffs. Thus, it creates
simultaneous profits for utilities and EVs’ owners. Power tariffs do
not apply to residential areas at the moment, but according to the
latest methods adopted by the distribution companies, power tariffs
for residential areas will be introduced in the nearest future. Table 5
presents a comparison of the power consumption and costs of
charging for the commercial and industrial areas before and after
applying the proposed optimisation algorithm. This analysis is
done during peak-power-demand time.

As can be seen from Table 5, the proposed method increases the
accuracy of the power scheduling and as a result, minimises the
cost of charging for the users.

In addition, it should be specifically emphasised that as a result
of reducing the power peak, not only the costs for the users are
affected, but also the investments required from the utilities’ side
are minimised. In other words, the proposed optimisation algorithm
decreases the infrastructural costs for the grid operators and
distributors, which do not plan to upgrade the existing equipment
to accommodate new EVs’ loads. On the other hand, owners of the
EVs and utilities tend to pay more for supplying power demand on
the electric grid instead of saving money.
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Table 5 Cost reduction before and after applying a smart
scheduling strategy

Commercial area Industrial area

in the interval of in the interval
(12:00-13:00) of (11:00—
12:00)

the amount of power used 4800 4100
before optimisation, kW
the amount of power used 4300 3300
Power after optimisation, kW
the amount of reduced power 500 750
demand, kW
the cost of charging before 1.9884 million 1.614 million
optimisation units
the cost of charging after 1.7854 million 1.3185 million
optimisation, units
the reduced costs of 0.203 million 0.2955 million

charging, units

5 Conclusion

In this work, a novel fast charging method for EVs is implemented.
In addition, the smart programming for EVs, with the aim of
minimising the charging costs for electric utilities and EVs’
owners, is presented. The proposed approach is implemented in
accordance with the user's desire to charge and discharge EVs. In
other words, the priority is given to the desires of EVs owners, that
is when the owners tend to charge their vehicles, the aggregator is
not allowed to receive energy from EVs’ batteries. Other
advantages of the proposed method include peak load shaving and
load profile improvement. This is achieved by supplying the active
power from the EVs’ batteries and the reactive power from the
network's side converter to the utility. In addition, in order to
minimise the charging costs, an improved version of the intelligent
algorithm is proposed. The proposed optimisation technique is
examined using four case studies. The main aims are reducing
power utility and power demand. In smart programming, when the
grid power demand is maximised, active power is provided from
the EVs in order to supply power utilities for peak power shaving.
The proposed method achieves the main objectives based on the set
constraints for EVs’ owners and utilities. By reviewing the results,
the advantages of the proposed method, including reduction of
charging cost and fast charging can be observed for the EVs’
owners. Finally, the users will have to pay less due to the lower
peak power, which saves money in the system.
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