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Abstract—In this study a two-stage stochastic programming
joint day-ahead energy and reserve scheduling model to address
uncertainty in wind power generation is developed. Apart from
the generation side, the demand side is also eligible as a reserve
resource and is modeled through responsive load aggregations,
as well as large industrial loads that directly participate in the
scheduling procedure. The main contribution of this paper is
the inclusion of a risk metric, namely the Conditional Value-
at-Risk (CVaR), which renders a conceptually different resource
scheduling framework. The proposed model is employed in order
to analyze the behavior of energy and reserve scheduling by both
generation and demand for a risk-averse Independent System
Operator (ISO). To reach practical conclusions, the proposed
methodology is tested on the real non-interconnected insular
power system of Crete, Greece, which is characterized by a
significant penetration of wind power generation.

Index Terms—Ancillary services, conditional value-at-risk
(CVaR), demand response, reserves, risk management

NOMENCLATURE

The main notation used is alphabetically listed below. Other
symbols and abbreviations are defined where they first appear.

A. Sets and Indices

d index of industrial loads.
f(F") index (set) of steps of the marginal cost func-
tion of unit 7.
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i index of conventional generating units.

j index of aggregated loads.

S index of wind power generation scenarios.
t index of time periods.

w index of wind farms.

B. Parameters

ag** positive integer; number of available produc-
tion lines of industry d.
Ci, 1t energy offer price/marginal cost of step f of
unit ¢ in period ¢ (€/MWh).
cEr availability cost of reserve of type y (U-up
spinning, D- down spinning and, NS- non
spinning reserve) by resource type = (G- gener-
ating units, L-aggregated loads and, I-industrial
‘ consumer) in period ¢t (€/MWh).
Dy minimum required consumption for period ¢ of
the scheduling horizon for industry d (MW).
ER; total energy required during the scheduling
horizon by aggregated load j (MWh).
LFmae maximum consumption of aggregated load j in
7,
. period ¢ (MW).
Lf’tmm minimum consumption of aggregated load j in
4 period t (MW).
Pfg”e power of production line of industry d (MW).
wvf’, power output of wind farm w in scenario s in
period ¢ (MW).
pWPmar maximum power that can be scheduled by wind
farm w (MW).
SDC; shutdown cost of unit ¢ (€).
SUC; startup cost of unit i (€).
VNS cost of energy not served for load j (€/MWh).
VS cost of wind energy spillage (€/MWh).
« confidence level (used in the calculation of
CVaR).
J5] weighting factor (used in the calculation of
CVaR).
Vi load recovery rate of aggregated load 5 (% of
the nominal load).
77 probability of occurence of wind power gener-

ation scenario s.

C. Decision Variables

Qd,t positive integer variable; number of production
lines scheduled in period ¢ from industry d.
down itive i iable; ber of producti
ag’ positive integer variable; number of production
lines scheduled to contribute to down reserve
- in period ¢ from industry d.
ayh positive integer variable; number of production

lines scheduled to contribute to up reserve in
period ¢ from industry d.
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down,2 g . . . .
dotos positive integer variable; number of production
lines deployed to contribute to down reserve in
period ¢ from industry d in scenario s.
Id”;i positive integer variable; number of production
lines deployed to contribute to up reserve in
period ¢ from industry d in scenario s.
bi .t power output scheduled from the f-th block of
the marginal cost function/offer block of unit 4
in period ¢ (MW).
CVaR conditional value-at-risk (€).
Dgt,s actual power consumed by industry d in period
t in scenario s (MW).
Di . scheduled consumption by industry d in period
t (MW).
Lfns power actually consumed by aggregated load j
in period ¢ in scenario s (MW).
Lff scheduled demand of aggregated load j in
period ¢ (MW).
EC expected cost (€).
ECST scenario-independent component of expected
cost (€).
ECSP scenario-dependent component of expected
cost in scenario s (€).
ENS; s energy not supplied for aggregated load j in
scenario s (MWh).
Pﬁ’s actual power output of unit ¢ in period ¢ in
scenario s.
P;?t power output scheduled from unit ¢ in period
t (MW).
quftp’s scheduled wind power from wind farm w in
period ¢ (MW).
Ry scheduled reserve of type y (U- up spinning, D-
down spinning and, NS- non spinning reserve)
by resource of type = (G- generating units, L-
aggregated loads and, I- industrial consumer)
in period t (MW).
s reserve deployed by the f-th block of unit 4 in
period t in scenario s (MW).
rg:is deployed reserve of type y (U- up spinning,
D- down spinning and, NS- non-spinning re-
serve) by resource x (G- generating units, L-
aggregated loads and, I- industrial consumer)
in scenario s in period ¢ (MW).
Stw,s wind power spilled in scenario s from wind
farm w in period ¢ (MW).
yil‘t binary variable; 1 if unit 7 is starting up in
period ¢, else 0.
7/;'2,t s binary variable; 1 if unit 7 is starting up during
period ¢ in scenario s, else 0.
z}e binary variable; 1 if unit 7 is shut down in
' period ¢, else 0.
224 binary variable; 1 if unit 7 is shut down during
period t in scenario s, else 0.
Ns auxiliary variable related to scenario s used in
the calculation of CVaR.
1S auxiliary variable (equals VaR at optimal solu-
tion) (€).

