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Abstract—The major challenge in coordinating between fast-
acting energy storage systems (FA-ESSs) and renewable 
energy sources (RESs) in the existing transmission grid is to 
determine the location and capacity of the FA-ESS in the 
power systems. The optimal allocation of FA-ESS with 
conventional hourly discrete time method (DTM) can result 
in the increased operation cost, non-optimal placements and 
larger storage capacity and therefore, having an opposite 
effect on the operation. Accordingly, in this paper, a 
continuous-time method (CTM) is proposed to coordinate 
FA-ESS and RESs to cover fast fluctuations of renewable 
generations (RGs). Besides, based on the CTM, an adaptive 
interval-based robust optimization framework, to deal with 
uncertainty of the RGs, has been proposed. The proposed 
optimal allocation of FA-ESS with CTM provides the best 
sitting and sizing for the installation of the FA-ESSs and the 
best possible continuous-time scheduling plan for FA-ESSs. 
Also, in other to have better implementations of their 
ramping capability to track the continuous-time changes and 
deviations of the RGs rather than hourly DTM. The proposed 
model has been implemented and evaluated on the IEEE 
Reliability Test System (IEEE-RTS). 

 
Index Terms—Renewable energy sources, continuous-

time, energy storage systems, robust optimization. 

I. NOTATION 

A. Indices 
j Index of Bernstein basis Function. 
w, g, e Index for generation units, wind farms and ESU, 

respectively. 
n, m Indexes of buses. 
t   Index of continues-time.  
κ   Index of time interval.  
k Index of transmission line. 

( )±•   Related to wind uncertainty realization, where 
‘±’: ‘–’ and ‘+’ refer to the lower and upper 
bounds of wind uncertainty range, respectively. 

( ),( ) t⋅•   Related to element ( )⋅  at time period t. 

All variables and constants include subscript ±  and t 
referring to scenario ± and hour t. 

B. Parameters 

gc  Cost of generating unit g. 

nc  Cost of power charge and discharge for 
FA-ESS. 

max min/g gP P  Max/min generation of generating unit g.

max min/g gr r  Max/min ramp rate for generating unit g.

, /f wt ntP d  Forecasted wind power/load. 

kb Transmission line susceptance for line k.
max

kP  Maximum power flow capacity of line k.

/c d
n nη η  Cycle charging/discharging efficiency of 

FA-ESS at bus n. 
/c d

n nP P  Maximum power charging/discharging
for FA-ESS at bus n. 

max min/n nE E  Max/min net energy capacity for FA-ESS
at bus n. 

nρ Factor associated with the power 
charging and discharging of FA-ESS at 
bus n. 

max
gΔϒ  Ramp up/down limit of a generating unit

g at wind uncertainty realization 
condition 

nx Annualized investment cost of the FA-
ESS at bus n. 

,
t
j Jb  Bernstein basis function of order J.

tf
Jκ

Ψ  Bernstein polynomial operator takes a 
function ft. 

( )
jC
κ

•  Bernstein coefficient of ( )• . 

J Order of Bernstein polynomial
K Large enough constant. 
ξ  Weighting parameter of uncertainty.

∏  Investment budget for new FA-ESS
C. Variables 

gtP  Power generation of generating unit g.

/c d
nt ntP P  Power charging/discharging of FA-ESS at 

bus n. 

nλ  Sizing coefficient of FA-ESS at bus n.

nI  Binary variable that equals 1 if the FA-
ESS is installed at bus n, and 0 otherwise. 

gtP  Ramp rate for generating unit g.

ϑ  The variation range of wind uncertainty.

ktP  Power flow on transmission line k.

ntδ  Voltage angle at bus n. 

ntE  State of charge for FA-ESS at bus n.

/Inv OperC C  Investment and operation costs.
( )
JC

κ

•


 Vector containing Bernstein coefficients 
of ( )• . 

Φ Total cost.

tW  Wind power function. 
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II. INTRODUCTION 

Installed renewable energy sources, in particular wind 
energy generation (WEG), have been increased 
substantially over the last decade. In China for example, 
the installed WEG capacity extended to 62 GW via the end 
of 2011 and is planned to the extent of 100 GW via the end 
of 2015 [1]. Nevertheless, the intermittent characteristics 
of WEG increase the uncertainty and the fluctuation at 
power system. Once WEG makes up a large proportion of 
the committed conventional thermal generating units 
(TGUs), the minimum load problems can arise once TGUs 
cannot operate at a much reduced generation or cannot be 
turned off. Also, the intermittency of WEG usually 
requires the provision of additional ramping capacity by 
the conventional TGUs. Fast fluctuations of the generation 
of particular high penetration of WEG are a substantial 
issue because usually the fast fluctuations cannot be 
covered by conventional TGUs. High penetration of 
WEGs will necessitate more operating reserves leading to 
higher costs of ancillary services. Also, lack of enough 
ramp capabilities of conventional TGUs will make hard the 
compensation of fast variations of WEGs in a short time. 

Because of the fast-ramping and charging-discharging 
capabilities of flexible fast-acting energy storage systems 
(FA-ESSs), especially battery energy storage system 
(BESS) or pump storage systems with high ramping 
capability, can mitigate the fast wind energy fluctuations. 
The allocation of FA-ESS may defer significant 
investments on new facilities through peak amend, which 
mitigates transmission bottlenecks and removes the need 
for new peaking gas-fired power plants, and providing 
fast-response ancillary services, improving fast variations 
of WEG following, facilitating load shifting as well as 
improving power quality and service reliability. The FA-
ESSs can buffer the output of intermittent WEG by 
providing fast-ramping energy services. Accordingly, it is 
vital to increase the expansion investments in FA-ESSs in 
the power systems with a high share of WEGs, with limited 
ramping capacity [2] and [3]. 

Since, the investment in FA-ESS requires high 
monetary assets, accordingly optimization model for siting 
and sizing of this flexibility sources is vital to cover 
inherent uncertainty and fast sub-hourly fluctuations of 
WEG integrated power systems. To deal with uncertainty, 
three traditional uncertainty modeling approaches are 
available in electric power systems: (i) stochastic 
optimization (SO), [4] and [5], and (ii) standard robust 
optimization (SRO) [6], (iii) proposed interval based 
robust optimization (IBRO), [7]. In the SO, a large number 
of scenarios is required to cover more uncertainty spectrum 
which results in a high computational burden for the large-
scale systems [4].  