I. INTRODUCTION

NVIRONMENTAL and economic factors suggest that
E renewable energy sources (RES) are likely to represent
a significant portion of the generation mix of many power
systems around the world in the near future [1]. Given the
fact that providing low cost electricity is essential for the

economic development of a region or a whole country, the
increasing scarcity and cost of conventional fuels has led many
governments and international institutions to introduce policies
in order to exploit regional energy sources and, therefore,
to isolate the electricity production cost from geopolitical
factors and transportation costs related to fuel imports. This
situation is more intense in non-interconnected systems. For
example, 94% of the electricity generation in the Canary
Islands depended on imported fuels in 2010 [2], while Cyprus
has been almost exclusively relying on the use of heavy
fuel oil and diesel in electricity production [3]. As a result,
exploiting local RES presents multiple advantages and could
reduce market prices [4].

However, the large scale integration of the two most com-
mon and technologically mature RES, wind and solar power
generation, is linked to a series of issues that need to be faced
by Independent System Operators (ISO), mainly stemming
from their intrinsically stochastic nature and the direct depen-
dence of their production on the instantaneous, daily, seasonal
and yearly fluctuations of wind speed and solar irradiation.
The integration of high levels of non-dispatchable resources
in power systems and especially in relatively small-sized,
non-interconnected systems such as the insular ones, poses
operational and economic challenges that need to be addressed.
The magnitude of the problem depends on the penetration of
RES in the production mix, while its mitigation is reflected on
the flexibility of the power system. The majority of existing
power systems has been designed considering the fluctuations
of the demand. Nevertheless, it is questionable whether the
grid can serve both varying loads and high amounts of variable
generation such as wind and solar. In order to accommodate
the significant uncertainty in operations, an increased amount
of reserves should be maintained. Especially, regulation and
load following requirements, both in terms of capacity and
ramping capability, are likely to increase with the growing
penetration of wind and solar generation.

Generators providing regulation and load following reserves
incur significant costs such as efficiency loss because of
ramping, environmental costs because of increased emissions,
increased wear and tear and, therefore, increased operating
and maintenance costs, as well as opportunity costs in the
energy market [5]. The increasing penetration of RES may
also lead to the displacement of peaking and intermediate
units, forcing base load plants to be operated in a cycling
manner, an operation which does not match their technical
characteristics such as long start-up, minimum up, down and
decommissioning times. These problems can be eased in two
ways, with the combination of several mature technologies
[6]-[8] and by the participation of the demand side in pro-
viding load following reserves. Certain types of loads such
as air conditioning and electric space heaters have the ability
to adjust their power to changes in demand instantaneously
[9], in contrast with conventional generators, the ramp rates
of which are limited. Furthermore, it is argued that services
provided by demand side resources could prove to be more
reliable since the reliability of the response of an aggregation
of a significant number of loads is greater than the one of a
small number of large generators [10].

1949-3029 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2016.2635099, IEEE

Transactions on Sustainable Energy

Another important issue that is primarily linked to wind
generation and can be faced by using demand side resources
is wind over-generation [11]. This problem appears when large
amounts of wind generation are available during off-peak peri-
ods, typically at night or early in the day. In such cases, due to
the fact that many markets consider wind power generators as
must-run units, either the output of the conventional generation
must be reduced in order to accommodate wind generation, or
the excessive wind energy should be curtailed, an option that
may bear high penalties, in order to maintain the balance of
the system. The situation escalates when the system comprises
relatively inflexible base load generators that are committed to
operating near their technical minimum power output during
such periods. Evidently, one solution that the deployment of
demand side reserves can offer is the increase of the demand
in periods in which there is excessive wind power generation.
Loads that can be shifted in such a way that allows the
otherwise spilled wind energy to be exploited include water
pumping, irrigation, municipal treatment facilities, thermal
storage in large buildings, industrial electrolysis, aluminium
smelting etc. [12].

Although the problem of reserve procurement under un-
certainty has been studied to some extent (a recent review
may be found in [13]), to the best of the authors’ knowledge,
there is no study considering the effect of risk aversion on
reserve procurement under the presence of flexible demand
side resources from the point of view of an ISO. Aiming to
contribute to the investigation of this area, a joint energy and
load following reserve market clearing model based on two-
stage stochastic programming that explicitly incorporates risk
management, in terms of optimizing the conditional value-
at-risk (CVaR) metric, is developed in this paper. The CVaR
metric has been widely used in the literature to model the
risk averse behavior of a decision maker. For instance, in [14]
a single-period robust optimal power flow formulation which
includes CVaR either in the objective function, or as a problem
constraint is presented. CVaR is evaluated in terms of sampling
the wind power output in order to decide on the output of the
conventional generators. However, neither the procurement of
reserves, nor the participation of demand side resources is
related to the subject of the work presented in [14]. Also,
the study in [15] utilized the CVaR metric in order to define
a minimum level of reserves that should be scheduled from
conventional units based on a Monte Carlo simulation. The
presented optimization model itself is cast as deterministic.
On the contrary, in our study CVaR is optimally evaluated
as a part of two-stage stochastic optimization problem, while
reserves and energy from the generation and the demand side
are jointly cleared considering both the expected cost and the
level of risk aversion. Finally, it is to be noted that CVaR
has been utilized in studies not directly related to the unit
commitment problem, such as for the optimal management
of energy storage systems [16], or to derive optimal offering
strategies for virtual power plants [17], [18].