The uncertainty modeling in the proposed IBRO method 
is similar to that of the SRO method with the difference 
that in SRO method, it is needed to know the range of the 
uncertainty and the lower and upper bounds of the 
uncertainty spectrum are fixed before solving the problem. 
But, in the IBRO method, the range of the uncertainty 
spectrum is optimized to have a robust optimal solution for 
the maximized range of the uncertainty.  

Note that, as an advantage for the IBRO method, the 
application of this method for the proposed problem is 
much simpler than the SRO and SO methods.  

The other advantage of the proposed method is its 
tractability and simplicity, and hence, the problem sustains 
in a reasonable size. 

Numerous studies are available in the technical 
literature regarding WEG uncertainty management by the 
allocation of EESs in transmission grids with significant 
wind power integrations. In recent studies, the SO and 
SRO have been employed to solve the joint FA-ESSs 
placement problem ([8], [9], [10], [11], [12] and [13]). 
However, the optimal allocation of FA-EES problem with 
IBRO method in the power system has not been tackled 
yet. In [5], a stochastic problem based on the substantial 
number of scenarios has been proposed to determine the 
optimal sizing of ESSs in a power system with wind 
uncertainty. In [9], a deterministic optimal allocation EESs 
is suggested for transmission grids to determine the 
optimal size and location of ESSs to optimize the use of 
renewables while reducing the operation costs. References 
[5] and [12] propose a SO model to coordinate the long-
term planning of both ESSs and transmission lines to 
integrate wind power efficiently. Optimal sizing and siting 
decisions for the battery ESS is achieved through a 
deterministic method in [9], which aims at maximizing the 
system planning and operation cost savings under high 
renewable penetrations. In [14], an expansion model of 
ESSs and transmission lines using SRO is proposed. The 
uncertainty is represented via confidence bounds.  

In [15], the transmission network expansion planning is 
solved considering uncertain dynamic thermal rating of 
overhead lines. The uncertainties in this paper have been 
modelled by SO. Noted that, the FA-ESS planning has 
been not considered by [15]. 

The co-planning of TEP and ESS has been used in [5]. 
Must be remembered, this study uses the SM to model 
wind uncertainty.  

Recent research on ROM for solving the TEP is reported 
in [16] and [17]. The uncertainty considered is represented 
via confidence bounds. Noted that, the ESS planning has 
been not parented by [16] and [17]. On the other hand, in 
[12], a planning problem of ESS and transmission using 
ROM is proposed.  

In the above research works [8]–[17], the hourly 
discrete-time method (DTM) has been used in the optimal 
operation of ESSs with fast fluctuations of WEG. 
However, the current hourly discrete-time method for 
operation of ESSs by sampling the demand hourly and 
having hourly decision variables for charging/discharging, 
the hourly unit commitment status and generation 
schedule, has functioned satisfactorily to handle the 
uncertainty and variability of load. However, this method 
is unable to deal with the fast sub-hourly variations to the 
system due to increasing integration of WEGs. Indeed, 
sub-hourly variations lead to frequent occurrence of large 
deficits or excesses for ESS capacity (or non-optimal 
allocation of ESSs). Also, the current hourly DTM in the 
proposed problem does not efficiently employ the existing 
ramping capability of FA-ESSs to better capture the fast 
sub-hourly ramping of WEG.  

On the other hand, the actual real-time WEG can be 
divided to the discrete-time intervals that needs to be 
absorbed by the power system at the subsequent stages of 
operation, depending to different independent system 
operators (ISOs) market structure.  
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Fig. 1. Linear spline approximation of the continuous wind power 

profile. 
 

The discrete-time intervals deviation results from two 
kinds of error in system operation: 1) error due to the 
imperfect sub-hourly interval forecast, 2) error due to the 
wind power profile approximation. Here, we argue that the 
ramping scarcity problems are originated, partly, due to the 
inherent error in the current practice of sub-hourly interval 
wind power profile approximation. In fact, ramping events 
and constraints are inter-temporal continuous-time 
mathematical objects. The natural implication of the 
current discrete-time formulation is that, within the hour or 
minutes intervals, generators shall follow a linear ramp 
from one value to the next.  

Habitually, looking at Fig. 1, the linear trajectory does 
not fully capture the prior information about sub-hourly 
variations of the wind power and one must expect 
deviation which will have to be handled in the real-time 
operation. If this short-term deviation is beyond the 
coverage of the hourly operation decisions, the short-term 
operations may be left with sufficient capacity but without 
ramping capability to respond to sub-hourly WEG 
variations, as was observed by multiple ISOs [18], with 
obviously undesirable economic and security 
consequences. These observations demonstrate that the 
current discrete-time model does not efficiently utilize the 
available ramping capability of the FA-ESS and the prior 
information about the WEG. 

Accordingly, in this paper a continuous-time method 
based on coefficients of Bernstein polynomial is proposed 
which allows to better schedule the ramping capability of 
FA-ESSs and TGUs while it provides a more accurate 
representation of the sub-hourly ramping needs to follow 
fast sub-hourly ramping of WEG. Also, the application of 
continuous-time method (CTM) in our proposed problem 
would modify the investment and operation costs and 
would utilize FA-ESS and TGU in such that the 
coordination of FA-ESS and online units is better arranged 
to coverage of sub-hourly deviations of the WEG and load 
in the real-time operation. 

All the literature cited above are not successful enough 
in taking the continuous time nature of some actions into 
account, such as sub-hourly variations of WEG and 
ramping needs. Undoubtedly, the allocation of FA-ESS 
with DTM can cause non-optimal location and/or capacity 
for FA-ESS that it does not appropriately coordinate with 
the flexibility of TGUs to compensate the faster variations 
of WEG leading to the happenings of ramping shortages.  