The proposed model is conceptually different in comparison
with other related stochastic joint energy and reserve market
clearing models. More specifically, the contribution of this
paper is threefold:

1) to develop a reserve valuation mechanism based on a
risk-averse market clearing procedure. As a result, in
this paper the levels of committed reserves are driven
by the trade-off between cost and risk, while uncertainty
associated with wind production is optimally managed;

2) to consider demand side resources such as large indus-
trial consumers and load aggregations eligible for the
provision of reserve services;

3) to apply the proposed methodology to a real non-
interconnected power system with significant penetration
of wind power generation, namely the insular power
system of Crete in Greece, in order to reach practical
conclusions as regards the value of introducing demand
side resources to reserve provision mechanisms.

The remainder of this paper is organized as follows: Section
IT presents the methodology proposed to evaluate the impact
of the active demand side resources. In Section IIT the method-
ology is tested on a real power system and relevant results are
discussed. Finally, conclusions are drawn in Section I'V.

II. MATHEMATICAL MODEL

A. Objective Function

The objective of the ISO is to minimize the total expected
operational cost of the system (EC) taking into account the
effect of different levels of risk aversion, by also minimizing
the CVaR metric as expressed by (1). Parameter § is non-
negative and defines the relative importance of the minimiza-
tion of CVaR versus the minimization of EC.

EC is defined in (2). EC comprises two components: a
component that is scenario independent (start-up and shut-
down cost of units, energy and reserve cost of generators and
demand side reserve procurement cost) as presented in (3)
and, a scenario-dependent component that considers the cost
of altering the commitment status of units and materializing
reserves as energy. Also, two fictitious costs are considered
(wind spillage cost and energy not served). The scenario
dependent part is described by (4).

C=EC+B-CVaR (1)
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Representing a random variable by its expected value is ad-
vantageous in comparison with a deterministic approach. Nev-
ertheless, the characteristics associated with the distribution of
the outcomes of the individual scenarios are disregarded. As a
result, an acceptable expected cost value that may be favorable
for the ISO does not necessarily mitigate the possibility of
facing significant costs in several scenarios. To overcome
this ambiguity, a risk measure should be incorporated in the
optimization problem. A risk measure is a function that results
into a real number characterizing the risk associated with
the specific expected value of a random variable. There are
various perceptions of risk and therefore, several different
risk measures may be used. Extensive discussion on how to
incorporate different risk measures in stochastic programming
formulations is performed in [19] and [20].

In this study, the CVaR metric [21] is used because it
presents three important advantages: 1) it can be incorporated
in the optimization problem using a linear formulation, 2)
in contrast with the popular value-at-risk (VaR) metric, it
quantifies "fat tails" in the probability distributions and, 3)
it is a coherent risk measure.

For a given o € (0,1) the VaR is equal to the minimum
cost £ that will not be exceeded with probability «. It should
be noted that £ is the variable representing the value of the
risk measure and not a pre-fixed parameter. Mathematically,
VaR is defined by (5).

VaR, = min{¢: P(ECST + ECSP < ¢)>a}  (5)

Utilizing VaR as a risk metric may not be fully descriptive
of the characteristics of the distribution of system operational
costs, especially in case the latter is fat-tailed. In practice this
means that although VaR acts as a cutoff value, the cost in
scenarios that exceed this value may be substantial. On the
other hand, utilizing CVaR as a risk metric eases this concern.
CVaR is defined as the expected value of the cost of the
scenarios with cost higher than the (1 — «)-quantile of the
cost distribution (VaR). If all scenarios are equiprobable, then
CVaR is equivalent to the expected cost of the a x 100%
worst scenarios. Evidently, smaller values of the CVaR are
more desirable from the perspective of a risk-averse ISO. The
mathematical definition of CVaR is given in (6).