Finally, taking the above description about the available 
literature into consideration, to the best of authors’ 
knowledge the contributions of this paper are twofold: 
• This paper has proposed a robust continuous-time 

optimal allocation of FA-ESSs model to determine the 
optimal location and capacity for FA-ESSs. 

TABLE I: Taxonomy of the proposed planning problem in current paper 
(CP). 

Ref Year 
Storage 

Planning 

Continuous 
Time 

Model 

Wind  
uncertainty 

IBRO 
method 

[2] 2013 Y N Y N 
[8] 2018 Y N Y N 
[19] 2019 Y N Y N 
[20] 2016 Y N N N 
[21] 2017 N N Y N 
[15] 2019 N N Y N 
[22] 2016 Y N Y N 
[23] 2019 N N Y Y 
CP N Y Y Y Y 

Y/N denotes that the subject is/is not considered. 

 
• In this paper a CTM is utilized to capture the fast 

response of FA-ESS to supply the fast ramping 
requirements of sub-hourly ramping of WPGs. Also, 
the continuous-time method modifies the coordination 
of TGUs and FA-ESSs, in such a way that the 
configuration of online TGUs and FA-ESSs is better 
set to react the sub-hourly ramping requirement of 
operation.  

• An IBRO approach is employed to minimize 
operation cost against the undesired effects of fast 
sub-hourly variations of WEG.  

As shown in Table 1, except current paper, no reference 
in the literature, which was published in recent years, 
proposes a continuous-time model for optimal allocation 
of FA-ESSs in power systems.  

Must be remembered, Table 1 compares the proposed 
methods which has been presented in this paper with other 
methods in previous studies to highlight the paper 
contributions. 

The remainder of this paper is organized as follows. 
Section III problem formulation. Section IV continuous-
time modeling. Section IV case study. Finally, Section VII 
concludes. 

III. PROPOSED PLANNING MODEL  

A. Model Structure 
The structure of the proposed model is shown in Fig. 2. 

The planning problem seeks the optimal size and location 
for FA-ESS, with minimum investment /operational costs 
and maximum wind power uncertainty. 

As shown in Fig. 2, the proposed problem has two stage 
constraints. In first constraints optimal output of TGUs, 
number/size/location for FA-ESS, investment/operation 
costs are determined by ISO. Also, in second stage 
constraints worse-case uncertainty for WEG is specified. 

B. Problem formulation 
The detailed formulation of original continuous-time 

optimal allocation of FA-ESS problem is provided below: ݉݅݊ ߔ  ൌ ∑ ௡௡∈ఆ೙ᇩᇭᇭᇪᇭᇭᇫ஼಺೙ೡߣ௡ݔ ൅∑ ൫׬ ൫ܿ௚ ௚ܲ௧൯்݀ݐ ൯௚ ൅ ∑ ൫׬ ܿ௡ሺ ௡ܲ௧௖ ൅ ௡ܲ௧ௗ ሻ்݀ݐ ൯௡∈ఆ೙ᇩᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇫ஼ೀ೛೐ೝ
          (1a) 

s.t. 

n n
n

x λ ≤ ∏                                                                 (1b) 

0 n n nx Iλ≤ ≤ Κ                                                               (1c) 

n nI λ≤                                                                                 (1d) 

min max
g gt gP P P≤ ≤                                                                          (1e) 
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Fig. 2. Structure of the proposed model. 

 

min maxgt
g gt g

dP
r P r

dt
≤ = ≤                                                           (1f) 

( )max max
k kt nm nt mt kP P b Pδ δ− ≤ = ⋅ − ≤                                        (1g) 

,
( ) ( ) ( , ) ( , ) ( )

d c
gt f wt nt kt kt nt nt

g n w n n k n m k m n e n

P P P P P d P+ + − + = +        (1h) 

d
c cnt nt

nt d

dE P
P

dt
η

η
= −                                                              (1i) 

0
d

c c nt
nt d

T

P
Pη

η
 

− = 
 
                                                              (1j) 

0 c c
nt n n nP P λ ρ≤ ≤                                                                 (1k) 

0 d d
nt n n nP P λ ρ≤ ≤                                                                   (1l) 

min max
n n nt n nE E Eλ λ≤ ≤                                                                        (1m) 

0
, 0g t gP P= = , 0

, 0n t nE E= =                                                           (1n) 

The objective function (1a) represents the total cost, 
which includes the investment cost of FA-ESSs and the 
operation cost. The investment cost refers to the building 
of new FA-ESS. The operation cost includes operation cost 
of TGUs and power charging/discharging of FA-ESSs. 
Constraint  

 (1b) ensures the investment cost of FA-ESSs does not 
surpass its available investment budget. Note that if nI  for 

nth bus equals 0 then the investment cost of FA-ESS at this 
bus equals zero, which is denoted by (1c), and also, (1d) 
with (1c) guarantees that once nI  equals 1, the capacity 

factor for FA-ESS at nth bus is greater than one and once 

nI  equals 0 the capacity factor is 0. Constraint (1e) is the 

generation limits for TGUs. Constraint (1f) is the 
continuous-time ramping up and down of TGUs. Noted 
that, the associated ramping of TGUs is defined as time 
derivatives of the generation of TGUs. Constraint (1g) 
warrants the lower and upper limits of the DC power flow 
in line k. Constraint (1h) denotes the continues-time power 
balance equation.  

The constraint (1i) controls the state of charge of FA-
ESSs in continuous-time over the operation horizon; cη /

dη  in (1i) is charging/discharging efficiency, respectively. 
Constraint (1j) imposes energy balance for the FA-ESSs 
per day. Constraints (1k) and (1l) are charging and 
discharging power limits for FA-ESS at bus n. Constraint 
(1m) defines the min and max energy storage levels for the 
FA-ESS at bus n. Initial values of the state routes are 
enforced by (1n), where 0

gP , and 0
eE  are the vectors of 

constant initial values. 

 
 

Fig.3. The Bernstein coefficients for tf . 

IV. CONTINUOUS-TIME MODELING 

Here Bernstein polynomial of order J has been deployed 
to approximate the continuous-time trajectory (space) of a 
function or a data set with the given level of the accuracy. 
The Bernstein polynomial has the capability to 
approximate complex functions or data sets through curve 
fitting and interactive curve design [24].  