1
CVaR, = min{¢ + T— [max{ECS" + ECSP — ¢,0}]}
—
(6)
In this study, the optimization problem that needs to be
solved by the ISO is cast as a mixed-integer linear program
(MILP). As a result, the non-linear equation (5) that defines

the CVaR metric is replaced by the linear constraints (7)-(9).
In (7) ns is defined as a non-negative auxiliary variable which
according to (8) represents the difference between the cost
in each particular scenario and variable {(¢* = VaR). If
the difference is positive for some scenario s, then this is
a scenario the cost of which exceedsVa/? and it holds that
ns > 0 else, it holds that n; = 0. Finally, (9) is used to
account for the expected value of max{EC! + ECSP —¢ 0}
with respect to the (1 — a)-quantile. These values are then
superimposed to the value of VaR so that the CVaR is
appropriately associated with the cost distribution.

s > 0 Vs (7

ECST 4+ ECSP —¢ <y Vs )

CVaR = ¢+ ! > (9)
Valt = 1o g g Ns

B. First Stage Constraints

This section presents the first stage constraints of the
optimization problem. These constraints involve only decision
variables that do not depend on any specific scenario (here-
and-now decisions) and represent the day-ahead market deci-
sions.

1) Scheduled Wind Farm Production: Typically the wind
power generation scheduled in the day-ahead market is con-
sidered equal to its forecast value. However, in this study it
is considered that the ISO schedules the optimal amount of
wind according to the techno-economic optimization within
the limits imposed by (10). The upper limit stands for the
installed capacity of the wind farm.

0 S PW/P,S S PWP,maz Vw,t

w,t w

(10)

2) Aggregated Load Scheduling: Constraint (11) stands for
load scheduling. The load may also be scheduled to provide
down reserves (12) that stand for a load increase and up
reserves (13) that stand for a load decrease. Finally, (14) is
an energy requirement constraint which states that, during the
day, at least y; of the nominal demand of load j has to be
satisfied. If a load is inclastic, then the two limits of (11)
coincide with L7,.

LM < L5, < LY7* Wyt (11)
0< R < LS, — L3y vt (12)
0 <Ry <L — LY, vjt (13)

(14)

> L5 > ER; Vi
t

3) Industrial Consumer Scheduling: The industrial load
model is portrayed in Fig. 1. Constraint (15) enforces the
fact that the hourly power demand of the industry comprises
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Fig. 1. Industrial load model.

an inelastic part and the power of a number of production
lines that may be allocated during a period. For the sake
of simplicity, it is considered that all the lines have the
same power rating and that no interrelation exists between
their operation and functionality. This constrains the present
industrial consumer model applicability to certain types of
industrial processes that can operate discretely and without
operating time limits or other restrictions. Alternatively, it
represents the time allocation of the total energy required by
a single process. The number of production lines that can
be allocated in a single period is constrained by (16) and it
cannot surpass the total number of production lines available
for flexible demand allocation. The energy requirement of
the industrial consumer is enforced by (17). This constraint
ensures that the industry does not incur any economic loss
due to participating in the provision of system services. It
is to be noted that since production lines represent blocks of
energy that may be optimally scheduled, the term af;'*” - Pflme
stands for the total amount of energy required by the flexible
processes of the industry that need to be completed within the
horizon.

D3, = D" + aqq - Py vd,t (15)

0<ag; <al* Vvd,t (16)

> Di, =3 D wage-PitNd ()
t t
The industry can provide up or/and down reserves in a
discrete manner by switching on or off one or more production
lines during one or more scheduling periods, as described in
(18)-(21).
Ry = alh - Py vd,t

(18)

0< asﬁ < ag; Vd,t (19)

RYT = adorm . Pime v, t (20)

0< agf}“‘" < al'™® —ag, Vd,t

@n

A more complete modeling of the industrial consumer that

covers several types of dispatchable industrial processes may
be found in [22].

4) Power Balance: Equation (22) enforces the day-ahead
market power balance. Any other market scheme can be
naturally modelled within the proposed formulation.

SoPS+Y PYPS=N"LY, 4> D, v (22)
Q w J d

5) Other Constraints: Apart from the constraints presented,
a series of operational constraints pertaining to the conven-
tional generating units are enforced in this study: genera-
tor minimum up and down times, unit commitment logic
constraints, generator ramp-up and ramp-down limits and
reserve scheduling constraints that consider the maximum and
minimum power output of a generator as well as the ramping
requirements for the provision of reserves. These constraints
may be found in [22], while in [23] these constraints are
generalized in order to utilize different time scales.

C. Second Stage Constraints

The second stage of the problem represents the operation of
the power system given the occurrence of a specific scenario
and involves variables and constraints dependent on each
scenario (wait-and-see decisions).

1) Wind Spillage: A portion of available wind production
may be spilled if it is necessary to facilitate the operation of
the power system. This is enforced by (23).

<pPYE

0< Sw=t-,5 = Lat,s Vu',t,s (23)

2) Demand Side Constraints: Energy requirement con-
straints are enforced for demand side resources. The actual
energy consumed at each specific scenario for the load ag-
gregations should be greater than the total nominal demand
reduced by the load recovery rate. It is possible that a portion
of the energy that should be supplied to the loads of an
aggregation is not reimbursed as expressed by (24), and, thus,
it is involuntarily curtailed at a high cost. Also, constraint
(17) related to the energy demand of the industrial consumer
is enforced for every scenario through (25).

N LS, > ER; — ENS;, V) (24)
t

> D, =Y D3, Vd.s
t t

3) Other Constraints: Additionally, in the second stage of
the problem, operational constraints of the conventional units
are enforced for each scenario, while the day-ahead market
power balance constraint is substituted by network constraints
using a DC power flow approximation as in [24].

(25)

D. Linking Constraints

This set of constraints couples the day-ahead scheduling
and the operation of the power system in any given wind
power generation scenario occurrence. It enforces the fact that
reserves in the actual operation of the power system are no
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longer a stand-by capacity, but they are materialized as energy
instead.

The decomposition of generator power outputs is deter-
mined by (26).

S,G

)
,8

U,

G N D,G \ .
i,t,8 +’r7',.f -r Vl,t,S

i,t,8

Pé

=P+ (26)

Other necessary constraints to link the first and second stage
decisions for the generation may be found in [22].

The decomposition of the aggregated demand consumption,
as well as the relevant reserve determination is enforced by
(27)-(29).

UL D,L -

Lgtv = Lit “Tts + Tjts Vj,t,s (27
U,L UL -

0<r;,s <R Vits (28)
D,L D.,L .

0< s <R Vjts (29)

In a similar fashion, constraints (30)-(36) hold for the
industrial consumer.

U,I

DY, , =D+ rf,f;{s — 1y Vd,t.s (30)

0<ry, <R} vdts

31

Ul _  up?2 line
Tats = Odits - P Yd, t s (32)

N
0< agﬁ’,'s < az,’; vd,t, s

(33)

0<ry, < Ry vd.t,s (34)

D,1 _  down,2

line
Tats = Cats - Py Vd,t, s

(33)

0 < agy"* < afy™ vd,t.s (36)

Apart from the aforementioned linking constraints, addi-
tional constraints must be enforced for generating units that are
not capable of providing non-spinning reserves or for must-run
units.

III. TESTS AND RESULTS
A. System Description

The proposed methodology is tested on the insular power
system of Crete for a typical day with a peak-load equal to
626.2 MW (Fig. 2). The HV system of the island consists
of 19 buses and 24 branches [25]. The generation mix of
the island includes 25 thermal units in 3 power stations
across the island exclusively utilizing diesel and heavy fuel
oil. Furthermore, there are 31 wind farms across the island
with installed capacity 186 MW. Technical and economic
data of the generation system are illustrated in Table T [26].
Generator reserve prices are considered equal to 25% of the
most expensive block of the marginal energy cost function

6

630 B Dispatchable industrial load =]
| ON/Dindustrial load | |
™ 380 OAggregated load i
Z 530 1
e
5 480 A
z
2430 3‘
380 A ﬂ H
330..H.H.H.H.H.................
T3 5 7 9 11 13 15 17 19 21 23
. Pcriod of the day
Fig. 2. Total system demand.
TABLE 1
GENERATION MIX OF THE SYSTEM
| Number of Capacity Marginal cost
Technolagy Fucl units (MW) range (€/MWh)
ICE Hea‘(’)iylmd 6 142 69.96-163 .45
Steam Hea‘(’)iylmel 7 196 76.89-166.08
CCGT Dicscl oil 1 110 147.75
OCGT Diesel oil 11 299 124.21-284.73
Total - 25 747 -
Wind - 31 186 -

assigned to each generator, similar to [24]. Tt is noted that only
spinning up and down load-following reserves are assumed
to be scheduled by the ISO. This simplification is justified
by the fact that the generation mix of the island consists of
several fast-start Internal Combustion Engine (ICE) and Open
Cycle Gas Turbine (OCGT) units, allowing for the ISO to
make corrective actions in the unit commitment process in
real time. Demand side participation is still at an initial stage
across Greece and, as a result, the input data used for the
demand side are conceptual. It is assumed that demand side
services are incentivized by the regulatory authorities (e.g.
through discount rates in energy bills) and, thus, not priced
during scheduling. Involuntary load shedding is allowed as
a last resort at a very high cost (€1000/MWh). Note that a
day-ahead market does not exist in Crete, but a cost-based
scheduling is performed instead. The proposed methodology
is naturally consistent with such policies.

B. Scenario Generation

The scenario generation technique is based on forecast-
ing using time series models [27] utilizing the ECOTOOL
MATLAB toolbox [28]. Historical data regarding the total
production of the wind farms located in the island of Crete are
collected from the database of the SINGULAR project [29] for
the years 2011 and 2012. The wind farms have an installed
capacity of 186 MW. Scenarios are created for the randomly
selected day 4/9/2012. The generic form of the ARIMA model
is represented by (37).

1
V=t A (1 = By
040(B) 04, (B*) 0, (B)
bpy (B) op, (B51) """ ¢, (BS*) '
where ¢, stands for the observed time series; ¢; is the

residual term; s;, (J 0,1,...,k) are a set of seasonal
periods, with so = 1; (1 — B%)% (j = 0,1,...,k) are the

(1 Bor)de -
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k+1 differencing operators necessary to reduce the time series
to mean stationarity; 0, (B*/) and ¢¢,(B*),(j = 0,1,...,k)
are invertible and stationary polynomials in the backshift
operator B : B = y;_; of the type 0,,(B%) = (1+ 6, B% +
02B%5 + ... +0,,BY%); cis a constant.