One advantage of using polynomials is that they can be 
calculated very quickly on a computer. Here, the vector of 

polynomials of degree J is defined as t
Jb :  

( ), 1
J jt j

j J

J
b t t

j
− 

= − 
 

                                                         (2a) 

If the function tf  is continuous on [ ]0,1t ∈ , the 

Bernstein polynomial operator ( )
J
⋅Ψ  takes this function and 

maps it into a Jth order polynomial as 

,
0

t t

k

J
f f t
J j j J

j

C b
κ

κ κ
=

Ψ = ⋅                                                          (2b) 

The coefficients tf
jC
κ

 are called control points (as shown in 

Fig.3). The other useful properties of BPs are as  
follows: 

(i) When the order J for Bernstein polynomial operator 
is increased, the approximation error will be reduced, i.e., 
lim tf

J tJ
f

κ
κ →∞

Ψ = . 

(ii) The derivative of tf
Jκ

Ψ  can be written as a 

combination of two polynomials of lower degree 1Jκ − . 

( ) ( )( ) ( )

1

1 1 , 1
0

t t t

J
f f f t

jJ j j J
j

J C C b
κ

κ κκ κ κ
κ

κ

−

− − −
=

Ψ = −                              (2c) 

(iii) Integrating tf
Jκ

Ψ   is given by: 

( )1 1

, 1

t

t t

J
f
j

t t jf f t
J j j Jt t

C

C b dt
J

κ

κ
κ κ κ

κ κκ κ κ

+ +Ψ = ⋅ =
+


                               (2d) 

(iv) Convex hull property of ,
t
j Jb  causes that tf

JΨ  and 

tf
JΨ  are limited between their max and min coefficients 

(as shown in Fig.3). 

{ } { }min maxt t tf f f
j J jj j

C C
κ κ κ

κ κ∀ ∀
≤ Ψ ≤                                               (2e) 

( ){ } ( ) ( ){ }1 1 1min maxt t t t tf f f f f
j jj J jj j

C C C C
κ κκ κ κκ κ

− − −∀ ∀
− ≤ Ψ ≤ −               (2f) 

These properties significantly help later, when max and 
min generations and ramping constraints are driven. 

10
tfC
κ −

1tκ − tκ

0
tfC
κ

1

tf
JC

κ −

1
tfC

κ

11
tfC

κ −

( )1max t tf f
J JC

κ κ−Ψ =

tκ

tf
tf

Jκ
Ψ 1min t tf f

J C
κ κ

Ψ =

( )1
tf
JC

κ−
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(v) In order to maintain continuity across first and end 
points of function tf , it is sufficient to enforce that the 

control points match at the first and end points. 

( ) 10
t tf f

JC C
κκ −

=                                                                     (2g) 

Also, the differential of tf
Jκ

Ψ  should also be continuous. 

( ) ( )1 1
1 0 1

t t t tf f f f
J JC C C C

κ κκ κ− −−− = −                                               (2h) 

These properties significantly help later, to maintain 
generation and ramping continuity for TGUs, respectively.  
In the following, continuous-time approximation of wind 
power and load profiles and equations (1) are modeled 
based on the above-mentioned Bernstein polynomials 
method. 
A. Load and wind Profiles: 

- Load profile approximation: the continuous-time 
approximated load profile, similar to Fig. 3, can be 
addressed by the vector of Bernstein basis functions of 
degree J in hour tκ  and sub-interval jκ , i.e., 
{ }0 , 1 , ,, , ...,t t t t t t

J J J Jb b bκ κ κ

κ κ κ κ κ κ

− − − . Each element of Bernstein basis 
vector weighted by the value of load at the sub-interval jκ  
and at hour tκ , as follows: 

( ) ( )( )( ) [ ), ,

1
0

1 , ,n t n t

J
J jjD D

J j
j

J
C t t t t t t t

j

κ
κ

κ κ
κ

κ
κ κ κ κ

κ

−
+

=

 
Ψ = ⋅ ⋅ − ⋅ − − ∀ ∈ 

 
  (3a) 

To show this equation in matrix form, which is more 
implementable, it can be divided into the product of 
Bernstein coefficients and Bernstein basis functions as 
follows: 

, , , , ,

0 ,

1 ,
1

,

n t n t n t n t n t

t t
J

t t
D D D D DJ t t
J o J J J

t t
J J

b

b
C C C C b

b

κ
κ κ

κ
κ κ κ

κ κ κ κ κ κ

κ
κ κ

−

−
−

−

 
 
  Ψ = =  
 
  





            (3b) 

As mentioned earlier, with a large enough J, the deviation 
of the main function and its Bernstein approximation will 
be small.  
- Wind profile approximation: the continuous-time Wind 
profile like load profile can be modeled by Bernstein 
approximation as follows: 

[ ),,

1, ,f wtw t WW t t
J J JC b t t tκ

κ κ κ κ κ
−

+Ψ = ∀ ∈


                                     (3c) 

Noted that, the vector ,w tW
JC

κ

′


 and ,n tD
JC

κ

′


 are calculated alike. 

B. The TGU generation: the continuous-time TGU 
generation, ,g tP , can be defined by the Bernstein function 

space as: 

[ ), ,min max
1, ,g t g tP P t t

g J J J gP C b P t t tκ

κ κ κ κ κ
−

+≤ Ψ = ≤ ∀ ∈


                           (3d) 

The time between tκ  and 1tκ +  has been divided into J 

arbitrary subintervals and a vector of Bernstein 
coefficients of TGU generation has been assigned as

, , , ,

0 , 1 , ,, ,...,g t g t g t g tP P P P
J J J J JC C C C

κ κ κ κ κ κ κ
 =  


 subsequently. 

According to (2e) and Fig. 3, the ,g tP

Jκ
Ψ  should be limited 

between max and min of Bernstein coefficients of TGU 
generation or units generation limits. 