Prior to forecasting, the historical time series is transformed
using logarithmic transformation in order to stabilize the
variance across time. To generate wind power generation
scenarios, several ARIMA models are fit to the observed time
series. The rationale followed is that forecasting is performed
for the 24 h of a specific day by considering different ranges
of historical data. More specifically, starting from a forecast
using the historical data of the first past week, a day is
added to the time series and the forecasting is repeated,
while a new ARIMA model is fit when adding a whole new
week to the data range. For example, a particular ARIMA
model is estimated both when performing a forecast based
on the 7 previous days and the 14 previous days; however,
the forecasts that are also considering the 8 to 13 previous
days are performed using the ARIMA model that was fit for
the 7-day forecast. For example, the particular ARIMA fit to
the historical time series spanning from 28/8/2012-3/9/2012 is
presented in (38).

1
(1-B)1-B2)
(1—0,B' — 0,82 — 0383 — 0,B* — 0sB° — 0B ...

log iy = c+

(1 =1 B — 92B? — 93B3 — ¢y B* — 585 ...
e — 913313 — 914B14)
. eBY)
(1= 017B'7 — 015 B'S — 60, B> — 0, B3 — 0,4 B*)
(1 = ¢12B12 — ¢13B'3 — $14 B — ¢17B'7)

1
(1 6287

(38)

Following this procedure and by progressively considering
historical data spanning from 20/6/2012 to 3/9/2012 an initial
pool of 70 equiprobable scenarios is constructed . The compo-
nents of each model are selected based on the inspection of the
autocorrelation function (ACF) and the partial autocorrelation
function (PACF). The residuals €, of each particular ARIMA
model should follow a Gaussian distribution with zero mean
and constant variance (white noise). A variant of the scenario
generation technique employed in this paper was also used
in [30]. It is to be noted that the requirement ¢; to be white
noise is imposed by the fact that otherwise, characteristics of
the time series would not be captured by the ARIMA model,
and is not related to the addition of white noise on forecasts
in order to produce scenarios such as in [26] or [31]

The computational performance of the stochastic program-
ming models strongly depends on the size of the scenario set.
In this respect, a scenario reduction technique based on the k-
means clustering algorithm [32] is applied in order to reduce
the number of scenarios by substituting the initial scenario set
by an approximate representative set of 30 non-equiprobable
scenarios with the characteristics presented in Fig. 3. It is
also to be noted that the use of other scenario generation
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Fig. 3. Characteristics of wind power generation scenarios.

and reduction techniques, despite the numerical differences,
does not affect the structure of the optimization problem and
therefore, the observations presented in Section I1I-C should
be general.

C. Simulation Results and Discussion

1) Case study: In order to evaluate the performance of the
proposed model, several simulations are conducted. It is to
be noted that the wind spillage cost is set to a sufficiently
high value (€1000/MWh) in order to avoid wind power
curtailment. In this way the case study reveals the benefits
of deploying demand side resources under the requirement
of fully accommodating the available wind power production.
The confidence level in all the test cases is considered 90%.

In the first test case, different amounts of aggregated load
flexibility are considered for varying levels of risk aversion
(i.e. different values of (3). It is considered that at least 90%
load recovery is demanded by the loads. The load is allowed to
deviate from its nominal hourly demand by 0%, 1%, 2%, and
5%, and 10%. In this manner, an approximation of the efficient
frontier related to the total expected cost and the CVaR is
obtained and the relevant results regarding the characteristics
of the cost distribution are presented in Table II. The following
are noticed:

1) Without enforcing a risk-averse behavior (i.e., when
B = 0), it may be noticed that both the total expected
cost and the respective standard deviation, as well as
the range between the most expensive scenario and
the scenario with the lowest cost, decrease as the load
flexibility increases. This evidence suggests that the
aggregated load is not only a means of reducing the total
expected cost but also inherently reduces risk (both by
reducing the value of CVaR and standard deviation).

2) For the same level of risk aversion (i.e., the value of
() the total expected cost, the standard deviation, the
range of the cost and the value of CVaR decrease as the
amount of load flexibility increases.