,min max  g tP

g J gP C P
κ

≤ ≤


                                                         (3e) 

C. The TGU Ramping limits: According to (2c), the 
continuous-time ramping limits of TGUs can be modeled 
as follows: 

( ) ( ) ( )
, ,min max

1 1 1
g t g tP P t t

g gJ J Jr J C b rκ

κ κ κκ
−

− − −≤ Ψ = ≤
                              (3f) 

( )

( ) ( ) ( ) ( ) ( ) ( )

,

, , , ,

1

1 , 1 0 , 1 1 , 1 2 , 1, ,

g t

g t g t g t g t

P

J

P P P P

J J J J J J

C

J C C C C

κ

κ κκ κ κ κ κ κ
κ

−

− − − − − −

=

 − − 




   (3g) 

According to (2f), to put a limitation on the continuous-
time ramping of TGUs, the following equation should be 
satisfied: 

( )
,

min max

1  g tPg g

J

r r
C

J Jκ
κ κ

−≤ ≤
                                                         (3h) 

E. The power charging/discharging and energy storage 
limits: Similar to (3d), the power charging and discharging 
of FA-ESS are modeled, respectively, as follows: 

, , ,0 0
c c c
n t n t n tP P Pt t c c

J J J n n n J n n nC b P C Pκ
κ κ κ κ

λ ρ λ ρ−≤ Ψ = ≤  ≤ ≤
 

                  (3i) 

, , ,0 0
d d d

n t n t n tP P Pt t d d
J J J n n n J n n nC b P C Pκ

κ κ κ κ
λ ρ λ ρ−≤ Ψ = ≤  ≤ ≤

 
                (3j) 

Where , , ,

0 , ,,...,
c c c
n t n t n tP P P

J J J JC C C
κ κ κ κ κ

 =  


 and , , ,

0 , ,,..,
d d d

n t n t n tP P P
J J J JC C C

κ κ κ κ κ
 =  


 

are the vectors of Bernstein coefficients of power charging 
and discharging, respectively. Similarly, the energy 
storage capacity limits can be modeled by (2k):  

, ,

,

min min

min max

n t n t

n t

E E t t
n n J J J n n

E
n n J n n

E C b E

E C E

κ
κ κ κ

κ

λ λ

λ λ

−≤ Ψ = ≤

 ≤ ≤



                                      (3k) 

G.  The energy storage of FA-ESS: By integrating the 
state equation (1i) over 1j −  and j , the energy storages 

of FA-ESS are driven by the Bernstein function space of 
degree J+1. Noted that, the integral of the Bernstein 
function space of degree J are linearly associated with 
Bernstein function space of degree J+1. 

,

,

,

,
,1 1 1

1

n t

d
n t

c
n t

Ed
j j j Jn tc cnt

n t dj j j

P
j P Jc

J dj

dPdE
P

dt dt
κ

κ

κ

η
η

η
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− − −

−

  Ψ
= − =  

 
 Ψ
 = Ψ −
 
 

  


                               (3l) 
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             (3m) 

By removing ( )1
t t
Jb κ

κ

−
+


 from both sides of the equation (3l), 

we have: 

( ) ( ) ( )( ) ( ) ( )( )( ), , 1 , ,
1

1 1 1 1

c d
n j n j n j n jE E P Pc d

J J J JC C C C
κ κ κ κ

η η−
−

+ + + +− = −
   

                  (3n) 

H.  The power flow equations: By substituting the 
Bernstein models of line flow and voltage angle in 
equation (1g), we derive: 

( ) ( ), , , ,

, ,,

n t m t n t m tkt kt

n t n tkt kt

P P
J nm J J J nm J J

P P t t t t
J J J J J J

b C b C C

C b C b

κ κ κ κ κ κ

κ κ
κ κ κ κ κ κ

δ δ δ δ

δ δ− −

Ψ = ⋅ Ψ − Ψ  = ⋅ −

Ψ = Ψ =

  

            (3o) 

Then, the continuous-time limits on the line flow can be 
imposed via limitation on the vector of Bernstein 
coefficients, i.e., (3p). 

max maxktP
k J kP C P

κ
− ≤ ≤


                                                          (3p) 

I. The nodal Balance equation: By substituting the 
Bernstein models of load from (3b), WEG from (3c), TGU 
generation from (3d), power charging and discharging of 
FA-ESS from (3i) and (3j), respectively and line flow from 
(3o) in the continuous-time power balance constraint (1h), 
we have: 
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, , ,

, ,

( ) ( )

( , ) ( , )

d
g t f wt n t

c
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P W Pt t t t t t
J J J J J J

g n w n n
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By removing t t
Jb κ

κ

−


 from both sides of the equation (3q), we 

have: 
, , ,

, ,

( ) ( )

( , ) ( , )

d
g t f wt n t

c
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P W P
J J J

g n w n n

d PP P
J J J J
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C C C
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κ κ κ

κ
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+ +

− + = +

  

  

  

                                   (3r) 

Equation (3r) converts the continuous-time nodal balance 
equation (1h) to algebraic equations on the Bernstein 
coefficients like traditional discrete-time nodal balance 
equation. 
J. power generation (charging/discharging) continuity: 
According to (2g), the continuity of power generation of 
TGU and power charging (discharging) of FA-ESS at the 
intersection of hourly intervals are modeled as follows: 

{ }, , , , , ,

1 1 1 1 1 10 , , 0 , , 0 , ,, ,
d d c c

g t g t n t n t n t n tP P P P P P
J J J J J J J J JC C C C C C

κ κ κ κ κ κ κ κ κ κ κ κ− − − − − −
= = =    (3s) 

K. Ramping Continuity: For TGU, it is physically 
impossible to have instantaneous changes in ramping. 
According to (2h), this constraint can be achieved by (3t): 

( )
, , , ,

1 1 11
1 , 0 , , 1 ,

g t g t g t g tP P P P

J J J J J JC C C C
κ κ κ κ κ κ κκ− − −−−− = −                              (3t) 

K. Investment and operation costs: According to (2d), the 
objective (1a) can be converted to (3u). 
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                                 (3u) 