In Fig. 4 the cumulative distribution function (CDF) of the
cost in individual scenarios for different levels of aggregated
load flexibility and a risk aversion level expressed by 8 = 10
is displayed. It may be noticed that as the flexibility of the
aggregated load increases, the CDF shifts to the left while
the cost of the individual scenarios compacts around the total
expected cost, implying a reduction in the cost of all individual
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TABLE II
CHARACTERISTICS OF THE COST DISTRIBUTION FOR DIFFERENT
AMOUNTS OF AGGREGATED LOAD FLEXIBILITY

Expected  Standard
b CVAR®) co]:t (€ deviation (€) }2"8¢ (©)
o 1252524 1183572 22995 108593
§ 0.05] 1218883 1183572 22953 108451
El 1218148 1183937 22122 105753
:—E 2 1217743 1184533 21629 104082
=p 1217367 1185482 21042 101803
10 | 1217360 1185517 21012 101704
0 1229213 1162879 20448 93387
< lo.os| 1195747 1162881 20370 93079
210 1194555 1163443 19054 88441
% 2 1194022 1164209 18388 86255
£ 5 1193607 1165186 17891 84471
10 | 1193595 1165270 17848 84283
R 1209136 1145096 18406 81391
§. 0.05| 1175547 1145095 18178 80324
g‘ 1 1172565 1146559 15120 68548
i‘; 2 1171363 1148317 13791 63667
E 5 1170781 1149690 13118 61229
10 | 1170781 1149691 13118 61229
~ 1157720 1094839 17959 79184
P [0.05 1124794 1094848 17800 78461
E 1 1121055 1096828 14143 63692
;-:; 2 1118908 1099988 12009 55124
£ 1118190 1101624 11197 52182
10 | 1117891 1103296 10466 49379
- 1075002 1012627 17832 78596
é 0.05| 1042222 1012634 17612 77560
2| 1038570 1014582 14008 63048
% 2 1036377 1017831 11779 54114
E 5 1035550 1019715 10820 50673
10 | 1035303 1021109 10216 48356

scenarios. More specifically, a reduction of 53% in the range
of the costs is noticed for 8 = 10 with respect to S = 0).

The CDF of cost in individual scenarios for a given level
of flexibility of the aggregated load (5%) and for different
levels of risk aversion is depicted in Fig. 5. As regards the
impact of different values of 5 on the distribution of scenario
costs two observations may be made: 1) the cost of the most
expensive scenario is reduced with the increase in the level
of risk-aversion and, 2) the spread of the individual costs is
mitigated. Since the only source of uncertainty considered in
this study is wind power production, the key to understanding
the behavior of the model under different risk aversion levels
lies in the economic impacts of wind power generation in the
given model. Due to the fact that wind producers are not
considered competitive agents, the injection of free energy
into the system leads to a reduced energy cost in day-ahead
scheduling. However, the volatility of wind power generation
enforces the scheduling of a sufficient amount of reserves. If
reserves are only scheduled by the generation side, there is an
impact both on the energy cost (by altering the generator set
points) and the scheduled reserves cost.

In Fig. 6 the scheduled reserve cost for different levels of
risk aversion and aggregated load flexibility is portrayed. It
is evident that as the value of (3 increases, the cost of the
scheduled reserves decreases for all cases. Furthermore, the
presence of flexible demand side resources alleviates the need
for scheduling load following reserves on the generation side

Probabilit
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Flexible
load

T

1210000

Flexibility
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Scenario cost (€)
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Fig. 4. CDF of cost in different scenarios for different levels of aggregated
load flexibility and 8 = 10.
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Fig. 5. CDF of cost in different scenarios for 5% aggregated load flexibility
and S =0, 1, 10.

and, therefore, a significant cost reduction is noticed as the
amount of available flexibility increases.

In the second test case the dispatchable portion of the
industrial load (a total of 15 MWh) is considered and is
rendered available to be managed by the ISO into 30 discrete
energy blocks of 0.5 MWh, each for different levels of risk
aversion (i.e., different values of 3). The efficient frontiers
for both cases, inflexible load and the investigated case, are
depicted in Fig. 7, respectively. Note that the effect of the
dispatchable industrial load as an energy and reserve service
provider is similar to the case of the flexible aggregated load.
For the same level of risk aversion, both the total expected
cost and the corresponding value of CVaR are reduced in
comparison with the case of an inflexible load (the Pareto
frontier shifts downwards and to the left). The findings are
justified in the same fashion as described for the case of
flexible aggregated load.

2) Value of demand response (DR): The economic com-
pensation of DR participation in the energy market is an issue
that needs to be addressed and is linked to a controversial
discussion [33]. One argument is that DR providers should be
compensated on a non-discriminatory basis at the full market
price, such as in ISO New England and New York ISO. On
the other hand, the decision not to purchase energy is not
equivalent to supplying energy. The loads that participate in
wholesale markets would receive dual benefits, being paid at
the market price for their service and achieving retail bill
savings because of their reduced consumption. In order to
promote a more efficient DR compensation from the point
of view of the ISO, in MISO and PJM the participation
of demand side resources is compensated at the full market
price minus the retail rate [34]. Nevertheless, DR providers
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Fig. 6. Behavior of the scheduled reserve cost for different levels of risk
aversion and aggregated load flexibility.

argue that DR creates positive externalities such as economic
and environmental benefits and thus, they should be granted
payments higher than the market prices. In this study, the
reserve services that are procured from the demand side
are not priced within the described market framework in
compliance with the current operational practice in the insular
power system of Crete that does not explicitly consider the
contribution of demand side resources. This assumption is
valid considering existing programs that provide alternative
incentives in order to engage consumers. For instance, in
Australia the "PeakSmart AC" program allocates fixed rewards
depending on the cooling capacity of the air conditioners of the
end-users and air conditioner units replacement for residential
consumers and businesses [35].