V. CONTINUOUS-TIME ROBUST PLACEMENT OF FA-ESS  

To derive the proposed continuous-time robust 
optimization problem, we want to achieve the largest 
variation range of wind uncertainty that the system can 
remain feasible under minimum investment cost (IC) and 
operation cost (OC).  
Accordingly, the proposed robust problem has two-stage 
constraints, the first stage constraints correspond to the 
optimal decision for the base case (before the realization 
of the uncertainties), while the second stage constraints 
correspond to the optimal decision for post uncertainty 
realization which can be formulated as follows: 
min ξ ϑΦ + ⋅                                                                      (4a) 

The first-stage constraints are: 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
3 ,  3 ,  3 3 ,  3 ,  

3 ,  3 ,  3 3 ,  3   3

e h i j k

n p r s t and u

−

−
                                 (4b) 

The second-stage constraints are: 
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J J J
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J J gC C
κ κ

±
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 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
3 ,  3 ,  3 , 3 ,  3 ,  

3 ,  3 ,  3 ,  3   3

e h i j k

n p s t and u
                                            (4e) 

The objective function (4a) represents the continuous-time 
investment and operation costs plus the largest variation 
range of the wind uncertainty. Also, the weighting 
parameter of uncertainty ξ ∈ [0, ∞) in the objective 
function (4a) is a weighting parameter used to materialize 
the tradeoff between total cost and wind uncertainty 
variation range. If ξ = 0, the wind uncertainty term in the 
objective function is neglected and the resulting problem 
becomes the uncertainty neutral one. As ξ increases, the 
total cost becomes less significant with respect to the 
uncertainty term. The nodal balance (4c) is similar to (3r) 
but it is related to the wind uncertainty conditions. The 
changes in the sub-hourly power output of TGUs under 
wind uncertainty condition is limited by ramp constraint 
(4d). Constraints in (4e) are similar to (3e), (3h), (3i), (3j), 
(3k), (3n), (3p), (3s), (3t) and (3u) while considering the 
wind uncertainty conditions, where the vector of Bernstein 

coefficients ,g tP

JC
κ


, ,

c
n tP

JC
κ
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, ,

d
n tP

JC
κ
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,
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are replaced by ,g tP
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κ
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,

c
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κ
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d
n tP
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κ
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, ( )

,

1
n jE

JC
κ
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
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JC
κ

±
, ,k tf

JC
κ

±
, ,n tE

JC
κ

±

and ,n t

JC
κ

δ ±
, respectively. Also, ‘±’ in constraints (4): ‘-’ and 

‘+’ refer to the lower and upper margins of possible wind 
power uncertainty, respectively. The optimal solution 
obtained from solving the proposed robust problem (4) 
depends on the value of the weighting parameter of 
uncertainty (ξ). For instance, for a small value of ξ, it yields 
a low conservative (or robustness) solution and also a low 
total cost. In contrast, a large value of ξ achieves a solution 
with a high conservative solution and also high total cost. 
Finally, the robustness metric is achieved by comparing 
the largest variation range of the wind uncertainty with the 
target range of its uncertainty. 

 
Fig. 4. One-line diagram of the 24-bus RTS. 
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VI. CASE STUDY 

In this section the numerical results to find the optimal 
location of FA-ESS with a continues-time robust method 
are based on the one-area 24-bus reliability test system 
[25] and this system has been modified according to [5]. 
As shown in Fig.4, the mentioned test system has 26 
TGUs, one wind farm (WF), 17 demands and 38 lines. The 
WF has been installed on bus 9 with the capacity of 900 
MW. Three typical load levels with 48-hour periods 
representing loads in three seasons have been evaluated; 
the time periods are the fifth and sixth day of the 11th, 
25th, and 51st weeks in the year. The fifth and sixth day of 
the week (Friday and Saturday) have been selected since 
they denote both lower load levels on weekends and higher 
load levels during weekdays. 11th, 25th, and 51st weeks 
have their place to spring, summer and winter, 
respectively. Level of loads in the fall and spring are very 
alike, thus they can be considered via the spring load levels 
as well. The load factor data are given in [25], as shown in 
this reference the load factors in winter is the highest in 
overall. Accordingly, the continues-time and hourly 
discrete-time load factors for the three selected periods are 
given in Fig. 5 (a). Similarly, the continues-time and 
discrete-time wind power output for the fifth and sixth 
days of the 11th, 25th, and 51st weeks in the year is 
obtained from the Wind Integration Datasets of National 
Renewable Energy Laboratory (NREL) [26] and shown in 
Fig.5 (b).  

The available FA-ESSs have been considered to be in 
multiples of 32 MWh basic storage capacity, with the 
maximum charge and discharge rates per hour set at ρn = 
25% of this capacity. The power charging and discharging 
efficiencies are considered to be 90% each. All buses have 
been considered to be candidates for installing FA-ESS. 
Also, here assumes that FA-ESS has very high ramping 
capability. The Bernstein polynomial of degree 3 is 
implemented to simulate the proposed continues-time 
method (CTM). The simulations have been implemented 
on a PC with 4.2-GHz quad-core Intel Core i7 processor 
with 16 GB of RAM. 

The computation times for the proposed planning 
problem based on DTM and CTM are 5 min, and 12 min, 
respectively. The increase in the computational time of 
CTM is expected while the number of continuous variables 
is increased in this model. This means that the 
computational time for CTM may significantly increase if 
a comparatively larger system is considered. 

However, to tackle case studies pertaining to real-world 
systems with thousands of nodes and lines and a large 
number of FA-ESS, the following additional alternatives 
are also available: 

 • To use a supercomputer.  
 • To implement parallelization techniques. 
 • To apply decomposition techniques to decompose the 

problem and/or to reduce the number of new FA-ESS. 
 • To decompose the network by area [27]. 
 

A. Optimal Allocation of FA-ESS, for DTM and CTM, 
versus Weighting Parameter of Uncertainty: Given П = 
20 M$, the IC and OC for optimal allocation of FA-ESS, 
for discrete-time and continues-time methods, under 
different values of ξ are shown in Tables II and III.  
The IC and OC for both methods are increased by varying 
the value of ξ from 0 to 108.  

 
(a) 

 

(b) 

Fig.5. a) Load profile and b) Wind power profile model for CTM and 
DTM. 