In order to establish pricing schemes for the participation
of the demand side resources in the future, the economic
benefits (e.g., reduction in reserve cost and expected cost)
and the potential externalities (e.g., risk mitigation) should be
evaluated. To provide insight into the benefits of the demand
side participation in the presented case studies, let us consider
the case of the aggregated load with a 2% flexibility. The
changes in EC, CVaR and day-ahead wind integration with
respect to the case of a purely inelastic load and per MWh
of utilized load flexibility are collected in Table 1ll. It can
be noticed that value is added to the system as regards the
mitigation of the expected cost and the CVaR, while the
integration of wind energy is facilitated. Taking into account
the added value of demand side participation, as it is revealed
by this case study, the relatively high incentives that are given
to DR providers in order to recover the investments required
in order to be qualified as system resources (e.g., 200-400
$/kWh in the Automated DR program of Pacific Gas&Electric
Company [36]) may be justified.

3) Computational statistics: The proposed model has been
implemented in GAMS software and the MILP optimization
problem described in Section II has been directly solved
using CPLEX 12. All tests are performed using a workstation
employing two 12-core processors at 3.10 GHz and 192
GB of RAM, running a 64-bit version of MS Windows.
The computational time varies among the different test cases
presented. The average CPU time is approximately 2.5 minutes
and does not exceed 4 minutes per single run in the com-
putationally worst case (when dispatchable industrial load is
considered) which has 482073 equations, 1542824 continuous

variables and 229687 discrete variables. Although the size of
the problem is relatively large, the use of a typical multi-core
processor system resulted in acceptably low solution times in
all the examined cases. Taking into account that simulations
were performed on a real power system, it may be argued that
for power systems of a similar scale there is not an evident
need for decomposition techniques to be applied.

The two-stage stochastic programming model structure was
based on a node-variable formulation which implies that deci-
sion variables are associated with each stage of the problem.
This is a compact formulation which is suitable for the direct
solution of the problem. However, increasing the number of
the considered scenarios may significantly increase the size
of the problem at hand. In such a case, the proposed model
may be reformulated relying on a scenario-variable approach.
Although more variables and constraints would be needed
to derive an equivalent problem formulation, a structure that
might be exploited using decomposition techniques emerges.
By relaxing the non-anticipativity constraints the optimization
problem may be treated as a problem with complicating
constraints which can be solved decomposed per scenario [37]
using, for example, the Augmented Lagrangian Relaxation
method [38].

IV. CONCLUSION

In this study a two-stage stochastic programming based day-
ahead joint energy and reserve scheduling model under the
presence of significant wind power generation penetration was
presented. The risk-averse behavior of the ISO was modeled
through the consideration of the CVaR metric. The formulation
considered the generation side, as well as two types of demand
side resources, that were able to provide load following
reserves: aggregated loads which can alter their consumption
in a continuous fashion and industrial consumers that can
schedule a portion of their demand in order to alleviate system
stress and provide reserves in a discrete manner. Simulations
performed for the case of the insular power system of Crete,
Greece allowed drawing useful insights into the integration of
demand side resources.

The most important observations may be summarized as
follows:

o due to its technical and economic characteristics, demand
side participation in reserve provision, either in the form
of large industrial consumers or of load aggregations, has
the inherent capability of inducing a reduction in risk,
even in the case in which the ISO is risk-neutral;

o the ISO has to make a decision as regards the joint
energy and reserve market clearing from a more favorable
efficient frontier as the amount of available flexibilty
increases;

o it is revealed that the mechanism through which the ISO
can manage the risk is mainly affected by the trade-
off of integrating wind energy in the day-ahead market
(energy cost) versus the amount of reserves that need to
be scheduled (reserve cost);

o The relatively high incentives that are provided for load
participation by different ISO may be justifiable, since
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Fig. 7. Comparison of efficient frontiers for the cases in which the total
system load is inflexible and for the case of a dispatchable industrial load.

TABLE III

CHANGES IN EC, CVAR AND WIND INTEGRATION FOR AGGREGATED

LOAD FLEXIBILITY 2% PER MWH OF LOAD USED

p 0 0.05 1 2 5 10
Change in EC (€/MWh) 167.7 167.7 1629 157.8 156 156.1
Change in CVaR (€/MWh) 189.1 1889 198.7 202.1 203 203
Day-ahead wind integration 096 094 087 076 066 065

(MWh/MWh)

the participation of demand side resources, apart from
contributing to cost reduction, under all circumstances
created positive externalities such as reducing the risk
embedded in the decisions of the ISO and increasing
the wind power generation penetration in the day-ahead
market.

The presented simulations have indicated that the cost
savings and the risk mitigation capability of the demand side
resources participation may be affected by the load recovery
effect. Further investigation of the effect of the load recovery
requirements of the flexible loads will be the subject of future
studies to be conducted by the authors.
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