The main reason is that increasing the value of ξ results 
in more conservative allocation of FA-ESS, which can 
withstand the worst case realizations of WEG uncertainty. 
Accordingly, both operation and investment costs have 
been increased which is indeed the price of robustness of 
more conservative allocation of FA-ESS. Also, as shown 
in Tables II and III, if ξ = 0, the uncertainty term in the 
objective function is ignored and the resulting proposed 
problem for both methods becomes the deterministic one 
with 0ϑ = . In this condition, from Tables II and III it can 
be observed that the number of installed FA-ESS for both 
methods are alike, but, their locations and capacities are 
different.  

For example, for the DTM, any FA-ESS has not been 
installed at bus 9 (wind farm location), in this condition, 
the variability of WEG at bus 9 can only be compensated 
by FA-ESS in other buses i.e., bus 3. But, for the CTM, an 
FA-ESS with capacity 288 MWh is installed at bus 9 to 
mitigate the variability of WEG by charging once WEG is 
high and discharging when WEG is low. Also, the IC in 
the CTM is higher than it in DTM, but, the decrease in OC 
for CTM is large enough to offset the IC. This can happen 
because in the CTM, more energy storage capacity is 
allocated in the system. Hence, the total cost (Φ) for CTM 
has more decrease with respect to the DTM. These results 
are summarized in the first row of Tables II and III. 
Similarly, when the parameter ξ is 106, the number of FA-
ESSs is increased to 5 and 6, for DTM and CTM, 
respectively. Accordingly, the increase of IC in the CTM 
is higher than the DTM, while, the increase of OC in the 
CTM is smaller than the DTM. This finding is expected, 
because the more installation of the storage system leads 
to a more smoothness of the variation of wind energy 
results in a significant decrease in the OC. The impact of 
the ξ value on the worst-case realization of WEG 
uncertainty (ϑ ), for both methods, is illustrated in Tables 
II and III. As expected, the ϑ  value keeps increasing as 
the ξ value increases and finally the ϑ  value for both 
methods becomes stable for a ξ value above 106.  

This indicates that ξ value is large enough to realize the 
worst case WEG uncertainty that system can be alleviated. 
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As a result, it can be concluded that it is of great 
importance to select an appropriate ξ value to accurately 
represent the worst case WEG uncertainty while finding 
optimum IC and OC. Also, as shown in these tables, the 
impact of ξ on the value of ϑ  for CTM is higher than 
DTM, accordingly, the CTM can provide more robust 
solution than DTM. The reason is that the higher ξ value 
implies the more storage capacity and as mentioned before 
the number of FA-ESS and their capacity in the CTM will 
be higher than the other one.  

 

B. Optimal Allocation of FA-ESS, for DTM and CTM, 
versus Investment Budget: The impact of the investment 
budget (П) on optimal allocation of FA-ESS for DTM and 
CTM is illustrated in Tables IV and V. In these tables, the 
weighting parameter of uncertainty is fixed to 106 while 
the value of П is changed progressively. Interesting 
insights can be inferred from these tables. 

(i) As expected, it can be observed that as the П value 
grows, the IC increases while additional FA-ESSs are 
installed to relieve transmission congestion and manage 
the variability of WEG. An important result is that the 
investment decisions become stable for DTM and CTM 
once the number of FA-ESSs reaches 5 and 6, respectively. 
Comparing the results for DTM and CTM, it can be 
observed the storage capacity and number of FA-ESSs, for 
П ≤ 10 M$, are the same for both methods, while, for  

П > 10 M$ the storage capacity and number of FA-ESSs 
for the CTM have been more increased. As a result, it is 
concluded that the CTM has a great capability to utilize 
more storage capacity and the number of FA-ESS in power 
systems. 

(ii) The OC and the total cost (Φ) are not a linear 
function of П value. The results of this exhaustive search 
indicate the increase of П value may decrease the OC, Φ. 
Noted that, the minimum OC for CTM is obtained when П 
is equal to 20 M$. Similarly, the minimum OC for DTM is 
achieved when П is equal to 10 M$. The OC and Φ for  
П = 0 M$ (or without any FA-ESS) is studied here.  

The OC and Φ of the proposed problem using the 
proposed CTM are more than the DTM. The increase in 
the OC and Φ for the proposed CTM is expected because 
the method dispatches more energy to supply the 
continuous-time variations of load and WEG in the 
operation stage. But, once П > 0 M$, the OC for the 
proposed CTM has been more decreased than the DTM. 
Because, the DTM does not capture ultimate storage 
capacity, power charging/discharging and very fast 
ramping of FA-ESSs to supply the continuous time load 
and WEG variations while the proposed CTM explicitly 
captures continuous-time energy storage capacity, power 
charging/ discharging and very fast ramping of the FA-
ESSs. Thus, for П = 20 M$, the OC and Φ for the proposed 
CTM are in the least values. 

 

TABLE II: Optimal allocation of FA-ESS for DTM versus weighting parameter of uncertainty; IC≤20 M$. 

ξ 
Number of  
FA-ESSs  

Built FA-ESSs 
Bus-(Capacity (MWh)) 

IC (M$) OC (M$) Φ  (M$) ϑ   

0 3 1-(133), 3-(1000), 8-(54) 5.9 336.3 342.2 0.000 
102 3 1-(133), 3-(1000), 7-(54) 5.9 336.3 342.2 0.074 
104 4 3-(1000), 7-(20), 8-(62.24), 9-(163.02) 6.3 360.1 366.4 0.113 
106 5 3-(952.4), 4-(179.7), 9-(1000), 11-(531.6), 12-(1000) 18.3 593.5 611.8 0.465 
108 5 3-(952.4), 4-(179.7), 9-(1000), 11-(531.6), 12-(1000) 18.3 593.5 611.8 0.465 

 

TABLE III: Optimal allocation of FA-ESS for CTM versus weighting parameter of uncertainty; IC≤20 M$. 

ξ 
Number of 
FA-ESSs 

Built FA-ESSs 
Bus-(Capacity (MWh)) 

IC (M$) OC (M$) Φ  (M$) ϑ  

0 3 3-(1000), 8-( 617.4), 9-(288) 9.5 280.8 290.3 0.000 
102 3 3-(1000), 8-( 617.4), 9-(288) 9.5 280.8 290.3 0.081 
104 3 3-(1000), 8-( 544.9), 9-(387.1) 9.6 281.8 291.4 0.129 

106 6 
3-(966.8), 4-( 179.8), 8-(378.5) 

9-(1000), 12-( 1000), 13-(513.3) 
19.8 366.9 386.7 0.528 

108 6 
3-(966.8), 4-( 179.8), 8-(378.5) 

9-(1000), 12-( 1000), 13-(513.3) 
19.8 366.9 386.7 0.528 

 

TABLE IV: Optimal allocation of FA-ESS for DTM versus IC; ξ=106. 

П (M$) 
Number of 
FA-ESSs 

Built FA-ESSs 
Bus-(Capacity (MWh)) 

IC 
(M$) 

OC (M$) Φ  (M$) ϑ  

0 0 - 0 459.6 459.6 0.205 
1 1 3-(200) 1 439.7 440.7 0.232 
5 2 3-(351.8), 9-(648.2) 5 455.1 460.1 0.327 

10 4 3-(492.3), 4-(279.6), 9-(1000), 12-(228.1) 10 525.6 535.6 0.428 
20 5 3-(952.4), 4-(179.7), 9-(1000), 11-(531.6), 12-(1000) 18.3 593.5 611.8 0.465 
40 5 3-(952.4), 4-(179.7), 9-(1000), 11-(531.6), 12-(1000) 18.3 593.5 611.8 0.465 

 

TABLE V: Optimal allocation of FA-ESS for CTM versus IC; ξ=106. 

П (M$) 
Number of 
FA-ESSs 

Built FA-ESSs 
Bus-(Capacity (MWh)) 

IC(M$) OC (M$) Φ  (M$) ϑ  

0 0 - 0 461.6 461.6 0.208 
1 1 3-(200) 1 432.7 433.7 0.234 
5 2 3-(351.8), 9-(648.2) 2 416.1 421.1 0.338 

10 4 3-(492.3), 4-(279.6), 9-(1000), 12-(228.1) 10 436.2 446.3 0.448 
20 6 3-(966.8), 4-( 179.8), 8-(378.5) 9-(1000), 12-( 1000), 13-(513.3) 19.8 366.9 386.7 0.528 
40 6 3-(966.8), 4-( 179.8), 8-(378.5) 9-(1000), 12-( 1000), 13-(513.3) 19.8 366.9 386.7 0.528 



1949-3029 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2019.2938417, IEEE
Transactions on Sustainable Energy

 9

 

 
Fig.6. The OC for CTM and DTM with different sub-hourly intervals. 

 

(iii) Simulation results justify increasing the values of П from 
0 M$ to 20 M$ results in more robust solutions withstanding 
more diverse realization of uncertain WEGs. Two obstacles 
to increase the value of ϑ  are transmission line congestion, 
i.e., congestion at line 3-24, and lack of ramping requirement 
to mitigate WEG uncertainty. For example, for this test 
system as shown in Tables IV and V, the congestion at line 3-
24 (with low capacity) is mitigated by installing an FA-ESS 
at bus 3, and the ramping problem is solved by installation of 
an FA-ESS with adequate storage capacity at bus 9 or other 
buses. Besides, as can be seen in Tables IV and V, the value 
of ϑ  is increased for both methods once П varies from 0 M$ 
to 20 M$. Nevertheless, as shown in these tables, the ϑ  value 
for the proposed CTM is more increased than DTM. This is 
expected, because by increasing the value of ϑ , the large 
amount of ramp capability is necessary to cover the wind 
generation uncertainty in the real-time operation. As 
mentioned earlier, the CTM has more ability to provide 
sufficient ramp capacity in power systems than DTM. These 
results confirmed that with the CTM compared to DTM can 
obtain more robust solution (higher ϑ  value) with the lower 
total costs. 
C. Compare DTM with Different Sub-hourly Intervals with 
CTM: 
In order to evaluate the performance of our proposed CTM in 
different weighting parameter of uncertainty (ξ), we repeated 
the OC in Fig. 6 for the CTM and also added the OC results 
obtained from the DTM with 30 min and 15 min sub-hourly 
intervals. We assume that the total investment budget (П) is 
20 M$. We observe from Fig. 6 that our proposed CTM 
outperforms the other two DTMs in terms of total operation 
cost reduction, even compared to the 15 min sub-hourly 
interval solution.  

VII. CONCLUSIONS 

This paper presents an interval based robust optimization 
model based on continuous/discrete time method to 
investigate the best allocation of FA-ESS on the transmission 
network in the presence of the high penetration of wind 
energy generation. The FA-ESS is supposed to provide fast 
ramping capability to mitigate wind power uncertainty. The 
proposed problem based on CTM and DTM allows finding 
the best allocation of FA-ESSs among different buses of the 
transmission network in order to achieve specific objectives. 
Considering the theoretical properties of the proposed model 
and the results of the case studies carried out, the conclusions 
below are in order: 

− The obtained results highlight the significance of 
implementing the CTM in placement problems. 
Consequently, in order to compensate for power 
mismatches caused by wind forecast errors, an enough 
ramping capacity should be considered in the system. 

However, it is noted that despite the availability of 
ramping capacity in the system, due to lack of ability in 
the DTM, it cannot be utilized as addressed in this paper. 

− The obtained results from the 24-bus test system illustrate 
that sizing and sitting of FA-ESS highly depend on 
weighting parameter of the uncertainty as well as the 
investment budget availability. 

− The results demonstrate the superiority of CTM compared 
to DTM to present more robust solution (higher ϑ  value) 
with lower total costs.  

− The results pinpoint the necessity of an accurate time 
method for economically proper system operation. 

− The optimal sizing and sitting of the FA-ESS should be 
determined based on the CTM rather than DTM. 

− The proposed CTM is more capable than DTM in terms 
of finding the worst case of wind energy uncertainty and 
controlling it. 
Future study should address the best combination, in term 
of number, size and location for allocation of FA-ESSs. 
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